1
|
Gharibi A, Eslami H, Müller-Plathe F. Self-Assembly of Model Three- and Four-Patch Colloidal Particles in Two Dimensions. J Chem Theory Comput 2024. [PMID: 39066701 DOI: 10.1021/acs.jctc.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A coarse-grained effective solvent model of two-patch particles is extended to study the self-assembly of three- and four-patch particles to two-dimensional honeycomb and square lattices, respectively. Employing this model, grand canonical ensemble simulations are done to calculate vapor-liquid equilibria and the critical temperatures for patchy particles of various patch widths. The range of stability of the liquid, although very limited compared to isotropic particles, which interact through a longer-range potential, depends on the patch width and on the number of patches. Biased sampling and unbiased simulations are also done to investigate the mechanism of nucleation and crystal growth for honeycomb and square lattices, self-assembled from three- and four-patch particles, respectively. A two-step mechanism governs the nucleation of both lattices. In the first step, the particles form a dense amorphous network, and in the second step, the particles inside the amorphous network reorient to form crystalline nuclei. Barrier heights for the nucleation of honeycomb and square lattices are 7.8 kBT and 7.4 kBT, which are close to the reported values for the nucleation of the kagome lattice. In agreement with confocal microscopy experiments, the self-assembly in a honeycomb lattice involves the formation of 5- to 7-membered rings. The 5- and 7-membered rings hamper the nucleation of the honeycomb lattice, through defect formation and rotation of the symmetry planes of crystals that form at their surfaces. With the progress of self-assembly, a substantial amount of restructuring of the defects and crystals in their vicinity is needed to heal the defects.
Collapse
Affiliation(s)
- Ali Gharibi
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Hossein Eslami
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
2
|
Sun G, Tanaka H. Surface-induced water crystallisation driven by precursors formed in negative pressure regions. Nat Commun 2024; 15:6083. [PMID: 39060256 PMCID: PMC11282091 DOI: 10.1038/s41467-024-50188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Ice nucleation is a crucial process in nature and industries; however, the role of the free surface of water in this process remains unclear. To address this, we investigate the microscopic freezing process using brute-force molecular dynamics simulations. We discover that the free surface assists ice nucleation through an unexpected mechanism. The surface-induced negative pressure enhances the formation of local structures with a ring topology characteristic of Ice 0-like symmetry, promoting ice nucleation despite the symmetry differing from ordinary ice crystals. Unlike substrate-induced nucleation via water-solid interactions that occurs directly on the surface, this negative-pressure-induced mechanism promotes ice nucleation slightly inward the surface. Our findings provide a molecular-level understanding of the mechanism and pathway behind free-surface-induced ice formation, resolving the longstanding debate. The implications of our discoveries are of substantial importance in areas such as cloud formation, food technology, and other fields where ice nucleation plays a pivotal role.
Collapse
Affiliation(s)
- Gang Sun
- Social Cooperation Research Department "Frost Protection Science", Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing, China
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Eslami H, Müller-Plathe F. Self-Assembly Pathways of Triblock Janus Particles into 3D Open Lattices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306337. [PMID: 37990935 DOI: 10.1002/smll.202306337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/20/2023] [Indexed: 11/23/2023]
Abstract
The self-assembly of triblock Janus particles is simulated from a fluid to 3D open lattices: pyrochlore, perovskite, and diamond. The coarse-grained model explicitly takes into account the chemical details of the Janus particles (attractive patches at the poles and repulsion around the equator) and it contains explicit solvent particles. Hydrodynamic interactions are accounted for by dissipative particle dynamics. The relative stability of the crystals depends on the patch width. Narrow, intermediate, and wide patches stabilize the pyrochlore-, the perovskite-, and the diamond-lattice, respectively. The nucleation of all three lattices follows a two-step mechanism: the particles first agglomerate into a compact and disordered liquid cluster, which does not crystallize until it has grown to a threshold size. Second, the particles reorient inside this cluster to form crystalline nuclei. The free-energy barriers for the nucleation of pyrochlore and perovskite are ≈10 kBT, which are close to the nucleation barriers of previously studied 2D kagome lattices. The barrier height for the nucleation of diamond, however, is much larger (>20 kBT), as the symmetry of the triblock Janus particles is not perfect for a diamond structure. The large barrier is associated with the reorientation of particles, i.e., the second step of the nucleation mechanism.
Collapse
Affiliation(s)
- Hossein Eslami
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr, 75168, Iran
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| |
Collapse
|
4
|
Logan JA, Michelson A, Pattammattel A, Yan H, Gang O, Tkachenko AV. Symmetry-specific characterization of bond orientation order in DNA-assembled nanoparticle lattices. J Chem Phys 2023; 159:154905. [PMID: 37862110 DOI: 10.1063/5.0168604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
Bond-orientational order in DNA-assembled nanoparticles lattices is explored with the help of recently introduced Symmetry-specific Bond Order Parameters (SymBOPs). This approach provides a more sensitive analysis of local order than traditional scalar BOPs, facilitating the identification of coherent domains at the single bond level. The present study expands the method initially developed for assemblies of anisotropic particles to the isotropic ones or cases where particle orientation information is unavailable. The SymBOP analysis was applied to experiments on DNA-frame-based assembly of nanoparticle lattices. It proved highly sensitive in identifying coherent crystalline domains with different orientations, as well as detecting topological defects, such as dislocations. Furthermore, the analysis distinguishes individual sublattices within a single crystalline domain, such as pair of interpenetrating FCC lattices within a cubic diamond. The results underscore the versatility and robustness of SymBOPs in characterizing ordering phenomena, making them valuable tools for investigating structural properties in various systems.
Collapse
Affiliation(s)
- Jack A Logan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Aaron Michelson
- Department of Chemical Engineering, Columbia University, 817 SW Mudd, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, 817 SW Mudd, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
5
|
Baran Ł, Tarasewicz D, Kamiński DM, Rżysko W. Pursuing colloidal diamonds. NANOSCALE 2023; 15:10623-10633. [PMID: 37310349 DOI: 10.1039/d3nr01771k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The endeavor to selectively fabricate a cubic diamond is challenging due to the formation of competing phases such as its hexagonal polymorph or others possessing similar free energy. The necessity to achieve this is of paramount importance since the cubic diamond is the only polymorph exhibiting a complete photonic bandgap, making it a promising candidate in view of photonic applications. Herein, we demonstrate that due to the presence of an external field and delicate manipulation of its strength we can attain selectivity in the formation of a cubic diamond in a one-component system comprised of designer tetrahedral patchy particles. The driving force of such a phenomenon is the structure of the first adlayer which is commensurate with the (110) face of the cubic diamond. Moreover, after a successful nucleation event, once the external field is turned off, the structure remains stable, paving an avenue for further post-synthetic treatment.
Collapse
Affiliation(s)
- Łukasz Baran
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria-Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| | - Dariusz Tarasewicz
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria-Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| | - Daniel M Kamiński
- Department of Organic and Crystalochemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria-Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Wojciech Rżysko
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria-Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
6
|
Marks SM, Vicars Z, Thosar AU, Patel AJ. Characterizing Surface Ice-Philicity Using Molecular Simulations and Enhanced Sampling. J Phys Chem B 2023. [PMID: 37378637 DOI: 10.1021/acs.jpcb.3c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The formation of ice, which plays an important role in diverse contexts ranging from cryopreservation to atmospheric science, is often mediated by solid surfaces. Although surfaces that interact favorably with ice (relative to liquid water) can facilitate ice formation by lowering nucleation barriers, the molecular characteristics that confer icephilicity to a surface are complex and incompletely understood. To address this challenge, here we introduce a robust and computationally efficient method for characterizing surface ice-philicity that combines molecular simulations and enhanced sampling techniques to quantify the free energetic cost of increasing surface-ice contact at the expense of surface-water contact. Using this method to characterize the ice-philicity of a family of model surfaces that are lattice matched with ice but vary in their polarity, we find that the nonpolar surfaces are moderately ice-phobic, whereas the polar surfaces are highly ice-philic. In contrast, for surfaces that display no complementarity to the ice lattice, we find that ice-philicity is independent of surface polarity and that both nonpolar and polar surfaces are moderately ice-phobic. Our work thus provides a prescription for quantitatively characterizing surface ice-philicity and sheds light on how ice-philicity is influenced by lattice matching and polarity.
Collapse
Affiliation(s)
- Sean M Marks
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aniket U Thosar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amish J Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Baran Ł, Borówko M, Rżysko W, Smołka J. Amphiphilic Janus Particles Confined in Symmetrical and Janus-Like Slits. ACS OMEGA 2023; 8:18863-18873. [PMID: 37273616 PMCID: PMC10233691 DOI: 10.1021/acsomega.3c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
We use Monte Carlo simulations to investigate the behavior of Janus spheres composed of attractive and repulsive parts confined between two parallel solid surfaces. The slits with identical and competing walls are studied. The adsorption isotherms of Janus particles are determined, and the impact of the density in the pore on the morphology is discussed in detail. So far, this issue has not been systematically investigated. New, unique structures are observed along the isotherms, including the bilayer and three-layer structures located at different distances from the walls. We analyze how selected parameters affect the positional and orientational ordering in these layers. In some cases, the particles form highly ordered hexagonal lattices.
Collapse
Affiliation(s)
- Łukasz Baran
- Department
of Theoretical Chemistry, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Małgorzata Borówko
- Department
of Theoretical Chemistry, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Wojciech Rżysko
- Department
of Theoretical Chemistry, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Jakub Smołka
- Department
of Computer Science, Lublin University of
Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland
| |
Collapse
|
8
|
Nová L, Uhlík F. Salt Counterion Valency Controls the Ionization and Morphology of Weak Polyelectrolyte Miktoarm Stars. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucie Nová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 00 Praha 2, Czech Republic
| | - Filip Uhlík
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 00 Praha 2, Czech Republic
| |
Collapse
|
9
|
Zeng SY, Hsu CH, Wu TM. Bond Orientational Order Parameters for Classifying Solid-like Clusters in a Lennard-Jones System near Liquid-Solid Transition and at Solid States. J Phys Chem A 2022; 126:2018-2030. [PMID: 35297626 DOI: 10.1021/acs.jpca.1c09527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we introduced an order parameter, named the local structure similarity (LSS), to measure the resemblance of a cluster structure in a liquid with respect to a perfect crystal. The LSS is based on a dot product of two bond orientational order complex vectors, with one vector associated with a particle in a liquid and the other vector with a particle in a crystal. The calculation of the LSS should scan the entire space of the Euler angles determined by the two coordinate frames describing individually the liquid and the crystal. The effectiveness of the LSS was examined by solid-like clusters in a Lennard-Jones (LJ) system near its liquid-solid phase transition and at solid states below its melting point, where the thermodynamic states of the LJ system were obtained by simulation annealing. The LSS measure was utilized to scrutinize the fcc-like, hcp-like, and bcc-like clusters classified by criteria based on W4 and W6 order parameters. As indicated by our results, the two ways of classification are consistent for fcc-like and hcp-like clusters, which are in a close resemblance to their crystalline counterparts. However, the classification with positive W6 for bcc-like clusters is inconsistent with the results of the LSS measure, which was confirmed by clusters in a LJ system confined between two parallel slabs of particles in the bcc structure arrangement.
Collapse
Affiliation(s)
- Sheng-Yuan Zeng
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C
| | - Chih-Hao Hsu
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C
| | - Ten-Ming Wu
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C
| |
Collapse
|
10
|
Dai L, Chakraborty S, Wu G, Ye J, Lau YH, Ramanarayan H, Wu DT. Molecular simulation of linear octacosane via a CG10 coarse grain scheme. Phys Chem Chem Phys 2022; 24:5351-5359. [PMID: 35169819 DOI: 10.1039/d1cp05143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following our previous work on the united-atom simulation on octacosane (C28H58) (Dai et al., Phys. Chem. Chem. Phys., 2021, 23, 21262-21271), we developed a coarse grain scheme (CG10), which is able to reproduce the pivotal phase characteristics of octacosane with highly improved computational efficiency. The CG10 octacosane chain was composed of 10 consecutive beads, maintaining the fundamental zigzag chain morphology. When the potential functions were set up and the coefficients were parameterized, our CG10 models yielded solid phase diagrams and transitions during an annealing process. We also detected the melting point by various means: direct observation, bond order, density tracking, and an enthalpy plot. Furthermore, our CG10 successfully reproduced the liquid density with only 2% underestimation, indicating its applicability across the solid and liquid phases. Therefore, with the ability to reproduce critical structure and property characteristics, our CG10 scheme provides an effective means of numerically modelling octacosane with highly improved computational efficiency.
Collapse
Affiliation(s)
- L Dai
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - S Chakraborty
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - G Wu
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - J Ye
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Y H Lau
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - H Ramanarayan
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - D T Wu
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
11
|
Bahri K, Eslami H, Müller-Plathe F. Self-Assembly of Model Triblock Janus Colloidal Particles in Two Dimensions. J Chem Theory Comput 2022; 18:1870-1882. [PMID: 35157474 DOI: 10.1021/acs.jctc.1c01116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simplified two-dimensional effective-solvent model of triblock Janus particles, consisting of three interaction sites in a linear configuration, a core particle, and two particles modeling the attractive patches at the poles, is developed to study the mechanism of nucleation and self-assembly in triblock Janus particles. The potential energy parameters are tuned against phase transition temperatures and free energy barriers to the nucleation of crystalline phases, calculated from our previous detailed model of Janus particles. Vapor-liquid equilibria and critical temperatures are calculated by grand-canonical molecular dynamics simulations for particles of different patch widths. With metadynamics, phase equilibria, mechanism of nucleation, and free energy barriers to nucleation are investigated. The minimum free energy path to nucleation indicates two steps. The first step, with a higher free energy increase, consists of the densification of the fluid into a disordered cluster. In the second step, of a lower free energy barrier, the inner particles of the disordered cluster reorient to form a crystalline nucleus. This two-step mechanism of nucleation of a kagome lattice is in complete agreement with the experiment and with our previous simulations using a detailed model of Janus particles. Large systems at a slight supersaturation generate multiple crystalline domains, which are misaligned at the grain boundaries. In complete agreement with the experiment and with previous simulation results, we observe a two-step mechanism for crystal growth: melting of the smaller (less stable) crystallites to a fluid followed by recrystallization at the surface of neighboring bigger (more stable) crystallites. A comparison of the present softer modeling of a Janus particle with harder models in the literature for self-assembly of Janus particles indicates that softer potentials stabilize open lattices (e.g., kagome) more than dense lattices (e.g., hexagonal). Also, experimental locations of phase transition points and barrier heights to nucleation are better reproduced by the present model than by the existing simple models.
Collapse
Affiliation(s)
- Kheiri Bahri
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt 64287, Germany.,Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt 64287, Germany
| |
Collapse
|
12
|
Logan JA, Mushnoori S, Dutt M, Tkachenko AV. Symmetry-specific orientational order parameters for complex structures. J Chem Phys 2022; 156:054108. [DOI: 10.1063/5.0076915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jack A. Logan
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Srinivas Mushnoori
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Meenakshi Dutt
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Alexei V. Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
13
|
Doi H, Takahashi KZ, Aoyagi T. Mining of Effective Local Order Parameters to Classify Ice Polymorphs. J Phys Chem A 2021; 125:9518-9526. [PMID: 34677066 DOI: 10.1021/acs.jpca.1c06685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Order parameters make it possible to quantify the degree of structural ordering in a material and thus to apply as the reaction coordinates during the free-energy analysis of phase or structure transitions. Furthermore, order parameters are useful in determining the local structures of molecular groups during transition stages. However, identifying or developing local order parameters (LOPs) that are sensitive for specific materials and phases is a non-trivial task. In this study, the ability of LOPs to classify the solid and liquid structures of water at coexistence or triple points is investigated with the aid of supervised machine learning. The classification accuracy of a total of 179,738,433 combinations of 493 LOPs is automatically and systematically compared for water structures at the ice Ih-Ic-liquid coexistence point and the ice III-V-liquid and ice V-VI-liquid triple points. The optimal sets of two LOPs are found for each point, and sets of three LOPs are suggested for better accuracy.
Collapse
Affiliation(s)
- Hideo Doi
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Kazuaki Z Takahashi
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Takeshi Aoyagi
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
14
|
Kurban E, Baule A. Structural analysis of disordered dimer packings. SOFT MATTER 2021; 17:8877-8890. [PMID: 34542552 DOI: 10.1039/d1sm00960e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Jammed disordered packings of non-spherical particles show significant variation in the packing density as a function of particle shape for a given packing protocol. Rotationally symmetric elongated shapes such as ellipsoids, spherocylinders, and dimers, e.g., pack significantly denser than spheres over a narrow range of aspect ratios, exhibiting a characteristic peak at aspect ratios of αmax ≈ 1.4-1.5. However, the structural features that underlie this non-monotonic behaviour in the packing density are unknown. Here, we study disordered packings of frictionless dimers in three dimensions generated by a gravitational pouring protocol in LAMMPS. Focusing on the characteristics of contacts as well as orientational and translational order metrics, we identify a number of structural features that accompany the formation of maximally dense packings as the dimer aspect ratio α is varied from the spherical limit. Our results highlight that dimer packings undergo significant structural changes as α increases up to αmax manifest in the reorganisation of the contact configurations between neighbouring dimers, increasing nematic order, and decreasing local translational order. Remarkably, for α > αmax our metrics remain largely unchanged, indicating that the peak in the packing density is related to the interplay of structural rearrangements for α < αmax and subsequent excluded volume effects with unchanged structure for α > αmax.
Collapse
Affiliation(s)
- Esma Kurban
- School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Adrian Baule
- School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
15
|
Du Y, Yuan Y, Li L, Long M, Duan H, Chen D. Insights into structure and properties of P2O5-based binary systems through molecular dynamics simulations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Shrivastav GP, Kahl G. On the yielding of a point-defect-rich model crystal under shear: insights from molecular dynamics simulations. SOFT MATTER 2021; 17:8536-8552. [PMID: 34505613 PMCID: PMC8480408 DOI: 10.1039/d1sm00662b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In real crystals and at finite temperatures point defects are inevitable. Under shear their dynamics severely influence the mechanical properties of these crystals, giving rise to non-linear effects, such as ductility. In an effort to elucidate the complex behavior of crystals under plastic deformation it is crucial to explore and to understand the interplay between the timescale related to the equilibrium point-defect diffusion and the shear-induced timescale. Based on extensive non-equilibrium molecular dynamics simulations we present a detailed investigation on the yielding behavior of cluster crystals, an archetypical model for a defect-rich crystal: in such a system clusters of overlapping particles occupy the lattice sites of a regular (FCC) structure. In equilibrium particles diffuse via site-to-site hopping while maintaining the crystalline structure intact. We investigate these cluster crystals at a fixed density and at different temperatures where the system remains in the FCC structure: temperature allows us to vary the diffusion timescale appropriately. We then expose the crystal to shear, thereby choosing shear rates which cover timescales that are both higher and lower than the equilibrium diffusion timescales. We investigate the macroscopic and microscopic response of our cluster crystal to shear and find that the yielding scenario of such a system does not rely on the diffusion of the particles - it is rather related to the plastic deformation of the underlying crystalline structure. The local bond order parameters and the measurement of local angles between neighboring clusters confirm the cooperative movement of the clusters close to the yield point. Performing complementary, related simulations for an FCC crystal formed by harshly repulsive particles reveals similarities in the yielding behavior between both systems. Still we find that the diffusion of particles does influence characteristic features in the cluster crystal, such as a less prominent increase of order parameters close to the yield point. Our simulations provide for the first time an insight into the role of the diffusion of defects in the yielding behavior of a defect-rich crystal under shear. These observations will thus be helpful in the development of theories for the plastic deformation of defect-rich crystals.
Collapse
Affiliation(s)
- Gaurav P Shrivastav
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
| | - Gerhard Kahl
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
| |
Collapse
|
17
|
Klochko L, Baschnagel J, Wittmer JP, Semenov AN. Relaxation moduli of glass-forming systems: temperature effects and fluctuations. SOFT MATTER 2021; 17:7867-7892. [PMID: 34368819 DOI: 10.1039/d1sm00778e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Equilibrium and dynamical properties of a two-dimensional polydisperse colloidal model system are characterized by means of molecular dynamics (MD) and Monte Carlo (MC) simulations. We employed several methods to prepare quasi-equilibrated systems: in particular, by slow cooling and tempering with MD (method SC-MD), and by tempering with MC dynamics involving swaps of particle diameters (methods Sw-MD, Sw-MC). It is revealed that the Sw-methods are much more efficient for equilibration below the glass transition temperature Tg leading to denser and more rigid systems which show much slower self-diffusion and shear-stress relaxation than their counterparts prepared with the SC-MD method. The shear-stress relaxation modulus G(t) is obtained based on the classical stress-fluctuation relation. We demonstrate that the α-relaxation time τα obtained using a time-temperature superposition of G(t) shows a super-Arrhenius behavior with the VFT temperature T0 well below Tg. We also derive novel rigorous fluctuation relations providing isothermic and adiabatic compression relaxation moduli in the whole time range (including the short-time inertial regime) based on correlation data for thermostatted systems. It is also shown that: (i) the assumption of Gaussian statistics for stress fluctuations leads to accurate predictions of the variances of the fluctuation moduli for both shear (μF) and compression (ηF) at T⪆Tg. (ii) The long-time (quasi-static) isothermic and adiabatic moduli increase on cooling faster than the affine compression modulus ηA, and this leads to a monotonic temperature dependence of ηF which is qualitatively different from μF(T) showing a maximum near Tg.
Collapse
Affiliation(s)
- L Klochko
- Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France.
| | | | | | | |
Collapse
|
18
|
Sato T, Kobayashi Y, Arai N. Effect of chemical design of grafted polymers on the self-assembled morphology of polymer-tethered nanoparticles in nanotubes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:365404. [PMID: 34157689 DOI: 10.1088/1361-648x/ac0d85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
There is a clear relationship between the self-assembling architecture of nanoparticles (NPs) and their physical properties, and they are currently used in a variety of applications, including optical sensors. Polymer-tethered NPs, which are created by grafting polymers onto NPs to control the self-assembly of NPs, have attracted considerable attention. Recent synthetic techniques have made it possible to synthesize a wide variety of polymers and thereby create NPs with many types of surfaces. However, self-assembled structures have not been systematically classified because of the large number of tuning parameters such as the polymer length and graft density. In this study, by using coarse-grained molecular simulation, we investigated the changes in the self-assembled structure of polymer-tethered NP solutions confined in nanotubes due to the chemical properties of polymers. Three types of tethered polymer NP models were examined: homo hydrophilic, diblock hydrophilic-hydrophobic (HI-HO), and diblock hydrophobic-hydrophilic. Under strong confinement, the NPs were dispersed in single file at low axial pressure. As the pressure increased, multilayered lamellar was observed in the HI-HO model. In contrast, under weak confinement, the difference in the pressure at which the phases emerge, depending on the model, was significant. By changing the chemical properties of the grafted polymer, the thermodynamic conditions (the axial pressure in this study) under which the phases appear is altered, although the coordination of NPs remains almost unchanged. Our simulation offers a theoretical guide for controlling the morphologies of self-assembled polymer-tethered NPs, a novel system that may find applications in nanooptical devices or for nanopatterning.
Collapse
Affiliation(s)
- Takumi Sato
- Department of Mechanical Engineering, Keio University, Kohoku-ku, Yokohama, Japan
| | - Yusei Kobayashi
- Department of Mechanical Engineering, Keio University, Kohoku-ku, Yokohama, Japan
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Kohoku-ku, Yokohama, Japan
| |
Collapse
|
19
|
Rozas RE, MacDowell LG, Toledo PG, Horbach J. Crystal growth of bcc titanium from the melt and interfacial properties: A molecular dynamics simulation study. J Chem Phys 2021; 154:184704. [PMID: 34241033 DOI: 10.1063/5.0049131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The crystal growth kinetics and interfacial properties of titanium (Ti) are studied using molecular dynamics computer simulation. The interactions between the Ti atoms are modeled via an embedded atom method potential. First, the free solidification method (FSM) is used to determine the melting temperature Tm at zero pressure where the transition from liquid to body-centered cubic crystal occurs. From the simulations with the FSM, the kinetic growth coefficients are also determined for different orientations of the crystal, analyzing how the coupling to the thermostat affects the estimates of the growth coefficients. At Tm, anisotropic interfacial stiffnesses and free energies as well as kinetic growth coefficients are determined from capillary wave fluctuations. The so-obtained growth coefficients from equilibrium fluctuations and without the coupling of the system to a thermostat agree well with those extracted from the FSM calculations.
Collapse
Affiliation(s)
- R E Rozas
- Department of Physics, University of Bío-Bío, Av. Collao 1202, P.O. Box 5-C, Concepción, Chile
| | - L G MacDowell
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - P G Toledo
- Chemical Engineering Department and Surface Analysis Laboratory (ASIF), University of Concepción, P.O. Box 160-C, Correo 3, Concepción, Chile
| | - J Horbach
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Eslami H, Gharibi A, Müller-Plathe F. Mechanisms of Nucleation and Solid-Solid-Phase Transitions in Triblock Janus Assemblies. J Chem Theory Comput 2021; 17:1742-1754. [PMID: 33529019 DOI: 10.1021/acs.jctc.0c01080] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A model, including the chemical details of core nanoparticles as well as explicit surface charges and hydrophobic patches, of triblock Janus particles is employed to simulate nucleation and solid-solid phase transitions in two-dimensional layers. An explicit solvent and a substrate are included in the model, and hydrodynamic and many-body interactions were taken into account within many-body dissipative particle dynamics simulation. In order not to impose a mechanism a priori, we performed free (unbiased) simulations, leaving the system the freedom to choose its own pathways. In agreement with the experiment and previous biased simulations, a two-step mechanism for the nucleation of a kagome lattice from solution was detected. However, a distinct feature of the present unbiased versus biased simulations is that multiple nuclei emerge from the solution; upon their growth, the aligned and misaligned facets at the grain boundaries are introduced into the system. The liquid-like particles trapped between the neighboring nuclei connect them together. A mismatch in the symmetry planes of neighboring nuclei hinders the growth of less stable (smaller) nuclei. Unification of such nuclei at the grain boundaries of misaligned facets obeys a two-step mechanism: melting of the smaller nuclei, followed by subsequent nucleation of liquid-like particles at the interface of bigger neighboring nuclei. Besides, multiple postcritical nuclei are formed in the simulation box; the growth of some of which stops due to introduction of a strain in the system. Such an incomplete nucleation/growth mechanism is in complete agreement with the recent experiments. The solid-solid (hexagonal-to-kagome) phase transition, at weak superheatings, obeys a two-step mechanism: a slower step (formation of a liquid droplet), followed by a faster step (nucleation of kagome from the liquid droplet).
Collapse
Affiliation(s)
- Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany.,Department of Chemistry, College of Sciences, Persian Gulf University, 75168 Boushehr, Iran
| | - Ali Gharibi
- Department of Chemistry, College of Sciences, Persian Gulf University, 75168 Boushehr, Iran
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
21
|
Grebe V, Liu M, Weck M. Quantifying patterns in optical micrographs of one- and two-dimensional ellipsoidal particle assemblies. SOFT MATTER 2020; 16:10900-10909. [PMID: 33118580 DOI: 10.1039/d0sm01692f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current developments in colloidal science include the assembly of anisotropic colloids with broad geometric diversity. As the complexity of particle assemblies increases, the need for ubiquitous algorithms that quantitatively analyze images of the assemblies to deliver key information such as quantification of crystal structures becomes more urgent. This contribution describes algorithms capable of image analysis for classifying colloidal structures based on abstracted interparticle relationship information and quantitatively analyzing the abundance of each structure in mixed pattern assemblies. The algorithm parameters can be adjusted, allowing for the algorithms to be adapted for different image analyses. Three different ellipsoidal particle assembly images are presented to demonstrate the effectiveness of the algorithms: a one-dimensional (1D) particle chain assembly and two two-dimensional (2D) polymorphic crystals each consisting of assemblies of two distinct plane symmetry groups. Angle relationships between neighbouring particles are calculated and neighbour counts of each particle are determined. Combining these two parameters as rules for classification criteria allows for the labeling and quantification of each particle into a defined symmetry class within an assembly. The algorithms provide a labelled image comprising classification results and particle counts of each defined class. For multiple images or individual frames from a video, the script can be looped to achieve automatic processing. The yielded classification data allow for more in-depth image analysis of mixed pattern particle assemblies. We envision that these algorithms will have utility in quantitative analysis of images comprising ellipsoidal colloidal materials, nanoparticles, or biological matter.
Collapse
Affiliation(s)
- Veronica Grebe
- Molecular Design Institute and Department of Chemistry, New York University, New York, NY 10003, USA.
| | | | | |
Collapse
|
22
|
Wang L, Dai J, Hao P, He F, Zhang X. Mesoscopic Dynamical Model of Ice Crystal Nucleation Leading to Droplet Freezing. ACS OMEGA 2020; 5:3322-3332. [PMID: 32118147 PMCID: PMC7045502 DOI: 10.1021/acsomega.9b03415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
We present a numerical model to study the dynamic behaviors and heat conduction of freezing liquid droplets based on the MDPDE method (many-body dissipative particle dynamics with energy conservation configurations). In this model, the freezing processes involved in cooling, recalescence, and nucleation are considered. A new scaling method was developed to connect the mesoscopic MDPDE coefficients and macrothermal conductivity. The freezing of water droplets on cold surfaces with different wettabilities was simulated. Both the evolution of temperature and ice-liquid interface movement showed close agreement with the experimental data. We discuss the formation of a pointy tip on the top of an ice-drop and nucleation and growth during the recalescence stage. The rapid expansion of the recalescence region and the growth of the solid-phase region were calculated numerically, and this showed that the nuclei distribution of the two processes were completely different. The MDPDE model can not only predict the freezing time and shape deformation of ice-drops but also the nuclei formation and crystal growth during solidification. This study provides a useful tool for deicing material design.
Collapse
|
23
|
Huang Z, Zhu G, Chen P, Hou C, Yan LT. Plastic Crystal-to-Crystal Transition of Janus Particles under Shear. PHYSICAL REVIEW LETTERS 2019; 122:198002. [PMID: 31144934 DOI: 10.1103/physrevlett.122.198002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 05/26/2023]
Abstract
Colloidal Janus spheres in the bulk typically spontaneously assemble into plastic crystalline phases, while particle orientations exhibit glasslike dynamics without long-range order. Through Brownian dynamics simulations, we demonstrate that shear can trigger a phase transition from an isotropic crystal with orientational disorder to an orientationally ordered crystal with lamellae along the shear direction. This nonequilibrium transition is accompanied with the orientational ordering following a nucleation and growth mechanism. By performing a phenomenological extension of free energy analysis, we reveal that the nucleation originates from the orientation fluctuations induced by shear. The growth of the orientationally crystalline cluster is examined to be disklike, captured by developing a lattice model with memoryless state functions. These findings bring new insights into the mechanisms for the ordering transition of anisotropic particles at nonequilibrium states.
Collapse
Affiliation(s)
- Zihan Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guolong Zhu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Pengyu Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Cuiling Hou
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Molecular Simulations of Sputtering Preparation and Transformation of Surface Properties of Au/Cu Alloy Coatings Under Different Incident Energies. METALS 2019. [DOI: 10.3390/met9020259] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The surface properties of coatings during deposition are strongly influenced by temperature, particle fluxes, and compositions. In addition, the precursor incident energy also affects the surface properties of coatings during sputtering. The atomistic processes associated with the microstructure of coatings and the surface morphological evolution during sputtering are difficult to observe. Thus, in the present study, molecular dynamics simulation was employed to investigate the surface properties of Au/Cu alloy coatings (Cu substrate sputtering by Au atoms) with different incident energies (0.15 eV, 0.3 eV, 0.6 eV). Subsequently, the sputtering depth of the Au atoms, the particle distribution of the Au/Cu alloy coating system, the radial distribution function of particles in the coatings, the mean square displacement of the Cu atoms in the substrate, and the roughness of the coatings were analyzed. Results showed that the crystal structure and the sputtering depth of Au atoms were hardly influenced by the incident energy, and the incident energy had little impact on the motion of deep-lying atoms in the substrate. However, higher incident energy resulted in higher surface temperature of coatings, and more Au atoms existed in the coherent interface. Moreover, it strengthened the motion of Cu atoms and reduced the surface roughness. Therefore, the crystal structure of coatings and the motions of deep-lying atoms in the substrate are not influenced by the incident energy. However, the increase in incident energy will enhance the combination of coatings and the base while optimizing the surface structure.
Collapse
|
25
|
Eslami H, Khanjari N, Müller-Plathe F. Self-Assembly Mechanisms of Triblock Janus Particles. J Chem Theory Comput 2018; 15:1345-1354. [DOI: 10.1021/acs.jctc.8b00713] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hossein Eslami
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermo-Fluids & Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Neda Khanjari
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermo-Fluids & Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| |
Collapse
|