1
|
Yu F, Sukenik S. Structural Preferences Shape the Entropic Force of Disordered Protein Ensembles. J Phys Chem B 2023; 127:4235-4244. [PMID: 37155239 PMCID: PMC10201532 DOI: 10.1021/acs.jpcb.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Intrinsically disordered protein regions (IDRs) make up over 30% of the human proteome and exist in a dynamic conformational ensemble instead of a native, well-folded structure. Tethering IDRs to a surface (for example, the surface of a well-folded region of the same protein) can reduce the number of accessible conformations in these ensembles. This reduces the ensemble's conformational entropy, generating an effective entropic force that pulls away from the point of tethering. Recent experimental work has shown that this entropic force causes measurable, physiologically relevant changes to protein function. But how the magnitude of this force depends on IDR sequence remains unexplored. Here, we use all-atom simulations to analyze how structural preferences in IDR ensembles contribute to the entropic force they exert upon tethering. We show that sequence-encoded structural preferences play an important role in determining the magnitude of this force: compact, spherical ensembles generate an entropic force that can be several times higher than more extended ensembles. We further show that changes in the surrounding solution's chemistry can modulate the IDR entropic force strength. We propose that the entropic force is a sequence-dependent, environmentally tunable property of terminal IDR sequences.
Collapse
Affiliation(s)
- Feng Yu
- Quantitative
Systems Biology Program, University of California, Merced, California 95343, United States
| | - Shahar Sukenik
- Quantitative
Systems Biology Program, University of California, Merced, California 95343, United States
- Department
of Chemistry and Biochemistry, University
of California, Merced, California 95343, United States
| |
Collapse
|
2
|
Yu F, Sukenik S. Structural preferences shape the entropic force of disordered protein ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524980. [PMID: 36711874 PMCID: PMC9882287 DOI: 10.1101/2023.01.20.524980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intrinsically disordered protein regions (IDRs) make up over 30% of the human proteome and instead of a native, well-folded structure exist in a dynamic conformational ensemble. Tethering IDRs to a surface (for example, the surface of a well-folded region of the same protein) can reduce the number of accessible conformations in IDR ensembles. This reduces the ensemble's conformational entropy, generating an effective entropic force that pulls away from the point of tethering. Recent experimental work has shown that this entropic force causes measurable, physiologically relevant changes to protein function, but how the magnitude of this force depends on the IDR sequence remains unexplored. Here we use all-atom simulations to analyze how structural preferences encoded in dozens of IDR ensembles contribute to the entropic force they exert upon tethering. We show that sequence-encoded structural preferences play an important role in determining the magnitude of this force and that compact, spherical ensembles generate an entropic force that can be several times higher than more extended ensembles. We further show that changes in the surrounding solution's chemistry can modulate IDR entropic force strength. We propose that the entropic force is a sequence-dependent, environmentally tunable property of terminal IDR sequences.
Collapse
Affiliation(s)
- Feng Yu
- Quantitative Systems Biology Program, University of California, Merced, California, United States
| | - Shahar Sukenik
- Quantitative Systems Biology Program, University of California, Merced, California, United States
- Department of Chemistry and Biochemistry, University of California, Merced, California, United States
| |
Collapse
|
3
|
Rahman A, Saikia B, Gogoi CR, Baruah A. Advances in the understanding of protein misfolding and aggregation through molecular dynamics simulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:31-48. [PMID: 36044970 DOI: 10.1016/j.pbiomolbio.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Aberrant protein folding known as protein misfolding is counted as one of the striking factors of neurodegenerative diseases. The extensive range of pathologies caused by protein misfolding, aggregation and subsequent accumulation are mainly classified into either gain of function diseases or loss of function diseases. In order to seek for novel strategies for treatment and diagnosis of neurodegenerative diseases, insights into the mechanism of misfolding and aggregation is essential. A comprehensive knowledge on the factors influencing misfolding and aggregation is required as well. An extensive experimental study on protein aggregation is somewhat challenging due to the insoluble and noncrystalline nature of amyloid fibrils. Thus there has been a growing use of computational approaches including Monte Carlo simulation, docking simulation, molecular dynamics simulation in the study of protein misfolding and aggregation. The review presents a discussion on molecular dynamics simulation alone as to how it has emerged as a promising tool in the understanding of protein misfolding and aggregation in general, detailing upon three different aspects considering four misfold prone proteins in particular. It is noticeable that all four proteins considered in this review i.e prion, superoxide dismutase1, huntingtin and amyloid β are linked to chronic neurodegenerative diseases with debilitating effects. Initially the review elaborates on the factors influencing the misfolding and aggregation. Next, it addresses our current understanding of the amyloid structures and the associated aggregation mechanisms, finally, summarizing the contribution of this computational tool in the search for therapeutic strategies against the respective protein-deposition diseases.
Collapse
Affiliation(s)
- Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Chimi Rekha Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
4
|
Sarkar A, Gasic AG, Cheung MS, Morrison G. Effects of Protein Crowders and Charge on the Folding of Superoxide Dismutase 1 Variants: A Computational Study. J Phys Chem B 2022; 126:4458-4471. [PMID: 35686856 DOI: 10.1021/acs.jpcb.2c00819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neurodegenerative disease amyotrophic lateral sclerosis (ALS) is associated with the misfolding and aggregation of the metalloenzyme protein superoxide dismutase 1 (SOD1) via mutations that destabilize the monomer-dimer interface. In a cellular environment, crowding and electrostatic screening play essential roles in the folding and aggregation of the SOD1 monomers. Despite numerous studies on the effects of mutations on SOD1 folding, a clear understanding of the interplay between crowding, folding, and aggregation in vivo remains lacking. Using a structure-based minimal model for molecular dynamics simulations, we investigate the role of self-crowding and charge on the folding stability of SOD1 and the G41D mutant where experimentalists were intrigued by an alteration of the folding mechanism by a single point mutation from glycine to charged aspartic acid. We show that unfolded SOD1 configurations are significantly affected by charge and crowding, a finding that would be extremely costly to achieve with all-atom simulations, while the native state is not significantly altered. The mutation at residue 41 alters the interactions between proteins in the unfolded states instead of those within a protein. This paper suggests electrostatics may play an important role in the folding pathway of SOD1 and modifying the charge via mutation and ion concentration may change the dominant interactions between proteins, with potential impacts for aggregation of the mutants. This work provides a plausible reason for the alteration of the unfolded states to address why the mutant G41D causes the changes to the folding mechanism of SOD1 that have intrigued experimentalists.
Collapse
Affiliation(s)
- Atrayee Sarkar
- Department of Physics, University of Houston, Houston, Texas 77204, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Andrei G Gasic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Margaret S Cheung
- Department of Physics, University of Houston, Houston, Texas 77204, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Pacific Northwest National Laboratory, Seattle Research Center, Seattle, Washington 98109, United States
| | - Greg Morrison
- Department of Physics, University of Houston, Houston, Texas 77204, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Pagano L, Malagrinò F, Visconti L, Troilo F, Pennacchietti V, Nardella C, Toto A, Gianni S. Probing the Effects of Local Frustration in the Folding of a Multidomain Protein. J Mol Biol 2021; 433:167087. [PMID: 34089717 DOI: 10.1016/j.jmb.2021.167087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022]
Abstract
Our current knowledge of protein folding is primarily based on experimental data obtained from isolated domains. In fact, because of their complexity, multidomain proteins have been elusive to the experimental characterization. Thus, the folding of a domain in isolation is generally assumed to resemble what should be observed for more complex structural architectures. Here we compared the folding mechanism of a protein domain in isolation and in the context of its supramodular multidomain structure. By carrying out an extensive mutational analysis we illustrate that while the early events of folding are malleable and influenced by the absence/presence of the neighboring structures, the late events appear to be more robust. These effects may be explained by analyzing the local frustration patterns of the domain, providing critical support for the funneled energy landscape theory of protein folding, and highlighting the role of protein frustration in sculpting the early events of the reaction.
Collapse
Affiliation(s)
- Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Valeria Pennacchietti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| |
Collapse
|
6
|
Rickard MM, Zhang Y, Pogorelov TV, Gruebele M. Crowding, Sticking, and Partial Folding of GTT WW Domain in a Small Cytoplasm Model. J Phys Chem B 2020; 124:4732-4740. [PMID: 32463238 DOI: 10.1021/acs.jpcb.0c02536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent experimental data has shown that protein folding in the cytoplasm can differ from in vitro folding with respect to speed, stability, and residual structure. Here we investigate the all-atom molecular dynamics (MD) simulations of 9 copies of the model protein GTT WW domain in a small bacterial cytoplasm model using three force fields. GTT has been well-studied by MD in aqueous solution for comparison. We find that folded copies remain folded for up 25 μs, whereas unfolded copies do not fold for up to 190 μs. Unfolded GTT in our cytoplasm model does populate partly folded intermediates with one of the two hairpins formed. Relative to aqueous solution, GTT gets stuck in metastable states with a small RMSD and radius of gyration and extensive burial of surface area against other macromolecules. In particular, GTT is even able to form transient intermolecular β-sheets with other proteins, resulting in a "chimeric structure" that could be a precursor to oligomeric β-aggregates. We conclude that sticking, enhanced by the non-native mutations of GTT, is largely responsible, and we propose, on the basis of our result as well as recent experiments, that coevolution of protein surfaces with their solvation environment (including chaperones) is important for folding and diffusion of proteins in the cytoplasm.
Collapse
Affiliation(s)
- M M Rickard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Y Zhang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T V Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - M Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Kachlishvili K, Korneev A, Maisuradze L, Liu J, Scheraga HA, Molochkov A, Senet P, Niemi AJ, Maisuradze GG. New Insights into Folding, Misfolding, and Nonfolding Dynamics of a WW Domain. J Phys Chem B 2020; 124:3855-3872. [PMID: 32271570 DOI: 10.1021/acs.jpcb.0c00628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intermediate states in protein folding are associated with formation of amyloid fibrils, which are responsible for a number of neurodegenerative diseases. Therefore, prevention of the aggregation of folding intermediates is one of the most important problems to overcome. Recently, we studied the origins and prevention of formation of intermediate states with the example of the Formin binding protein 28 (FBP28) WW domain. We demonstrated that the replacement of Leu26 by Asp26 or Trp26 (in ∼15% of the folding trajectories) can alter the folding scenario from three-state folding, a major folding scenario for the FBP28 WW domain (WT) and its mutants, toward two-state or downhill folding at temperatures below the melting point. Here, for a better understanding of the physics of the formation/elimination of intermediates, (i) the dynamics and energetics of formation of β-strands in folding, misfolding, and nonfolding trajectories of these mutants (L26D and L26W) is investigated; (ii) the experimental structures of WT, L26D, and L26W are analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger equation. We show that the formation of each β-strand in folding trajectories is accompanied by the emergence of kinks in internal coordinate space as well as a decrease in local free energy. In particular, the decrease in downhill folding trajectory is ∼7 kcal/mol, while it varies between 31 and 48 kcal/mol for the three-state folding trajectory. The kink analyses of the experimental structures give new insights into formation of intermediates, which may become a useful tool for preventing aggregation.
Collapse
Affiliation(s)
- Khatuna Kachlishvili
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca 14853-1301, New York, United States
| | - Anatolii Korneev
- Laboratory of Physics of Living Matter, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia
| | - Luka Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca 14853-1301, New York, United States.,Biochemistry, Quantitative Biology, Biophysics, and Structural Biology (BQBS) Track, Yale University, New Haven 06520-8084, ConnecticutUnited States
| | - Jiaojiao Liu
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Harold A Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca 14853-1301, New York, United States
| | - Alexander Molochkov
- Laboratory of Physics of Living Matter, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia
| | - Patrick Senet
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca 14853-1301, New York, United States.,Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. de Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, Dijon Cedex F-21078, France
| | - Antti J Niemi
- Laboratory of Physics of Living Matter, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia.,School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China.,Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, Tours F37200, France.,Nordita, Stockholm University, Roslagstullsbacken 23, Stockholm SE-106 91, Sweden
| | - Gia G Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca 14853-1301, New York, United States
| |
Collapse
|