1
|
Ahmed AA, Morshedizad M, Kühn O, Leinweber P. Deciphering competitive interactions: Phosphate and organic matter binding on goethite through experimental and theoretical insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173510. [PMID: 38806124 DOI: 10.1016/j.scitotenv.2024.173510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The adsorption of phosphorus (P) onto active soil surfaces plays a pivotal role in immobilizing P, thereby influencing soil fertility and the filter function of soil to protect freshwater systems from eutrophication. Competitive anions, such as organic matter (OM), significantly affect the strength of this P-binding, eventually controlling P mobility and release, but surprisingly, these processes are insufficiently understood at the molecular level. In this study, we provide a molecular-level perspective on the influence of OM on P binding at the goethite-water interface using a combined experimental-theoretical approach. By examining the impact of citric acid (CIT) and histidine (HIS) on the adsorption of orthophosphate (OP), glycerol phosphate (GP), and inositol hexaphosphate (IHP) through adsorption experiments and molecular dynamics simulations, we address fundamental questions regarding P binding trends, OM interaction with the goethite surface, and the effect of OM on P adsorption. Our findings reveal the complex nature of P adsorption on goethite surfaces, where the specific OM, treatment conditions (covering the surface with OM or simultaneous co-adsorption), and initial concentrations collectively shape these interactions. P adsorption on goethite exhibits a binding strength increasing in the order of GP < OP < IHP. Crucially, this trend remains consistent across all adsorption experiments, regardless of the presence or absence of OM, CIT, or HIS, and irrespective of the specific treatment method. Notably, OP is particularly susceptible to inhibition by OM, while adsorption of GP depends on specific OM treatments. Despite being less sensitive to OM, IHP shows reduced adsorption, especially at higher initial P concentrations. Of significance is the strong inhibitory effect of CIT, particularly evident when the surface is pre-covered, resulting in a substantial 70 % reduction in OP adsorption compared to bare goethite. The sequence of goethite binding affinity to P and OM underscores a higher affinity of CIT and HIS compared to OP and GP, suggesting that OM can effectively compete with both OP and GP and replace them at the surface. In contrast, the impact of OM on IHP adsorption appears insignificant, as IHP exhibits a higher affinity than both CIT and HIS towards the goethite surface. The coverage of goethite surfaces with OM results in the blocking of active sites and the generation of an unfavorable electric potential and field, inhibiting anion adsorption and consequently reducing P binding. It is noteworthy that electrostatic interactions predominantly contribute more to the binding of P and OM to the surface compared to dispersion interactions.
Collapse
Affiliation(s)
- Ashour A Ahmed
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany.
| | - Mohsen Morshedizad
- Chair of Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, D-18059 Rostock, Germany
| | - Oliver Kühn
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany
| | - Peter Leinweber
- Chair of Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, D-18059 Rostock, Germany
| |
Collapse
|
2
|
Bérard R, Sassoye C, Terrisse H, Bertoncini P, Humbert B, Cassaignon S, Le Caër S. Effect of Crystalline Phase and Facet Nature on the Adsorption of Phosphate Species onto TiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16258-16271. [PMID: 39039729 DOI: 10.1021/acs.langmuir.4c01447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The current use of TiO2 nanoparticles raises questions about their impact on our health. Cells interact with these nanoparticles via the phospholipid membrane and, in particular, the phosphate head. This highlights the significance of understanding the interaction between phosphates and nanoparticles possessing distinct crystalline structures, specifically anatase and rutile. It is crucial to determine whether this adsorption varies based on the exposed facet(s). Consequently, various nanoparticles of anatase and rutile TiO2, characterized by well-defined morphologies, were synthesized. In the case of the anatase samples, bipyramids, needles, and cubes were obtained. For the rutile samples, all exhibited a needle-like shape, featuring {110} facets along the long direction of the needles and facets {111} on the upper and lower parts. Phosphate adsorption experiments carried out at pH 2 revealed that the maximum adsorption was relatively consistent across all samples, averaging around 1.5 phosphate·nm-2 in all cases. Experiments using infrared spectroscopy on dried TiO2 powders showed that phosphates were chemisorbed on the surfaces and that the mode of adsorption depended on the crystalline phase and the nature of the facet: the anatase phase favors bidentate adsorption more than the rutile crystalline phase.
Collapse
Affiliation(s)
- Rémi Bérard
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Capucine Sassoye
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Hélène Terrisse
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, UMR 6502, 2 rue de la Houssinière, 44000 Nantes, France
| | - Patricia Bertoncini
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, UMR 6502, 2 rue de la Houssinière, 44000 Nantes, France
| | - Bernard Humbert
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, UMR 6502, 2 rue de la Houssinière, 44000 Nantes, France
| | - Sophie Cassaignon
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Sophie Le Caër
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France
| |
Collapse
|
3
|
Tang S, Li Y, Zhu Z, Wang Y, Peng Y, Zhang J, Nong P, Pan S, Fan Y, Zhu Y. Biotransformation of Chlorpyrifos Shewanella oneidensis MR-1 in the Presence of Goethite: Experimental Optimization and Degradation Products. TOXICS 2024; 12:402. [PMID: 38922082 PMCID: PMC11209498 DOI: 10.3390/toxics12060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
In this study, the degradation system of Shewanella oneidensis MR-1 and goethite was constructed with chlorpyrifos as the target contaminant. The effects of initial pH, contaminant concentration, and temperature on the removal rate of chlorpyrifos during the degradation process were investigated. The experimental conditions were optimized by response surface methodology with a Box-Behnken design (BBD). The results show that the removal rate of chlorpyrifos is 75.71% at pH = 6.86, an initial concentration of 19.18 mg·L-1, and a temperature of 30.71 °C. LC-MS/MS analyses showed that the degradation products were C4H11O3PS, C7H7Cl3NO4P, C9H11Cl2NO3PS, C7H7Cl3NO3PS, C9H11Cl3NO4P, C4H11O2PS, and C5H2Cl3NO. Presumably, the degradation pathways involved are: enzymatic degradation, hydrolysis, dealkylation, desulfur hydrolysis, and dechlorination. The findings of this study demonstrate the efficacy of the goethite/S. oneidensis MR-1 complex system in the removal of chlorpyrifos from water. Consequently, this research contributes to the establishment of a theoretical framework for the microbial remediation of organophosphorus pesticides in aqueous environments.
Collapse
Affiliation(s)
- Shen Tang
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Yanhong Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China;
| | - Zongqiang Zhu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China;
| | - Yaru Wang
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Yuqing Peng
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Jing Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Peijie Nong
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Shufen Pan
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Yinming Fan
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China;
| | - Yinian Zhu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China;
| |
Collapse
|
4
|
Bao T, Damtie MM, Wang CY, Li CL, Chen Z, Cho K, Wei W, Yuan P, Frost RL, Ni BJ. Iron-containing nanominerals for sustainable phosphate management: A comprehensive review and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172025. [PMID: 38554954 DOI: 10.1016/j.scitotenv.2024.172025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.
Collapse
Affiliation(s)
- Teng Bao
- School of Biology, Food and Environment Engineering, Hefei University, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea; Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Mekdimu Mezemir Damtie
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Water Resources Engineering Department, Adama Science and Technology University, Adama, P.O. Box 1888, Ethiopia
| | - Chu Yan Wang
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Cheng Long Li
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kuk Cho
- Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ray L Frost
- Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
El-Mehalmey WA, Ibrahim AH, Youssef AFA, Abuzalat O, Mousa MS, Mayhoub AS, Alkordi MH. Anion-Exchange Electrospun Mixed-Matrix Polymer Fibers of Colesevelam for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38109475 DOI: 10.1021/acsami.3c13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Novel anion-exchange electrospun fiber membranes of polycaprolactone doped with the cationic, cross-linked colesevelam polymer are reported. The weight fraction of cross-linked cationic colesevelam polymer, as the active phase within the PCL matrix, can readily be controlled in the synthesis of the mixed-matrix fibers (Cole@PCL), enabling optimization of the ion-exchange properties of the resulted membranes. This approach enabled adaptation of anion-exchange resins to a permeable, flexible membrane form, which is a significant advancement toward futuristic water treatment applications, demonstrated herein for the removal of trace contaminants, including nitrates and phosphates, as well as anionic dyes. The Cole@PCL membranes demonstrated the dependence of contaminant uptake on the weight percentage of colesevelam in the mixed-matrix membrane. An optimal 10 wt % of colesevelam was identified, demonstrating a staggering ion removal capacity of 155.8 mg/g for nitrate, 177.6 mg/g for phosphate, and 70 mg/g for Methyl Orange.
Collapse
Affiliation(s)
- Worood A El-Mehalmey
- Center for Materials Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| | - Ahmed H Ibrahim
- Center for Materials Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| | - Ahmed Fahmy A Youssef
- Environmental Engineering Program, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
- Chemistry Department, Faculty of Science, Cairo University, 12612 Giza, Egypt
| | - Osama Abuzalat
- Department of Chemical Engineering, Military Technical College, 4393010 Cairo, Egypt
| | - Moustafa S Mousa
- Environmental Engineering Program, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
- Faculty of Engineering Mataria, Helwan University, 11795 Cairo, Egypt
| | - Abdelrahman S Mayhoub
- Center for Certified Standards, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| | - Mohamed H Alkordi
- Center for Materials Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| |
Collapse
|
6
|
Halawa MI, Saqib M, Lei W, Su L, Zhang X. Zirconium-Directed Supramolecular Self-Assembly of Coenzyme A@GNCs with Enhanced Phosphorescence for Developing Ultrasensitive Tracer Probe of Dipicolinic Acid, a Biomarker of Bacterial Spores. Anal Chem 2023; 95:11164-11171. [PMID: 37437237 DOI: 10.1021/acs.analchem.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Luminescent gold nanoclusters (GNCs) are a class of attractive quantum-sized nanomaterials bridging the gap between organogold complexes and gold nanocrystals. They typically have a core-shell structure consisting of a Au(I)-organoligand shell-encapsulated few-atom Au(0) core. Their luminescent properties are greatly affected by their Au(I)-organoligand shell, which also supports the aggregation-induced emission (AIE) effect. However, so far, the luminescent Au nanoclusters encapsulated with the organoligands containing phosphoryl moiety have rarely been reported, not to mention their AIE. In this study, coenzyme A (CoA), an adenosine diphosphate (ADP) analogue that is composed of a bulky 5-phosphoribonucleotide adenosine moiety connected to a long branch of vitamin B5 (pantetheine) via a diphosphate ester linkage and ubiquitous in all living organisms, has been used to synthesize phosphorescent GNCs for the first time. Interestingly, the synthesized phosphorescent CoA@GNCs could be further induced to generate AIE via the PO32- and Zr4+ interactions, and the observed AIE was found to be highly specific to Zr4+ ions. In addition, the enhanced phosphorescent emission could be quickly turned down by dipicolinic acid (DPA), a universal and specific component and also a biomarker of bacterial spores. Therefore, a Zr4+-CoA@GNCs-based DPA biosensor for quick, facile, and highly sensitive detection of possible spore contamination has been developed, showing a linear concentration range from 0.5 to 20 μM with a limit of detection of 10 nM. This study has demonstrated a promising future for various organic molecules containing phosphoryl moiety for the preparation of AIE-active metal nanoclusters.
Collapse
Affiliation(s)
- Mohamed Ibrahim Halawa
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Muhammad Saqib
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Weihao Lei
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Sit I, Young MA, Kubicki JD, Grassian VH. Distinguishing different surface interactions for nucleotides adsorbed onto hematite and goethite particle surfaces through ATR-FTIR spectroscopy and DFT calculations. Phys Chem Chem Phys 2023. [PMID: 37470700 PMCID: PMC10395000 DOI: 10.1039/d3cp01200j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Geochemical interfaces can impact the fate and transport of aqueous species in the environment including biomolecules. In this study, we investigate the surface chemistry of adsorbed nucleotides on two different minerals, hematite and goethite, using infrared spectroscopy and density functional theory (DFT) calculations. Attenuated total reflectance-Fourier transform infrared spectroscopy is used to probe the adsorption of deoxyadenosine monophosphate (dAMP), deoxyguanosine monophosphate (dGMP), deoxycytidine monophosphate (dCMP), and deoxythymidine monophosphate (dTMP) onto either hematite or goethite particle surfaces. The results show preferential adsorption of the phosphate group to either surface. Remarkably, surface adsorption of the four nucleotides onto either hematite or goethite have nearly identical experimental spectra in the phosphate region (900 to 1200 cm-1) for each mineral surface yet are distinctly different between the two minerals, suggesting differences in binding of these nucleotides to the two mineral surfaces. The experimental absorption frequencies in the phosphate region were compared to DFT calculations for nucleotides adsorbed through the phosphate group to binuclear clusters in either a monodentate or bidentate bridging coordination. Although the quality of the fits suggests that both binding modes may be present, the relative amounts differ on the two surfaces with preferential bonding suggested to be monodentate coordination on hematite and bidentate bridging on goethite. Possible reasons for these differences are discussed.
Collapse
Affiliation(s)
- Izaac Sit
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mark A Young
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Thiele-Bruhn S, Zhang W. Influence of Manure as a Complex Mixture on Soil Sorption of Pharmaceuticals-Studies with Selected Chemical Components of Manure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6154. [PMID: 37372741 DOI: 10.3390/ijerph20126154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Pharmaceutically active compounds (PhACs) enter soil with organic waste materials such as manure. Such complex substrates differently affect PhACs' soil sorption. For the first time, batch experiments were conducted using five selected chemicals as model constituents to elucidate the effects. Urea, phosphate (KH2PO4), acetic acid, phenol and nonadecanoic acid (C:19) altered the sorption strength and/or nonlinearity of sulfadiazine, caffeine, and atenolol in an arable Cambisol topsoil. The nonlinear Freundlich model best described sorption. Overall, the PhACs' Freundlich coefficients (sorption strength) increased in the sequence urea < phosphate < phenol < C:19 < acetic acid, while the Freundlich exponents largely decreased, indicating increasing sorption specificity. The effects on sulfadiazine and caffeine were rather similar, but in many cases different from atenolol. Phosphate mobilized sulfadiazine and caffeine and urea mobilized sulfadiazine, which was explained by sorption competition resulting from specific preference of similar sorption sites. Soil sorbed phenol strongly increased the sorption of all three PhACs; phenolic functional groups are preferred sorption sites of PhACs in soil. The large increase in sorption of all PhACs by acetic acid was attributed to a loosening of the soil organic matter and thus the creation of additional sorption sites. The effect of C:19 fatty acid, however, was inconsistent. These results help to better understand the sorption of PhACs in soil-manure mixtures.
Collapse
Affiliation(s)
- Sören Thiele-Bruhn
- Department of Soil Science, Trier University, Behringstraße 21, 54296 Trier, Germany
| | - Wei Zhang
- Department of Soil Science, Trier University, Behringstraße 21, 54296 Trier, Germany
- Department of Land Resources Management, Chongqing Technology and Business University, Xuefu Avenue 19, Chongqing 400067, China
| |
Collapse
|
9
|
Zhen H, Yan X, Chen C, Liu H, Yang X, Su Y, Yang L, Wang X, Zhang Z. Removal of Fe(III)/Al(III)/Mg(II) by phosphonic group functionalized resin in wet-process phosphoric acid: Mechanism and intrinsic selectivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27600-2. [PMID: 37209342 DOI: 10.1007/s11356-023-27600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
The removal of iron ions (Fe(III)), aluminum ions (Al(III)), and magnesium ions (Mg(II)) in phosphoric acid (H3PO4) solution is vital for the production of H3PO4 and supply of phosphate fertilizer. However, the mechanism and intrinsic selectivity for removal of Fe(III), Al(III), and Mg(II) from wet-process phosphoric acid (WPA) by phosphonic group (-PO3H2) functionalized MTS9500 are still unclear. In this work, the removal mechanisms were determined via combined analysis of FT-IR, XPS, molecular dynamics (MD), and quantum chemistry (QC) simulations based on density functional theory (DFT). The metal-removal kinetics and isotherms were further studied to confirm the removal mechanisms. The results indicate that Fe(III), Al(III), and Mg(II) interact with the -PO3H2 functional groups in MTS9500 resin with sorption energies of -126.22 kJ·mol-1, -42.82 kJ·mol-1, and -12.94 kJ·mol-1, respectively. Moreover, the intrinsic selectivities of the resin for Fe(III), Al(III), and Mg(II) removal were quantified by the selectivity coefficient (Si/j). The SFe(III)/Al(III), SFe(III)/Mg(II) and SAl(III)/Mg(II) are 18.2, 55.1 and 3.02, respectively. This work replenishes sorption theory that can be used in the recycling of electronic waste treatment acid, sewage treatments, hydrometallurgy, and purification of WPA in industry.
Collapse
Affiliation(s)
- Honggang Zhen
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Xuefang Yan
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Chaojiu Chen
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Haozhou Liu
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Xiuying Yang
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Yingli Su
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Lin Yang
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China.
| | - Xinlong Wang
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Zhiye Zhang
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| |
Collapse
|
10
|
Role of oxide support in electrocatalytic nitrate reduction on Cu. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
11
|
Ji L, Ren G, Xu D, Fan B, Zhang Z, Yuan T, Yan Z, Wang X. Selective adsorption of various phosphorus species coexistence in water-soluble ammonium polyphosphate on goethite: Experimental investigation and molecular dynamics simulation. CHEMOSPHERE 2022; 307:135901. [PMID: 35940408 DOI: 10.1016/j.chemosphere.2022.135901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The geochemical processes of polyphosphates (poly-Ps) are important for phosphorus (P) management and environmental protection. Water-soluble ammonium polyphosphate (APP) containing various P species has been increasingly used as an alternative P-fertilizer. The various P species coexistence and the chelation of poly-Ps with mental would trigger the P's competitive adsorption and affect the APP's adsorption intensity on goethite, compared to single orthophosphate (P1). P adsorption behaviors of APP1 with two P species and APP2 with seven P species on goethite were investigated via batch experiments in comparison to the traditional P-fertilizer of mono-ammonium phosphate (MAP). Coadsorption of P1 and pyrophosphate (P2) on goethite was investigated by molecular dynamics (MD) simulation. The more Fe3+ dissolved from goethite as a bridge due to the chelation of poly-Ps in APP and contributed to the stronger APP adsorption on goethite compared with MAP. Ion chromatography and spectral analysis showed P1 and P2 in APP were mainly adsorbed by goethite via mainly forming bidentate complexes. The goethite preferentially adsorbed P1 at lower APP concentration but increased the poly-Ps' adsorption at higher APP concentration. MD simulation showed that electrostatic interaction and hydrogen bonds played a key role in water-phosphates-goethite systems. The P1 pre-adsorbed on goethite could be replaced by P2 at high P2 concentration. The results develop new insights regarding the selective adsorption of various P species coexistence in goethite-rich environments.
Collapse
Affiliation(s)
- Lingmei Ji
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China
| | - GenKuan Ren
- Material and Chemical Engineering College, Yibin University, No. 24 Wuliangye Avenue, Yibin, 644000, PR China
| | - Dehua Xu
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China
| | - Bingqian Fan
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, PR China
| | - Zhiye Zhang
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China
| | - Taiyan Yuan
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China
| | - Zhengjuan Yan
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| | - Xinlong Wang
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| |
Collapse
|
12
|
Mohamed A, Martin U, Bastidas DM. Adsorption and Surface Analysis of Sodium Phosphate Corrosion Inhibitor on Carbon Steel in Simulated Concrete Pore Solution. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7429. [PMID: 36363021 PMCID: PMC9657493 DOI: 10.3390/ma15217429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Corrosion of steel-reinforced concrete exposed to marine environments could lead to structural catastrophic failure in service. Hence, the construction industry is seeking novel corrosion preventive methods that are effective, cheap, and non-toxic. In this regard, the inhibitive properties of sodium phosphate (Na3PO4) corrosion inhibitor have been investigated for carbon steel reinforcements in 0.6 M Cl- contaminated simulated concrete pore solution (SCPS). Different electrochemical testing has been utilized including potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky plots to test Na3PO4 at different concentrations: 0.05, 0.1, 0.3, and 0.6 M. It was found that Na3PO4 adsorbs on the surface through a combined physicochemical adsorption process, thus creating insoluble protective ferric phosphate film (FePO4) and achieving an inhibition efficiency (IE) up to 91.7%. The formation of FePO4 was elucidated by means of Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Quantum chemical parameters using density functional theory (DFT) were obtained to further understand the chemical interactions at the interface. It was found that PO43- ions have a low energy gap (ΔEgap), hence facilitating their adsorption. Additionally, Mulliken population analysis showed that the oxygen atoms present in PO43- are strong nucleophiles, thus acting as adsorption sites.
Collapse
Affiliation(s)
| | | | - David M. Bastidas
- National Center for Education and Research on Corrosion and Materials Performance, NCERCAMP-UA, Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 302 E Buchtel Ave, Akron, OH 44325-3906, USA
| |
Collapse
|
13
|
Zhong W, Yin Z, Wang L, Yan L, Jing C. Structural and mechanistic study of antimonite complexation with organic ligands at the goethite-water interface. CHEMOSPHERE 2022; 301:134682. [PMID: 35472609 DOI: 10.1016/j.chemosphere.2022.134682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Antimony is a re-emerging contaminant, and its complexation with natural organic matter is rising to ever-increasing levels due to global climate change, which has far-reaching impacts on its environmental fate and mobility. A molecular-level understanding of the interactions between Sb(III) and organic ligands at the solid-liquid interface is of paramount importance in deciphering the effect of these organic ligands. Herein, we identified and characterized Sb(III)-organic ligand complexes in solution and at the goethite-water interface using complementary techniques. The FT-ICR MS, XANES, and DFT calculations show that organic ligands bind Sb(III) through nucleophilic functional groups, such as -COO-, -OH and -HS. The formation of surface ternary Sb(III)-bridging complexes retarded the Sb(III) surface precipitation starting from 3.8 mg-Sb/L to a much higher level at 8.3-13.5 mg-Sb/L. The strong bond between Sb(III) and organic ligands is the key factor to inhibit Sb(III) adsorption, surface precipitation and oxidation under sunlight irradiation. Our results showed the chemical basis for the multifaceted functions of organic ligands in stabilizing trace metalloids such as Sb(III) in the environment.
Collapse
Affiliation(s)
- Wen Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Kanao E, Nakano K, Kamei R, Hosomi T, Ishihama Y, Adachi J, Kubo T, Otsuka K, Yanagida T. Moderate molecular recognitions on ZnO m-plane and their selective capture/release of bio-related phosphoric acids. NANOSCALE ADVANCES 2022; 4:1649-1658. [PMID: 36134362 PMCID: PMC9417451 DOI: 10.1039/d1na00865j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/16/2022] [Indexed: 05/25/2023]
Abstract
Herein, we explore the hidden molecular recognition abilities of ZnO nanowires uniformly grown on the inner surface of an open tubular fused silica capillary via liquid chromatography. Chromatographic evaluation revealed that ZnO nanowires showed a stronger intermolecular interaction with phenylphosphoric acid than any other monosubstituted benzene. Furthermore, ZnO nanowires specifically recognized the phosphate groups present in nucleotides even in the aqueous mobile phase, and the intermolecular interaction increased with the number of phosphate groups. This discrimination of phosphate groups in nucleotides was unique to the rich (101̄0) m-plane of ZnO nanowires with a moderate hydrophilicity and negative charge. The discrimination could be evidenced by the changes in the infrared bands of the phosphate groups on nucleotides on ZnO nanowires. Finally, as an application of the molecular recognition, nucleotides were separated by the number of phosphate groups, utilizing optimized gradient elution on ZnO nanowire column. Thus, the present results elucidate the unique and versatile molecular selectivity of well-known ZnO nanostructures for the capture and separation of biomolecules.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Katsuya Nakano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Ryoma Kamei
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Jun Adachi
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| |
Collapse
|
15
|
Shaheen SM, Wang J, Baumann K, Ahmed AA, Hsu LC, Liu YT, Wang SL, Kühn O, Leinweber P, Rinklebe J. Stepwise redox changes alter the speciation and mobilization of phosphorus in hydromorphic soils. CHEMOSPHERE 2022; 288:132652. [PMID: 34695481 DOI: 10.1016/j.chemosphere.2021.132652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Sustainable engineering and management of hydromorphic arable soils need deep knowledge about the redox-mediated interactions between nutrients and soil colloids. Consequently, we examined the redox-mediated interactions of P with metal oxides and organic carbon (OC) in toe-, mid-, and upper-slope arable soils under dynamic redox changes using geochemical (biogeochemical microcosm), spectroscopic (XANES), and molecular (quantum chemical calculations (QCC)) approaches. We controlled the redox potential (EH) in two directions i.e., 1) slowly oxidizing direction (SOD; EH increased from -286 to +564 mV); and 2) slowly reducing direction (SRD; EH decreased from +564 to -148 mV). In the SOD of all soils, P, Fe2+ and OC mobilized at EH ≤ 200 mV, due to the pH decrease from 7.2 to 4.1 and dissolution of Fe-oxyhydroxides/carbonates, as indicated by the decrease of Fe-P and Ca-P determined by P-K-edge-XANES. At EH > 200 mV, P immobilized due to the strong P binding with Fe3+ as suggested by QCC. In the SRD of mid-slope-soil, P immobilized with decreasing EH, due to pH increase and P retention by aromatic carbon and/or precipitation by carbonates, as supported by increase of organic-P and Ca-P. These findings help for management of P in arable soils.
Collapse
Affiliation(s)
- Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516, Kafr El-Sheikh, Egypt.
| | - Jianxu Wang
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082, Guiyang, PR China
| | - Karen Baumann
- University of Rostock, Faculty of Agricultural and Environmental Science, Soil Sciences, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| | - Ashour A Ahmed
- University of Rostock, Institute of Physics, D-18059, Rostock, Albert-Einstein-Str. 23-24, Germany; University of Rostock, Department of Life, Light, and Matter (LLM), Albert-Einstein-Str. 25, D-18059, Rostock, Germany
| | - Liang-Ching Hsu
- Department of Soil and Environmental Sciences, National Chung-Hsing University, 145 Xingda Rd., Taichung, 402, Taiwan
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences & Innovation and Development Center of Sustainable Agriculture, National Chung-Hsing University, 145 Xingda Rd., Taichung, 402, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, 1 Sect. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Oliver Kühn
- University of Rostock, Institute of Physics, D-18059, Rostock, Albert-Einstein-Str. 23-24, Germany; University of Rostock, Department of Life, Light, and Matter (LLM), Albert-Einstein-Str. 25, D-18059, Rostock, Germany
| | - Peter Leinweber
- University of Rostock, Faculty of Agricultural and Environmental Science, Soil Sciences, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany; University of Rostock, Department of Life, Light, and Matter (LLM), Albert-Einstein-Str. 25, D-18059, Rostock, Germany
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
16
|
Kim DY, Kim DG, Jeong B, Kim YI, Heo J, Lee HK. Reusable and pH-Stable Luminescent Sensors for Highly Selective Detection of Phosphate. Polymers (Basel) 2022; 14:190. [PMID: 35012212 PMCID: PMC8747124 DOI: 10.3390/polym14010190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/10/2022] Open
Abstract
Phosphate sensors have been actively studied owing to their importance in water environment monitoring because phosphate is one of the nutrients that result in algal blooms. As with other nutrients, seamless monitoring of phosphate is important for understanding and evaluating eutrophication. However, field-deployable phosphate sensors have not been well developed yet due to the chemical characteristics of phosphate. In this paper, we report on a luminescent coordination polymer particle (CPP) that can respond selectively and sensitively to a phosphate ion against other ions in an aquatic ecosystem. The CPPs with an average size of 88.1 ± 12.2 nm are embedded into membranes for reusable purpose. Due to the specific binding of phosphates to europium ions, the luminescence quenching behavior of CPPs embedded into membranes shows a linear relationship with phosphate concentrations (3-500 μM) and detection limit of 1.52 μM. Consistent luminescence signals were also observed during repeated measurements in the pH range of 3-10. Moreover, the practical application was confirmed by sensing phosphate in actual environmental samples such as tap water and lake water.
Collapse
Affiliation(s)
- Do Yeob Kim
- ICT Creative Research Laboratory, Electronics & Telecommunications Research Institute, Daejeon 34129, Korea; (D.Y.K.); (B.J.)
| | - Dong Gyu Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (D.G.K.); (Y.I.K.)
| | - Bongjin Jeong
- ICT Creative Research Laboratory, Electronics & Telecommunications Research Institute, Daejeon 34129, Korea; (D.Y.K.); (B.J.)
| | - Young Il Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (D.G.K.); (Y.I.K.)
| | - Jungseok Heo
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (D.G.K.); (Y.I.K.)
| | - Hyung-Kun Lee
- ICT Creative Research Laboratory, Electronics & Telecommunications Research Institute, Daejeon 34129, Korea; (D.Y.K.); (B.J.)
| |
Collapse
|
17
|
Das TK, Scott Q, Bezbaruah AN. Montmorillonite-iron crosslinked alginate beads for aqueous phosphate removal. CHEMOSPHERE 2021; 281:130837. [PMID: 34015650 DOI: 10.1016/j.chemosphere.2021.130837] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Phosphate runoff from agriculture fields leads to eutrophication of the water bodies with devastating effects on the aquatic ecosystem. In this study, naturally occurring montmorillonite clay-incorporated iron crosslinked alginate biopolymer (MtIA) beads were synthesized and evaluated for aqueous phosphate removal. Batch experiment data showed an efficient phosphate removal (>99%) by the MtIA beads from solutions with different initial phosphate concentrations (1 and 5 mg PO43--P/L, and 100 μg PO43--P/L). The kinetic data fitted well into the pseudo-second-order kinetic model indicating chemisorption played an important role in phosphate removal. Based on analyses of results from the Elovich and intra-particulate diffusion models, phosphate removal by the MtIA beads was found to be chemisorption where both film diffusion and intra-particulate diffusion participated. The isotherm studies indicate that MtIA surfaces were heterogeneous, and the adsorption capacity of the beads calculated from Langmuir model was 48.7 mg PO43--P/g of dry beads which is ~2.3 times higher than values reported for other clay-metal-alginate beads. Electron microscopy (SEM-EDS) data from the beads showed a rough-textured surface which helped the beads achieve better contact with the phosphate ions. Fourier-transform infrared spectroscopy (FTIR) indicated that both iron and montmorillonite clay participated in crosslinking with the alginate chain. The MtIA beads worked effectively (>98% phosphate removal) over a wide pH range of 2-10 making it a robust adsorbent. The beads can potentially be used for phosphate recovery from eutrophic lakes, agricultural run-off, and municipal wastewater.
Collapse
Affiliation(s)
- Tonoy K Das
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering North Dakota State University, Fargo, ND, 58105, USA
| | - Quentin Scott
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering North Dakota State University, Fargo, ND, 58105, USA
| | - Achintya N Bezbaruah
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
18
|
Single and Binary Fe- and Al-hydroxides Affect Potential Phosphorus Mobilization and Transfer from Pools of Different Availability. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5020033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phosphorus (P) fixation is a global problem for soil fertility and negatively impacts agricultural productivity. This study characterizes P desorption of already fixed P by using KCl, KNO3, histidine, and malic acid as inorganic and organic compounds, which are quite common in soil. Goethite, gibbsite, and ferrihydrite, as well as hydroxide mixtures with varying Fe- and Al-ratio were selected as model substances of crystalline and amorphous Fe- and Al-hydroxides. Especially two- and multi-component hydroxide systems are common in soils, but they have barely been included in desorption studies. Goethite showed the highest desorption in the range from 70.4 to 81.0%, followed by gibbsite with values in the range from 50.7 to 42.6%. Ferrihydrite had distinctive lower desorption in the range from 11.8 to 1.9%. Within the group of the amorphous Fe-Al-hydroxide mixtures, P desorption was lowest at the balanced mixture ratio for 1 Fe: 1 Al, increased either with increasing Fe or Al amount. Precipitation and steric effects were concluded to be important influencing factors. More P was released by crystalline Fe-hydroxides, and Al-hydroxides of varying crystallinity, but desorption using histidine and malic acid did not substantially influence P desorption compared to inorganic constituents.
Collapse
|
19
|
Manna M, Roy S, Bhandari S, Chattopadhyay A. A Ratiometric and Visual Sensing of Phosphate by White Light Emitting Quantum Dot Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5506-5512. [PMID: 33928783 DOI: 10.1021/acs.langmuir.1c00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ratiometric and visual sensing of phosphate by using a white light emitting quantum dot complex (WLE QDC) is reported herein. The WLE QDC comprised of Mn2+-doped ZnS quantum dot (with λem = 585 nm) and surface zinc quinolate (ZnQS2) complex (with λem= 480 nm). The limit of detection was estimated to be of 5.9 nM in the linear range of 16.6-82.6 nM. This was accomplished by monitoring the variations in the photoluminescence color, intensity ratio (I480/I585), chromaticity and hue of the WLE QDC in the presence of phosphate. The high selectivity and sensitivity of WLE QDC toward phosphate was observed. The chemical interaction of ZnQS2 (present in WLE QDC) with phosphate might have led to the observed specificity in photoluminescence changes. The presented WLE QDC was successfully employed for the quantification of phosphate in samples prepared using environmental water and commercial fertilizer.
Collapse
Affiliation(s)
| | | | - Satyapriya Bhandari
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | | |
Collapse
|
20
|
The Binding of Phosphorus Species at Goethite: A Joint Experimental and Theoretical Study. MINERALS 2021. [DOI: 10.3390/min11030323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Knowledge of the interaction between inorganic and organic phosphates with soil minerals is vital for improving soil P-fertility. To achieve an in-depth understanding, we combined adsorption experiments and hybrid ab initio molecular dynamics simulations to analyze the adsorption of common phosphates, i.e., orthophosphate (OP), glycerolphosphate (GP) and inositolhexaphosphate (IHP), onto the 100 surface plane of goethite. Experimental adsorption data per mol P-molecule basis fitted to the Freundlich model show the adsorption strength increases in the order GP < OP < IHP, and IHP adsorption being saturated faster followed by GP and OP. Modeling results show that OP and GP form stable monodentate (M) and binuclear bidentate (B) motifs, with B being more stable than M, whereas IHP forms stable M and 3M motifs. Interfacial water plays an important role through hydrogen bonds and proton transfers with OP/GP/IHP and goethite. It also controls the binding motifs of phosphates with goethite. Combining both experimental and modeling results, we propose that the B motif dominates for OP, whereas GP forms M and IHP forms a combination of M and 3M motifs. The joint approach plausibly explains why IHP is the predominant organically bound P form in soil. This study could be considered as a preliminary step for further studies for understanding the mechanisms of how microbes and plants overcome strong IHP–mineral binding to implement the phosphate groups into their metabolism.
Collapse
|
21
|
Ganta PB, Kühn O, Ahmed AA. Ab Initio Molecular Dynamics Simulations of the Interaction between Organic Phosphates and Goethite. Molecules 2020; 26:E160. [PMID: 33396506 PMCID: PMC7795625 DOI: 10.3390/molecules26010160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Today's fertilizers rely heavily on mining phosphorus (P) rocks. These rocks are known to become exhausted in near future, and therefore effective P use is crucial to avoid food shortage. A substantial amount of P from fertilizers gets adsorbed onto soil minerals to become unavailable to plants. Understanding P interaction with these minerals would help efforts that improve P efficiency. To this end, we performed a molecular level analysis of the interaction of common organic P compounds (glycerolphosphate (GP) and inositol hexaphosphate (IHP)) with the abundant soil mineral (goethite) in presence of water. Molecular dynamics simulations are performed for goethite-IHP/GP-water complexes using the multiscale quantum mechanics/molecular mechanics method. Results show that GP forms monodentate (M) and bidentate mononuclear (B) motifs with B being more stable than M. IHP interacts through multiple phosphate groups with the 3M motif being most stable. The order of goethite-IHP/GP interaction energies is GP M < GP B < IHP M < IHP 3M. Water is important in these interactions as multiple proton transfers occur and hydrogen bonds are formed between goethite-IHP/GP complexes and water. We also present theoretically calculated infrared spectra which match reasonably well with frequencies reported in literature.
Collapse
Affiliation(s)
- Prasanth B. Ganta
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany; (P.B.G.); (O.K.)
| | - Oliver Kühn
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany; (P.B.G.); (O.K.)
- Department of Life, Light, and Matter (LLM), University of Rostock, Albert-Einstein-Str. 25, D-18059 Rostock, Germany
| | - Ashour A. Ahmed
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany; (P.B.G.); (O.K.)
- Department of Life, Light, and Matter (LLM), University of Rostock, Albert-Einstein-Str. 25, D-18059 Rostock, Germany
| |
Collapse
|
22
|
Weng Y, Vekeman J, Zhang H, Chou L, Elskens M, Tielens F. Unravelling phosphate adsorption on hydrous ferric oxide surfaces at the molecular level. CHEMOSPHERE 2020; 261:127776. [PMID: 32736248 DOI: 10.1016/j.chemosphere.2020.127776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The thorough understanding of the adsorption mechanism of phosphate on hydrous ferric oxides is necessary to deal with the environmental issues related to high phosphate concentrations in soils and open water. In this work, we consider three different adsorption geometries (monodentate and bidentate chemisorption and physisorption) and calculate the adsorption geometries and related adsorption energies at optPBE-vdW level. Using the Maxwell-Boltzmann distribution, it is estimated that about 83% of the phosphate molecules is in a monodentate chemisorption configuration, while 17% is physisorbed. Furthermore, theoretical infra-red spectra are obtained and compared to equivalent experimental spectra, supporting the conclusion that mainly monodentate chemisorption and physisorption occur. Most interestingly, a weighed infra-red spectrum is then calculated, using the weights from the Maxwell-Boltzmann distribution, showing a very good comparison with the experimental spectra.
Collapse
Affiliation(s)
- Yuanting Weng
- General Chemistry (ALGC), Materials Modelling Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium; Laboratory of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Jelle Vekeman
- General Chemistry (ALGC), Materials Modelling Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Hailong Zhang
- Laboratory of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Service de Biogeochimie et Modélisation du Système Terre, Université Libre de Bruxelles, Campus de la Plaine - CP208, Boulevard du Triomphe, 1050, Brussel, Belgium
| | - Lei Chou
- Service de Biogeochimie et Modélisation du Système Terre, Université Libre de Bruxelles, Campus de la Plaine - CP208, Boulevard du Triomphe, 1050, Brussel, Belgium
| | - Marc Elskens
- Laboratory of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Frederik Tielens
- General Chemistry (ALGC), Materials Modelling Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium.
| |
Collapse
|
23
|
Ahmed AA, Gypser S, Freese D, Leinweber P, Kühn O. Molecular level picture of the interplay between pH and phosphate binding at the goethite-water interface. Phys Chem Chem Phys 2020; 22:26509-26524. [PMID: 33185198 DOI: 10.1039/d0cp04698a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The soil pH plays a substantial role in controlling phosphorus (P) adsorption and mobilization. These processes are strongly affected by the phosphate interaction strength with P-fixing soil minerals such as goethite. The target of the current contribution is to draw a molecular level picture of the interplay between pH and phosphate binding at the goethite-water interface via a joint experimental-theoretical approach. Periodic density functional theory (DFT) calculations were carried out to provide a molecular level understanding of the pH dependence of P adsorption. To validate the modeling approach, adsorption experiments of phosphate at goethite were performed in the pH range of 4-12. There was agreement between experiments and simulations in the description of the adsorption behavior by two pH-dependent successive stages. The adsorption increases along the pH change from 4 to 8. A further increase of pH leads to a decrease of adsorption. By comparing with literature data it is concluded that the first stage will be observed only if there is no significant change of the surface charge at low pH. Moreover, the molecular modeling results point to the abundance of the monodentate (M) binding motif at both extremely low and high pH ranges. Otherwise, the bidentate (B) one is predominant along the intermediate pH range. These observations could resolve the existing debate about the assignment of phosphate-goethite binding motifs. Furthermore, the results point to a decrease of pH upon phosphate sorption due to an induced acidification of soil solution. The present joint experimental-theoretical approach provides a better understanding and description of the existing phosphate sorption experiments and highlights new findings at the atomistic/molecular scale.
Collapse
Affiliation(s)
- Ashour A Ahmed
- University of Rostock, Institute of Physics, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany.
| | | | | | | | | |
Collapse
|
24
|
Yamane M, Tabe H, Kawakami M, Tanaka H, Kawamoto T, Yamada Y. Single Open Sites on Fe II Ions Stabilized by Coupled Metal Ions in CN-Deficient Prussian Blue Analogues for High Catalytic Activity in the Hydrolysis of Organophosphates. Inorg Chem 2020; 59:16000-16009. [PMID: 33076661 DOI: 10.1021/acs.inorgchem.0c02528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CN-deficient Prussian blue analogues (PBAs), [MN(H2O)x]y[FeII(CN)5(NH3)] (MN = CuII, CoII, or GaIII), were synthesized and examined as a new class of heterogeneous catalysts for hydrolytic decomposition of organophosphates often used as pesticides. The active species of the CN-deficient PBAs were mainly C-bound FeII ions with only single open sites generated by liberation of the NH3 ligand during the catalytic reactions. [CuII(H2O)8/3]3/2[FeII(CN)5(NH3)] showed higher catalytic activity than [CoII(H2O)8/3]3/2[FeII(CN)5(NH3)] and [GaIII(H2O)][FeII(CN)5(NH3)], although N-bound CuII species has been reported as less active than CoII and GaIII species in conventional PBAs. IR measurements of a series of the CN-deficient PBAs after the catalytic reactions clarified that a part of the NH3 ligands remained on [CoII(H2O)8/3]3/2[FeII(CN)5(NH3)] and that hydrogen phosphate formed as a product strongly adsorbed on the FeII ions of [GaIII(H2O)][FeII(CN)5(NH3)]. Hydrogen phosphate also adsorbed, but weakly, on the FeII ions of [CuII(H2O)8/3]3/2[FeII(CN)5(NH3)]. These results suggest that heterogeneous catalysis of the FeII ions with single open sites were tuned by the MN ions through metal-metal interaction.
Collapse
Affiliation(s)
- Mari Yamane
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Hiroyasu Tabe
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.,Research Center of Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Masami Kawakami
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hisashi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Tohru Kawamoto
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Yusuke Yamada
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.,Research Center of Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
25
|
Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing. SUSTAINABILITY 2019. [DOI: 10.3390/su11236787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the present rates of iron ore consumption, currently unusable, high-phosphorus iron ore deposits are likely to be the iron ores of the future as higher-grade iron ore reserves are depleted. Consequently, the design and timely development of environmentally-benign processes for the simultaneous beneficiation of high-phosphorus iron ores and phosphorus recovery, currently a technological challenge, might soon become a sustainability challenge. To stimulate interest in this area, phosphorus adsorption and association in iron oxides/hydroxyoxides, and current efforts at its removal, have been reviewed. The important properties of the most relevant crystalline phosphate phases in iron ores are highlighted, and insights provided on plausible routes for the development of sustainable phosphorus recovery solutions from high-phosphorus iron ores. Leveraging literature information from geochemical investigations into phosphorus distribution, speciation, and mobility in various natural systems, key knowledge gaps that are vital for the development of sustainable phosphorus removal/recovery strategies and important factors (white spaces) not yet adequately taken into consideration in current phosphorus removal/recovery solutions are highlighted, and the need for their integration in the development of future phosphorus removal/recovery solutions, as well as their plausible impacts on phosphorus removal/recovery, are put into perspective.
Collapse
|
26
|
Huang SY, Qian M, Pierre VC. A Combination of Factors: Tuning the Affinity of Europium Receptors for Phosphate in Water. Inorg Chem 2019; 58:16087-16099. [PMID: 31738520 DOI: 10.1021/acs.inorgchem.9b02650] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although recognition of hard anions by hard metal ions is primarily achieved via direct coordination, electrostatic and hydrogen-bonding interactions also play essential roles in tuning the affinity of such supramolecular receptors for their target. In the case of EuIII hydroxypyridinone-based complexes, the addition of a single charged group (-NH3+, -CO2-, or -SO3-) or neutral hydrogen-bonding moiety (-OH) peripheral to the open coordination site substantially affects the affinity of the metal receptor for phosphate in water at neutral pH. A single primary ammonium increases the first association constant for phosphate in neutral water by 2 orders of magnitude over its neutral analogue. The addition of a peripheral alcohol group also increases the affinity of the receptor but to a lesser degree (21-fold). On the other hand, negatively charged complexes bearing either a carboxylate or sulfate moiety have negligible affinity for phosphate. Interestingly, the peripheral group also influences the stoichiometry of the lanthanide receptor for phosphate. While the complex bearing a -NH3+ group binds phosphate in a 1:2 ratio, those with -OH and H (control) both form 1:3 complexes. Although the positively charged EuIII-Lys-HOPO has the highest Ka1 for phosphate, a greater increase in luminescence intensity (36-fold) is observed with the neutral EuIII-Ser-HOPO complex. Notably, whereas the affinity of the EuIII complexes for phosphate is substantially influenced by the presence of a single charged group or hydrogen-bond donor, their selectivity for phosphate over competing anions remains unaffected by the addition of the peripheral groups.
Collapse
Affiliation(s)
- Sheng-Yin Huang
- Department of Chemistry , University of Minnesota , Pleasant St. SE , Minneapolis , Minnesota 55455 , United States
| | - Michelle Qian
- Department of Chemistry , University of Minnesota , Pleasant St. SE , Minneapolis , Minnesota 55455 , United States
| | - Valerie C Pierre
- Department of Chemistry , University of Minnesota , Pleasant St. SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
27
|
Ganta PB, Kühn O, Ahmed AA. QM/MM simulations of organic phosphorus adsorption at the diaspore-water interface. Phys Chem Chem Phys 2019; 21:24316-24325. [PMID: 31528959 DOI: 10.1039/c9cp04032c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphorus (P) immobilization and thus its availability for plants are mainly affected by the strong interaction of phosphates with soil components especially soil mineral surfaces. The related reactions have been studied extensively via sorption experiments especially by carrying out adsorption of ortho-phosphates onto Fe-oxide surfaces. But a molecular-level understanding of the P-binding mechanisms at the mineral-water interface is still lacking, especially for forest eco-systems. Therefore, the current contribution provides an investigation of the molecular binding mechanisms for two abundant phosphates in forest soils, inositol hexaphosphate (IHP) and glycerolphosphate (GP), at the diaspore mineral surface. Here a hybrid electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) based molecular dynamics simulation has been applied to explore the diaspore-IHP/GP-water interactions. The results provide evidence for the formation of different P-diaspore binding motifs involving monodentate (M) and bidentate (B) for GP and two (2M) as well as three (3M) monodentates for IHP. The interaction energy results indicated the abundance of the GP B motif compared to the M one. The IHP 3M motif has a higher total interaction energy compared to its 2M motif, but exhibits a lower interaction energy per bond. Compared to GP, IHP exhibited stronger interaction with the surface as well as with water. Water was found to play an important role in controlling these diaspore-IHP/GP-water interactions. The interfacial water molecules form moderately strong H-bonds (HBs) with GP and IHP as well as with the diaspore surface. For all the diaspore-IHP/GP-water complexes, the interaction of water with the diaspore exceeds that with the studied phosphates. Furthermore, some water molecules form covalent bonds with diaspore Al atoms while others dissociate at the surface to protons and hydroxyl groups leading to proton transfer processes. Finally, the current results confirm the previous experimental conclusions indicating the importance of the number of phosphate groups, HBs, and proton transfers in controlling the P-binding at soil mineral surfaces.
Collapse
Affiliation(s)
- Prasanth B Ganta
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany.
| | | | | |
Collapse
|