1
|
Zielkiewicz J. Solvation of molecules from the family of "domain of unknown function" 3494 and their ability to bind to ice. J Chem Phys 2024; 161:165101. [PMID: 39435831 DOI: 10.1063/5.0222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
In 2012, the molecular structure of a new, broad class of ice-binding proteins, classified as "domain of unknown function" (DUF) 3494, was described for the first time. These proteins have a common tertiary structure and are characterized by a very wide spectrum of antifreeze activity (from weakly active to hyperactive). The ice-binding surface (IBS) region of these molecules differs significantly in its structure from the IBS of previously known antifreeze proteins (AFPs), showing a complete lack of regularity and high hydrophilicity. The presence of a regular, repeating structural motif in the IBS region of hitherto known AFP molecules, combined with the hydrophobic nature of this surface, promotes the formation of an ice-like ordering of the solvation water layer and, as a result, facilitates the process of transformation of this water layer into ice. It is, therefore, surprising that the newly discovered DUF3494 class of proteins clearly breaks out of this characteristic. In this paper, using molecular dynamics simulations, we analyze the solvation water structure of the IBS region of both DUF3494 family molecules and AFPs. As we show, although the IBS of DUF3494 molecules does not form an ice-like water structure in the solvation layer, this is compensated by the formation of the equivalent of "anchored clathrate water," in the form of a relatively large number of water molecules bound to the surface of the protein molecule and providing potential binding sites for it to the ice surface.
Collapse
Affiliation(s)
- Jan Zielkiewicz
- Faculty of Chemistry, Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
2
|
Grabowska J, Kuffel A, Zielkiewicz J. Long-range, water-mediated interaction between a moderately active antifreeze protein molecule and the surface of ice. J Chem Phys 2024; 160:095101. [PMID: 38445741 DOI: 10.1063/5.0187663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Using molecular dynamics simulations, we show that a molecule of moderately active antifreeze protein (type III AFP, QAE HPLC-12 isoform) is able to interact with ice in an indirect manner. This interaction occurs between the ice binding site (IBS) of the AFP III molecule and the surface of ice, and it is mediated by liquid water, which separates these surfaces. As a result, the AFP III molecule positions itself at a specific orientation and distance relative to the surface of ice, which enables the effective binding (via hydrogen bonds) of the molecule with the nascent ice surface. Our results show that the final adsorption of the AFP III molecule on the surface of ice is not achieved by chaotic diffusion movements, but it is preceded by a remote, water-mediated interaction between the IBS and the surface of ice. The key factor that determines the existence of this interaction is the ability of water molecules to spontaneously form large, high-volume aggregates that can be anchored to both the IBS of the AFP molecule and the surface of ice. The results presented in this work for AFP III are in full agreement with the ones obtained by us previously for hyperactive CfAFP, which indicates that the mechanism of the remote interaction of these molecules with ice remains unchanged despite significant differences in the molecular structure of their ice binding sites. For that reason, we can expect that also other types of AFPs interact with the ice surface according to an analogous mechanism.
Collapse
Affiliation(s)
- Joanna Grabowska
- Faculty of Chemistry, Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Anna Kuffel
- Faculty of Chemistry, Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jan Zielkiewicz
- Faculty of Chemistry, Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
3
|
Zielkiewicz J. Mechanism of antifreeze protein functioning and the "anchored clathrate water" concept. J Chem Phys 2023; 159:085101. [PMID: 37622597 DOI: 10.1063/5.0158590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
In liquid water, there is a natural tendency to form aggregates that consist of water molecules linked by hydrogen bonds. Such spontaneously formed aggregates are surrounded by a "sea" of disordered water molecules, with both forms remaining in equilibrium. The process of creating water aggregates also takes place in the solvation water of proteins, but in this case, the interactions of water molecules with the protein surface shift the equilibrium of the process. In this paper, we analyze the structural properties of the solvation water in antifreeze proteins (AFPs). The results of molecular dynamics analysis with the use of various parameters related to the structure of solvation water on the protein surface are presented. We found that in the vicinity of the active region responsible for the binding of AFPs to ice, the equilibrium is clearly shifted toward the formation of "ice-like aggregates," and the solvation water has a more ordered ice-like structure. We have demonstrated that a reduction in the tendency to create "ice-like aggregates" results in a significant reduction in the antifreeze activity of the protein. We conclude that shifting the equilibrium in favor of the formation of "ice-like aggregates" in the solvation water in the active region is a prerequisite for the biological functionality of AFPs, at least for AFPs having a well-defined ice binding area. In addition, our results fully confirm the validity of the "anchored clathrate water" concept, formulated by Garnham et al. [Proc. Natl. Acad. Sci. U. S. A. 108, 7363 (2011)].
Collapse
Affiliation(s)
- Jan Zielkiewicz
- Faculty of Chemistry, Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
4
|
Delesky EA, Srubar WV. Ice-binding proteins and bioinspired synthetic mimics in non-physiological environments. iScience 2022; 25:104286. [PMID: 35573196 PMCID: PMC9097698 DOI: 10.1016/j.isci.2022.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Elizabeth A. Delesky
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Wil V. Srubar
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, ECOT 441 UCB 428, Boulder, CO 80309, USA
- Corresponding author
| |
Collapse
|
5
|
Cui S, Zhang W, Shao X, Cai W. Do antifreeze proteins generally possess the potential to promote ice growth? Phys Chem Chem Phys 2022; 24:7901-7908. [PMID: 35311839 DOI: 10.1039/d1cp05431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding of antifreeze proteins (AFPs) to ice needs to be mediated by interfacial water molecules. Our previous study of the effect of AFPs on the dynamics of the interfacial water of freezing at its initial stage has shown that AFPs can promote the growth of ice before binding to it. However, whether different AFPs can promote the freezing of water molecules on the basal and the prismatic surfaces of ice still needs further study. In the present contribution, five representative natural AFPs with different structures and different activities that can be adsorbed on the basal and/or prismatic surfaces of ice are investigated at the atomic level. Our results show that the phenomenon of promoting the growth of ice crystals is not universal. Only hyperactive AFPs (hypAFPs) can promote the growth of the basal plane of ice, while moderately active AFPs cannot. Moreover, this significant promotion is not observed on the prismatic plane regardless of their activity. Further analysis indicates that this promotion may result from the thicker ice/water interface of the basal plane, and the synergy of hypAFPs with ice crystals.
Collapse
Affiliation(s)
- Shaoli Cui
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| | - Weijia Zhang
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| |
Collapse
|
6
|
Maddah M, Shahabi M, Peyvandi K. How Does DcAFP, a Plant Antifreeze Protein, Control Ice Inhibition through the Kelvin Effect? Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mina Maddah
- Department of Chemistry, K.N. Toosi University of Technology, 1969764499 Tehran, Iran
- Super Computing Institute, University of Tehran, 1417935840 Tehran, Iran
| | - Maryam Shahabi
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, 3513119111 Semnan, Iran
| | - Kiana Peyvandi
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, 3513119111 Semnan, Iran
| |
Collapse
|
7
|
Chang T, Zhao G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002425. [PMID: 33747720 PMCID: PMC7967093 DOI: 10.1002/advs.202002425] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Indexed: 05/14/2023]
Abstract
Cryopreservation technology has developed into a fundamental and important supporting method for biomedical applications such as cell-based therapeutics, tissue engineering, assisted reproduction, and vaccine storage. The formation, growth, and recrystallization of ice crystals are the major limitations in cell/tissue/organ cryopreservation, and cause fatal cryoinjury to cryopreserved biological samples. Flourishing anti-icing materials and strategies can effectively regulate and suppress ice crystals, thus reducing ice damage and promoting cryopreservation efficiency. This review first describes the basic ice cryodamage mechanisms in the cryopreservation process. The recent development of chemical ice-inhibition molecules, including cryoprotectant, antifreeze protein, synthetic polymer, nanomaterial, and hydrogel, and their applications in cryopreservation are summarized. The advanced engineering strategies, including trehalose delivery, cell encapsulation, and bioinspired structure design for ice inhibition, are further discussed. Furthermore, external physical field technologies used for inhibiting ice crystals in both the cooling and thawing processes are systematically reviewed. Finally, the current challenges and future perspectives in the field of ice inhibition for high-efficiency cryopreservation are proposed.
Collapse
Affiliation(s)
- Tie Chang
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
8
|
Stasiulewicz M, Panuszko A, Śmiechowski M, Bruździak P, Maszota P, Stangret J. Effect of urea and glycine betaine on the hydration sphere of model molecules for the surface features of proteins. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Grabowska J, Kuffel A, Zielkiewicz J. Interfacial water controls the process of adsorption of hyperactive antifreeze proteins onto the ice surface. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Kumari S, Muthachikavil AV, Tiwari JK, Punnathanam SN. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2439-2448. [PMID: 32069407 DOI: 10.1021/acs.langmuir.0c00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The antifreeze activity of a type-III antifreeze protein (AFP) expressed in ocean pout (Zoarces americanus) is compared with that of a specific mutant (T18N) using all-atom molecular dynamics simulations. The antifreeze activity of the mutant is only 10% of the wild-type AFP. The results from this simulation study revealed the following insights into the mechanism of antifreeze action by type-III AFPs. The AFP gets adsorbed to the advancing ice front due to its hydrophobic nature. A part of the hydrophobicity is caused by the presence of clathrate structure of water molecules near the ice-binding surface (IBS). The mutation in the AFP disrupts this structure and thereby reduces the ability of the mutant to adsorb to the ice-water interface leading to the loss of antifreeze activity. The mutation, however, has no effect on the ability of the adsorbed protein to bind to the growing ice phase. Simulations also revealed that all surfaces of the protein can bind to the ice phase, although the IBS is the preferred surface.
Collapse
Affiliation(s)
- Surbhi Kumari
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Aswin V Muthachikavil
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Jyoti Kumar Tiwari
- Hindustan Unilever R&D, 64 Whitefield Main Road, Bengaluru 560066, India
| | - Sudeep N Punnathanam
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
11
|
Maddah M, Maddah M, Peyvandi K. The influence of a type III antifreeze protein and its mutants on methane hydrate adsorption-inhibition: a molecular dynamics simulation study. Phys Chem Chem Phys 2019; 21:21836-21846. [PMID: 31552400 DOI: 10.1039/c9cp03833g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antifreeze proteins (AFPs) inhibit ice growth in various organisms at subzero temperature. Recently, AFPs as a hydrate inhibitor have been a topic of intense discussion, while the detailed mechanism remains obscure. The present work aims to explore molecular insight into the adsorption and inhibition of an AFP III on methane hydrate. Three polar, hydrophilic, and neutral amino acids (Asn14, Thr18, and Gln44) are mutated to elucidate the molecular mechanism of AFP III antifreeze activity. Another triple mutation is also designed to investigate the effect of the side chain. Atomistic molecular dynamics simulations provide detailed structural and dynamical aspects of protein residues and water molecules at the hydrate/water interface. Initially, it was proposed that the AFP III operates by the adsorption-inhibition mechanism on hydrates, almost similar to that of ice. The exchange of amide and hydroxyl groups by mutagenesis alters the shape of the side chain and the capability of hydrogen bonding and demonstrates that hydrogen bonds are not directly responsible for the AFP III antifreeze activity. Moreover, we deciphered that the length of the pendant group is an important factor in the entrapment of the AFP III on the hydrate cages, which is compatible with van der Waals interactions between the side chains and hydrate surface. The results suggest that this interaction is sensitive to the geometry and shape of the hydrate-binding surface (HBS) of the AFP, which implies that the interface between hydrates and the AFP is relatively rigid.
Collapse
Affiliation(s)
- Mitra Maddah
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran.
| | | | | |
Collapse
|
12
|
Grabowska J, Kuffel A, Zielkiewicz J. Role of the Solvation Water in Remote Interactions of Hyperactive Antifreeze Proteins with the Surface of Ice. J Phys Chem B 2019; 123:8010-8018. [PMID: 31513398 DOI: 10.1021/acs.jpcb.9b05664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Most protein molecules do not adsorb onto ice, one of the exceptions being so-called antifreeze proteins. In this paper, we describe that there is a force pushing an antifreeze protein molecule away from the ice surface when it is not oriented with its ice-binding plane toward the ice and that this pushing force may be also present even when the protein is oriented with its ice-binding plane toward the ice. This force is absent only when certain specific distance criteria are met, regarding the surface of ice and the protein. It acts at early stages of adsorption, prior to the solidification of water between the ice and the protein molecule nearby. We propose the water-originating mechanism of the generation of this force and also the mechanism of remote attachment of an antifreeze molecule to the ice surface. In liquid water, there exist locally favored structures, ordered and of high specific volume. The presence of a protein molecule usually shifts the equilibrium that exists in liquid water toward increasing the number of high-density, disordered structures and diminishing the number of low-density structures. Creation of the locally favored structures may be hampered not only near the non-ice-binding surfaces but also between the ice surface and the protein surface, if the distance between these surfaces does not allow these structures to develop because the available space is not sufficient for their proper formation. This conclusion is supported by the analysis of the mean geometry of a single hydrogen bond, as well as of the hydrogen bond network in the solvation layer and a structural order parameter that characterizes the separation between the first and second solvation shells of a water molecule.
Collapse
Affiliation(s)
- Joanna Grabowska
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Anna Kuffel
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Jan Zielkiewicz
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| |
Collapse
|
13
|
Grabowska J. Why is the cubic structure preferred in newly formed ice? Phys Chem Chem Phys 2019; 21:18043-18047. [PMID: 31384868 DOI: 10.1039/c9cp03705e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular dynamics was employed to explain the preference for the cubic structure in newly formed crystals of ice. The results showed that in supercooled liquid water the molecules connected by hydrogen bonds are more likely to adopt relative orientations similar to the ones characteristic for cubic ice. The observed preference for certain relative orientations of molecules in the hydrogen-bonded pairs results in the higher probability of the formation of ice with the cubic structure. On that basis, it was concluded that the main reason for the increased probability of the formation of cubic ice in solidifying water is the distinctive structure of liquid water.
Collapse
Affiliation(s)
- Joanna Grabowska
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
14
|
Chakraborty S, Jana B. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Phys Chem Chem Phys 2019; 21:19298-19310. [DOI: 10.1039/c9cp03135a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ice binding surface of a type III AFP induces water ordering at lower temperature, which mediates its adsorption on the ice surface.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Biman Jana
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|