1
|
Leybo D, Etim UJ, Monai M, Bare SR, Zhong Z, Vogt C. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis. Chem Soc Rev 2024; 53:10450-10490. [PMID: 39356078 PMCID: PMC11445804 DOI: 10.1039/d4cs00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 10/03/2024]
Abstract
Supported metal catalysts are essential to a plethora of processes in the chemical industry. The overall performance of these catalysts depends strongly on the interaction of adsorbates at the atomic level, which can be manipulated and controlled by the different constituents of the active material (i.e., support and active metal). The description of catalyst activity and the relationship between active constituent and the support, or metal-support interactions (MSI), in heterogeneous (thermo)catalysts is a complex phenomenon with multivariate (dependent and independent) contributions that are difficult to disentangle, both experimentally and theoretically. So-called "strong metal-support interactions" have been reported for several decades and summarized in excellent review articles. However, in recent years, there has been a proliferation of new findings related to atomically dispersed metal sites, metal oxide defects, and, for example, the generation and evolution of MSI under reaction conditions, which has led to the designation of (sub)classifications of MSI deserving to be critically and systematically evaluated. These include dynamic restructuring under alternating redox and reaction conditions, adsorbate-induced MSI, and evidence of strong interactions in oxide-supported metal oxide catalysts. Here, we review recent literature on MSI in oxide-supported metal particles to provide an up-to-date understanding of the underlying physicochemical principles that dominate the observed effects in supported metal atomic, cluster, and nanoparticle catalysts. Critical evaluation of different subclassifications of MSI is provided, along with discussions on the formation mechanisms, theoretical and characterization advances, and tuning strategies to manipulate catalytic reaction performance. We also provide a perspective on the future of the field, and we discuss the analysis of different MSI effects on catalysis quantitatively.
Collapse
Affiliation(s)
- Denis Leybo
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ubong J Etim
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Matteo Monai
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ziyi Zhong
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Charlotte Vogt
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
2
|
Islam A, Huang E, Tian Y, Ramírez PJ, Prabhakar Reddy K, Lim H, White N, Hunt A, Waluyo I, Liu P, Rodriguez JA. Low-Temperature Activation and Coupling of Methane on MgO Nanostructures Embedded in Cu 2O/Cu(111). ACS NANO 2024; 18:28371-28381. [PMID: 39361339 DOI: 10.1021/acsnano.4c10811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The efficient conversion of methane into valuable hydrocarbons, such as ethane and ethylene, at relatively low temperatures without deactivation issues is crucial for advancing sustainable energy solutions. Herein, AP-XPS and STM studies show that MgO nanostructures (0.2-0.5 nm wide, 0.4-0.6 Å high) embedded in a Cu2O/Cu(111) substrate activate methane at room temperature, mainly dissociating it into CHx (x = 2 or 3) and H adatoms, with minimal conversion to C adatoms. These MgO nanostructures in contact with Cu2O/Cu(111) enable C-C coupling into ethane and ethylene at 500 K, a significantly lower temperature than that required for bulk MgO catalysts (>700 K), with negligible carbon deposition and no deactivation. DFT calculations corroborate these experimental findings. The CH4,gas → *CH3 + *H reaction is a downhill process on MgO/Cu2O/Cu(111) surfaces. The activation of methane is facilitated by electron transfer from copper to MgO and the existence of Mg and O atoms with a low coordination number in the oxide nanostructures. The formation of O-CH3 and O-H bonds overcomes the energy necessary for the cleavage of a C-H bond in methane. DFT studies reveal that smaller Mg2O2 model clusters provide stronger binding and lower activation barriers for C-H dissociation in CH4, while larger Mg3O3 clusters promote C-C coupling due to weaker *CH3 binding. All of these results emphasize the importance of size when optimizing the catalytic performance of MgO nanostructures in the selective conversion of methane.
Collapse
Affiliation(s)
- Arephin Islam
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Erwei Huang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yi Tian
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Pedro J Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
- Zoneca-CENEX, R&D Laboratories, Alta Vista, 64770 Monterrey, México
| | - Kasala Prabhakar Reddy
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hojoon Lim
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Nathaniel White
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adrian Hunt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - José A Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Niu J, Yuan R, Chen H, Zhou B, Luo S. Heterogeneous catalytic ozonation for the removal of antibiotics in water: A review. ENVIRONMENTAL RESEARCH 2024; 262:119889. [PMID: 39216738 DOI: 10.1016/j.envres.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Antibiotics with pseudo-persistence in water have been regarded as emerging pollutants, which have obvious biological toxicity even at trace levels. On account of high reactivity, heterogeneous catalytic ozonation has been widely applied to remove antibiotics. Among the heterogeneous catalysts, with well-developed pores and regulable surface defects, carbon-based materials can act as both adsorbents and catalysts. Metal cations, surface hydroxyl (-OH) groups and oxygen vacancies (OVs) serve as primary active sites in metal oxides. However, composites (perovskite, apatite, etc.) with special crystalline structure have more crystallographic planes and abundant active sites. The unsaturated bonds and aromatic rings which have dense structure of the electron cloud are more likely to be attacked by ozone (O3) directly. Sulfonamides (SAs) can be oxidized by O3 directly within a short time due to the structure of activated aromatic rings and double bonds. With the existence of catalysts, almost all antibiotics can attain fair removal effects. The presence of water matrix can greatly influence the removal rate of pollutants via changing the surface properties of catalysts, competing active sites with O3, etc. Correspondingly, the application of diverse heterogeneous catalysts was introduced in details, based on modification including metal/non-metal doping, surface modification and carrier composite. The degradation pathways of SAs, fluoroquinolones (FQNs), tetracyclines (TCs) and β-lactams were summarized founded on the functional group structures. Furthermore, the effects of water matrix (pH, coexisting ions, organics) for catalytic ozonation were also debated. It is expected to proffer advanced guidance for researchers in catalytic ozonation of antibiotics.
Collapse
Affiliation(s)
- Jiameng Niu
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Tyczkowski J, Kierzkowska-Pawlak H. Classical Concept of Semiconductor Heterojunctions in the Approach to Nanohybrid Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37339-37345. [PMID: 38990081 DOI: 10.1021/acsami.4c08595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Recalling the well-established theory of heterojunction formation between two different semiconductors or a semiconductor and a metal can elucidate the remarkable catalytic properties of nanohybrid systems employed in thermal catalysis. Upon the creation of heterojunctions, involved nanoparticles or nanometer-sized thin films, as a result of their dimensions, may become entirely filled with space charges generated from the development of depletion or accumulation regions. This phenomenon dictates the nature of catalytic sites and consequently affects the catalytic activity of such nanohybrids. The following perspective presents this concept and examples of experimental results that substantiate its validity, along with an extremely effective tool, cold plasma deposition, for designing and realizing in a controlled manner the structure of nanohybrids with heterojunctions. This approach will undoubtedly broaden the view of the contemporary "alchemy" of nanocatalysts.
Collapse
Affiliation(s)
- Jacek Tyczkowski
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 93-005 Lodz, Poland
| | - Hanna Kierzkowska-Pawlak
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 93-005 Lodz, Poland
| |
Collapse
|
5
|
Wang W, Li C, Zhou C, Xiao X, Li F, Huang NY, Li L, Gu M, Xu Q. Enrooted-Type Metal-Support Interaction Boosting Oxygen Evolution Reaction in Acidic Media. Angew Chem Int Ed Engl 2024; 63:e202406947. [PMID: 38650436 DOI: 10.1002/anie.202406947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Supported metal catalysts with appropriate metal-support interactions (MSIs) hold a great promise for heterogeneous catalysis. However, ensuring tight immobilization of metal clusters/nanoparticles on the support while maximizing the exposure of surface active sites remains a huge challenge. Herein, we report an Ir/WO3 catalyst with a new enrooted-type MSI in which Ir clusters are, unprecedentedly, atomically enrooted into the WO3 lattice. The enrooted Ir atoms decrease the electron density of the constructed interface compared to the adhered (root-free) type, thereby achieving appropriate adsorption toward oxygen intermediates, ultimately leading to high activity and stability for oxygen evolution in acidic media. Importantly, this work provides a new enrooted-type supported metal catalyst, which endows suitable MSI and maximizes the exposure of surface active sites in contrast to the conventional adhered, embedded, and encapsulated types.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Cheng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
- School of Physics and Astronomy, University of Birmingham, B15 2TT, Birmingham, UK
| | - Chuan Zhou
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
| | - Fayan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
| | - Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
| | - Lei Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, 606-8501, Kyoto, Japan
| |
Collapse
|
6
|
Chu YC, Chen KH, Tung CW, Chen HC, Wang J, Kuo TR, Hsu CS, Lin KH, Tsai LD, Chen HM. Dynamic (Sub)surface-Oxygen Enables Highly Efficient Carbonyl-Coupling for Electrochemical Carbon Dioxide Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400640. [PMID: 38621196 DOI: 10.1002/adma.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Nowadays, high-valent Cu species (i.e., Cuδ +) are clarified to enhance multi-carbon production in electrochemical CO2 reduction reaction (CO2RR). Nonetheless, the inconsistent average Cu valence states are reported to significantly govern the product profile of CO2RR, which may lead to misunderstanding of the enhanced mechanism for multi-carbon production and results in ambiguous roles of high-valent Cu species. Dynamic Cuδ + during CO2RR leads to erratic valence states and challenges of high-valent species determination. Herein, an alternative descriptor of (sub)surface oxygen, the (sub)surface-oxygenated degree (κ), is proposed to quantify the active high-valent Cu species on the (sub)surface, which regulates the multi-carbon production of CO2RR. The κ validates a strong correlation to the carbonyl (*CO) coupling efficiency and is the critical factor for the multi-carbon enhancement, in which an optimized Cu2O@Pd2.31 achieves the multi-carbon partial current density of ≈330 mA cm-2 with a faradaic efficiency of 83.5%. This work shows a promising way to unveil the role of high-valent species and further achieve carbon neutralization.
Collapse
Affiliation(s)
- You-Chiuan Chu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuan-Hsu Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Ching-Wei Tung
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei, 24301, Taiwan
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Center for Sustainability and Energy Tecnhologies, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jiali Wang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuo-Hsin Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040, Taiwan
| | - Li Duan Tsai
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| |
Collapse
|
7
|
Irikura KK. Ab initio spectroscopy and thermochemistry of the platinum hydride ions, PtH+ and PtH. J Chem Phys 2024; 160:184309. [PMID: 38738614 DOI: 10.1063/5.0207505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Rovibrational levels of low-lying electronic states of the gas-phase, diatomic molecules, PtH+ and PtH-, are computed on potential-energy functions obtained by using a hybrid spin-orbit configuration-interaction procedure. PtH- has a well-separated Σ0++1 ground state, while the first two electronic states of PtH+ (Σ0++1 and 3Δ3) are nearly degenerate. Combining the experimental photoelectron (PE) spectra of PtH- with theoretical photodetachment spectroscopy leads to an improved value for the electron affinity of PtH, EA(PtH) = (1.617 ± 0.015) eV. When PtH- is a product of photodissociation of PtHCO2-, its PE spectrum is broad because of rotational excitation. Temperature-dependent thermodynamic functions and thermochemistry of dissociation are computed from the theoretical energy levels. Previously published energetic quantities for PtH+ and PtH- are revised. The ground 1Σ+ term of PtH+ is not well described using single-reference theory.
Collapse
Affiliation(s)
- Karl K Irikura
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 , USA
| |
Collapse
|
8
|
Li W, Li F, Zhang X, Wu J, Yang G. Metallic Re 3O 2 with mixed-valence states. Phys Chem Chem Phys 2024; 26:13300-13305. [PMID: 38639135 DOI: 10.1039/d4cp00973h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Rhenium (Re) shows the richest valence states from +2 to +7 in compounds, but its mixed-valence states are still missing thus far. In this work, we have explored the Re-O phase diagram with a wide range of stoichiometric compositions under high pressure through first-principles structural search calculations. Besides identifying two novel high-pressure phases of ReO2 and ReO3, we reveal two hitherto unknown Re-rich Re3O2 and O-rich ReO4 compounds. Re atoms in Re3O2 show mixed-valence states due to their inequivalent coordination environments, the first example in Re-based compounds. Electronic structure calculations demonstrate that the four discovered Re-O phases exhibit metallicity contributed by Re 5d electrons. Among them, ReO3 has a predicted critical temperature of up to 12 K at 50 GPa, derived from the interaction between Re 5d electrons and Re-derived low-frequency phonons. Our study points to new opportunities to disclose novel transition metal compounds with mixed-valence states.
Collapse
Affiliation(s)
- Wenjing Li
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Fei Li
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Jinhui Wu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Guochun Yang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
9
|
Huang L, Liu W, Xing X. Adsorption of O 2 on the Preferred -O-Au Sites of Small Gold Oxide Clusters: Charge-dependent Interaction and Activation. Molecules 2024; 29:1645. [PMID: 38611924 PMCID: PMC11013888 DOI: 10.3390/molecules29071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Decades of research have illuminated the significant roles of gold/gold oxide clusters in small molecule catalytic oxidation. However, many fundamental questions, such as the actual sites to adsorb and activate O2 and the impact of charge, remain unanswered. Here, we have utilized an improved genetic algorithm program coupled with the DFT method to systematically search for the structures of Au1-5Ox-/+/0 (x = 1-4) and calculated binding interactions between Au1-5Ox-/+/0 (x = 1-2) and O2, aiming to determine the active sites and to elucidate the impact of different charge states in gold oxide systems. The results revealed that the reactivity of all three kinds of small gold oxide clusters toward O2 is strongly site-dependent, with clusters featuring an -O-Au site exhibiting a preference for adsorption. The charges on small gold oxide clusters significantly impact the interaction strength and the activation degree of adsorbed O2: in the case of anionic cluster, the interaction between O2 and the -O-Au sites leads to a chemical reaction involving electron transfer, thereby significantly activating O2; in neutral and cationic clusters, the adsorption of O2 on their -O-Au sites can be viewed as an electrostatic interaction. Pointedly, for cationic clusters, the highly concentrated positive charge on the Au atom of the -O-Au sites can strongly adsorb but hardly activate the adsorbed O2. These results have certain reference points for understanding the gold oxide interfaces and the improved catalytic oxidation performance of gold-based systems in the presence of atomic oxygen species.
Collapse
Affiliation(s)
| | | | - Xiaopeng Xing
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, China; (L.H.); (W.L.)
| |
Collapse
|
10
|
Alam N, Noor T, Iqbal N. Catalyzing Sustainable Water Splitting with Single Atom Catalysts: Recent Advances. CHEM REC 2024; 24:e202300330. [PMID: 38372409 DOI: 10.1002/tcr.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Electrochemical water splitting for sustainable hydrogen and oxygen production have shown enormous potentials. However, this method needs low-cost and highly active catalysts. Traditional nano catalysts, while effective, have limits since their active sites are mostly restricted to the surface and edges, leaving interior surfaces unexposed in redox reactions. Single atom catalysts (SACs), which take advantage of high atom utilization and quantum size effects, have recently become appealing electrocatalysts. Strong interaction between active sites and support in SACs have considerably improved the catalytic efficiency and long-term stability, outperforming their nano-counterparts. This review's first section examines the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER). In the next section, SACs are categorized as noble metal, non-noble metal, and bimetallic synergistic SACs. In addition, this review emphasizes developing methodologies for effective SAC design, such as mass loading optimization, electrical structure modulation, and the critical role of support materials. Finally, Carbon-based materials and metal oxides are being explored as possible supports for SACs. Importantly, for the first time, this review opens a discussion on waste-derived supports for single atom catalysts used in electrochemical reactions, providing a cost-effective dimension to this vibrant research field. The well-known design techniques discussed here may help in development of electrocatalysts for effective water splitting.
Collapse
Affiliation(s)
- Nasar Alam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| |
Collapse
|
11
|
Miyazaki R, Belthle KS, Tüysüz H, Foppa L, Scheffler M. Materials Genes of CO 2 Hydrogenation on Supported Cobalt Catalysts: An Artificial Intelligence Approach Integrating Theoretical and Experimental Data. J Am Chem Soc 2024; 146:5433-5444. [PMID: 38374731 PMCID: PMC10910553 DOI: 10.1021/jacs.3c12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Designing materials for catalysis is challenging because the performance is governed by an intricate interplay of various multiscale phenomena, such as the chemical reactions on surfaces and the materials' restructuring during the catalytic process. In the case of supported catalysts, the role of the support material can be also crucial. Here, we address this intricacy challenge by a symbolic-regression artificial intelligence (AI) approach. We identify the key physicochemical parameters correlated with the measured performance, out of many offered candidate parameters characterizing the materials, reaction environment, and possibly relevant underlying phenomena. Importantly, these parameters are obtained by both experiments and ab initio simulations. The identified key parameters might be called "materials genes", in analogy to genes in biology: they correlate with the property or function of interest, but the explicit physical relationship is not (necessarily) known. To demonstrate the approach, we investigate the CO2 hydrogenation catalyzed by cobalt nanoparticles supported on silica. Crucially, the silica support is modified with the additive metals magnesium, calcium, titanium, aluminum, or zirconium, which results in six materials with significantly different performances. These systems mimic hydrothermal vents, which might have produced the first organic molecules on Earth. The key parameters correlated with the CH3OH selectivity reflect the reducibility of cobalt species, the adsorption strength of reaction intermediates, and the chemical nature of the additive metal. By using an AI model trained on basic elemental properties of the additive metals (e.g., ionization potential) as physicochemical parameters, new additives are suggested. The predicted CH3OH selectivity of cobalt catalysts supported on silica modified with vanadium and zinc is confirmed by new experiments.
Collapse
Affiliation(s)
- Ray Miyazaki
- The
NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, Berlin 14195, Germany
| | - Kendra S Belthle
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Harun Tüysüz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Lucas Foppa
- The
NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, Berlin 14195, Germany
| | - Matthias Scheffler
- The
NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
12
|
Kountoupi E, Barrios AJ, Chen Z, Müller CR, Ordomsky VV, Comas-Vives A, Fedorov A. The Impact of Oxygen Surface Coverage and Carbidic Carbon on the Activity and Selectivity of Two-Dimensional Molybdenum Carbide (2D-Mo 2C) in Fischer-Tropsch Synthesis. ACS Catal 2024; 14:1834-1845. [PMID: 38327645 PMCID: PMC10845113 DOI: 10.1021/acscatal.3c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Transformations of oxygenates (CO2, CO, H2O, etc.) via Mo2C-based catalysts are facilitated by the high oxophilicity of the material; however, this can lead to the formation of oxycarbides and complicate the identification of the (most) active catalyst state and active sites. In this context, the two-dimensional (2D) MXene molybdenum carbide Mo2CTx (Tx are passivating surface groups) contains only surface Mo sites and is therefore a highly suitable model catalyst for structure-activity studies. Here, we report that the catalytic activity of Mo2CTx in Fischer-Tropsch (FT) synthesis increases with a decreasing coverage of surface passivating groups (mostly O*). The in situ removal of Tx species and its consequence on CO conversion is highlighted by the observation of a very pronounced activation of Mo2CTx (pretreated in H2 at 400 °C) under FT conditions. This activation process is ascribed to the in situ reductive defunctionalization of Tx groups reaching a catalyst state that is close to 2D-Mo2C (i.e., a material containing no passivating surface groups). Under steady-state FT conditions, 2D-Mo2C yields higher hydrocarbons (C5+ alkanes) with 55% selectivity. Alkanes up to the kerosine range form, with value of α = 0.87, which is ca. twice higher than the α value reported for 3D-Mo2C catalysts. The steady-state productivity of 2D-Mo2C to C5+ hydrocarbons is ca. 2 orders of magnitude higher relative to a reference β-Μo2C catalyst that shows no in situ activation under identical FT conditions. The passivating Tx groups of Mo2CTx can be reductively defunctionalized also by using a higher H2 pretreatment temperature of 500 °C. Yet, this approach leads to a removal of carbidic carbon (as methane), resulting in a 2D-Mo2C1-x catalyst that converts CO to CH4 with 61% selectivity in preference to C5+ hydrocarbons that are formed with only 2% selectivity. Density functional theory (DFT) results attribute the observed selectivity of 2D-Mo2C to C5+ alkanes to a higher energy barrier for the hydrogenation of surface alkyl species relative to the energy barriers for C-C coupling. The removal of O* is the rate-determining step in the FT reaction over 2D-Mo2C, and O* is favorably removed in the form of CO2 relative to H2O, consistent with the observation of a high CO2 selectivity (ca. 50%). The absence of other carbon oxygenates is explained by the energetic favoring of the direct over the hydrogen-assisted dissociative adsorption of CO.
Collapse
Affiliation(s)
- Evgenia Kountoupi
- Department
of Mechanical and Process Engineering, ETH
Zürich, Zürich CH-8092, Switzerland
| | - Alan J. Barrios
- University
of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 −
UCCS − Unité de Catalyse et Chimie du Solide, Lille 59000, France
- Laboratory
for Chemical Technology, Department of Materials, Textiles and Chemical
Engineering, Ghent University, Ghent B-9052, Belgium
| | - Zixuan Chen
- Department
of Mechanical and Process Engineering, ETH
Zürich, Zürich CH-8092, Switzerland
| | - Christoph R. Müller
- Department
of Mechanical and Process Engineering, ETH
Zürich, Zürich CH-8092, Switzerland
| | - Vitaly V. Ordomsky
- University
of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 −
UCCS − Unité de Catalyse et Chimie du Solide, Lille 59000, France
| | - Aleix Comas-Vives
- Institute
of Materials Chemistry, Technische Universität
Wien, Vienna 1060, Austria
- Departament
de Química, Universitat Autònoma
de Barcelona, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Alexey Fedorov
- Department
of Mechanical and Process Engineering, ETH
Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|
13
|
Liu Y, Ma C, Zhang J, Zhou H, Qin G, Li S. Tuning the electronic structure of Pd by the surface configuration of Al 2O 3 for hydrogenation reactions. NANOSCALE 2023; 16:335-342. [PMID: 38059873 DOI: 10.1039/d3nr05258c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The electronic interaction between a metal and a support modulates the electronic structures of supported metals and plays an important role in manipulating their catalytic performance. However, this interaction is mainly realized in heterogeneous catalysts composed of reducible oxides. Herein, we demonstrate the electronic interaction between γ-Al2O3 and η-Al2O3 with varying acid-base properties and supported Pd nanoparticles (NPs) of 2 nm in size. The strength and number of acid-base sites on the supports and catalysts were systemically characterized by FT-IR spectroscopy and TPD. The supported Pd NPs exhibit electron-rich surface properties by receiving electrons from the electron-donating basic sites on γ-Al2O3, which are beneficial for catalyzing the hydrogenation of nitrobenzene. In contrast, Pd NPs loaded on η-Al2O3 are electron-deficient because of the rich electron-withdrawing acid sites of η-Al2O3. As a result, Pd/η-Al2O3 exhibits higher catalytic activity in phenylacetylene hydrogenation than Pd/γ-Al2O3. Our results suggest a promising route for designing high-performance catalysts by adjusting the acid-base properties of Al2O3 supports to maneuver the electronic structures of metals.
Collapse
Affiliation(s)
- Yinglei Liu
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Chicheng Ma
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Jiye Zhang
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Huiying Zhou
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Gaowu Qin
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China
| | - Song Li
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
14
|
Di Liberto G, Pacchioni G. Modeling Single-Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307150. [PMID: 37749881 DOI: 10.1002/adma.202307150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Electronic structure calculations represent an essential complement of experiments to characterize single-atom catalysts (SACs), consisting of isolated metal atoms stabilized on a support, but also to predict new catalysts. However, simulating SACs with quantum chemistry approaches is not as simple as often assumed. In this work, the essential factors that characterize a reliable simulation of SACs activity are examined. The Perspective focuses on the importance of precise atomistic characterization of the active site, since even small changes in the metal atom's surroundings can result in large changes in reactivity. The dynamical behavior and stability of SACs under working conditions, as well as the importance of adopting appropriate methods to solve the Schrödinger equation for a quantitative evaluation of reaction energies are addressed. The Perspective also focuses on the relevance of the model adopted. For electrocatalysis this must include the effects of the solvent, the presence of electrolytes, the pH, and the external potential. Finally, it is discussed how the similarities between SACs and coordination compounds may result in reaction intermediates that usually are not observed on metal electrodes. When these aspects are not adequately considered, the predictive power of electronic structure calculations is quite limited.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| |
Collapse
|
15
|
Liu F, Zhang S, Wan L, Hao Y, Li J, Wang H, Li Z, Li Q, Cao C. Attachment of facile synthesized NaCo 2O 4 nanodots to SiO 2 nanoflakes for sodium-rich boosted Pt-dominated ambient HCHO oxidation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131969. [PMID: 37399727 DOI: 10.1016/j.jhazmat.2023.131969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Surface alkali metal ions are typically utilized as available promoters for ambient HCHO oxidation. In this study, NaCo2O4 nanodots with two different preferential crystallographic orientations are synthesized by facile attachment to SiO2 nanoflakes with varying degrees of lattice defects. A unique Na-rich environment is established through interlayer Na+ diffusion based on the small size effect. The optimized catalyst Pt/HNaCo2O4/T2 can deal with HCHO below 5 ppm in the static measurement system with a sustained release background and produces approximately 40 ppm of CO2 in 2 h. Combining the experimental analyses with density functional theory (DFT) calculations, the possible catalytic enhancing mechanism is proposed from the support promotion perspective, and the positive synergistic effect of Na-rich, oxygen vacancies and optimized facets for Pt-dominant ambient HCHO oxidation via both kinetic and thermodynamic processes is confirmed.
Collapse
Affiliation(s)
- Fang Liu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Shiying Zhang
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, PR China.
| | - Long Wan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yunjie Hao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Jiao Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hongqiang Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Zhongfu Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, PR China; Shandong Collegial Engineering Research Center of Novel Rare Earth Catalysis Materials (CREC), Zibo 255000 Shandong, PR China
| | - Qiaoling Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Chao Cao
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| |
Collapse
|
16
|
Darkwah WK, Appiagyei AB, Puplampu JB, Otabil Bonsu J. Mechanistic Understanding of the Use of Single-Atom and Nanocluster Catalysts for Syngas Production via Partial Oxidation of Methane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37315185 DOI: 10.1021/acs.langmuir.2c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-atom and nanocluster catalysts presenting potent catalytic activity and excellent stability are used in high-temperature applications such as in structural composites, electrical devices, and catalytic chemical reactions. Recently, more attention has been drawn to application of these materials in clean fuel processing based on oxidation in terms of recovery and purification. The most popular media for catalytic oxidation reactions include gas phases, pure organic liquid phases, and aqueous solutions. It has been proven from the literature that catalysts are frequently selected as the finest in regulating organic wastewater, solar energy utilization, and environmental treatment applications in most catalytic oxidation of methane vis-à-vis photons and in environmental treatment applications. Single-atom and nanocluster catalysts have been engineered and applied in catalytic oxidations considering metal-support interactions and mechanisms facilitating catalytic deactivation. In this review, the present improvements on engineering single-atom and nano-catalysts are discussed. In detail, we summarize structure modification strategies, catalytic mechanisms, methods of synthesis, and application of single-atom and nano-catalysts for partial oxidation of methane (POM). We also present the catalytic performance of various atoms in the POM reaction. Full knowledge of the use of remarkable POM vis-à-vis the excellent structure is revealed. Based on the review conducted on single-atom and nanoclustered catalysts, we conclude their viability for POM reactions; however, the catalyst design must be carefully considered not only for isolating the individual influences from the active metal and support but also for incorporating the interactions of these components.
Collapse
Affiliation(s)
- Williams Kweku Darkwah
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales Sydney, Kensington, Sydney, New South Wales 2052, Australia
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 233, Ghana
| | - Alfred Bekoe Appiagyei
- Department of Chemical and Biological Engineering, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Joshua B Puplampu
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 233, Ghana
| | - Jacob Otabil Bonsu
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales Sydney, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
17
|
Yoon SH, Jeon JH, Cho SB, Nacpil EJC, Jeon I, Choi JB, Kim H. Extreme Gradient Boosting to Predict Atomic Layer Deposition for Platinum Nano-Film Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4984-4992. [PMID: 36947443 PMCID: PMC10100550 DOI: 10.1021/acs.langmuir.2c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Extreme gradient boosting (XGBoost) is an artificial intelligence algorithm capable of high accuracy and low inference time. The current study applies this XGBoost to the production of platinum nano-film coating through atomic layer deposition (ALD). In order to generate a database for model development, platinum is coated on α-Al2O3 using a rotary-type ALD equipment. The process is controlled by four parameters: process temperature, stop valve time, precursor pulse time, and reactant pulse time. A total of 625 samples according to different process conditions are obtained. The ALD coating index is used as the Al/Pt component ratio through ICP-AES analysis during postprocessing. The four process parameters serve as the input data and produces the Al/Pt component ratio as the output data. The postprocessed data set is randomly divided into 500 training samples and 125 test samples. XGBoost demonstrates 99.9% accuracy and a coefficient of determination of 0.99. The inference time is lower than that of random forest regression, in addition to a higher prediction safety than that of the light gradient boosting machine.
Collapse
Affiliation(s)
- Sung-Ho Yoon
- Electronic
Convergence Materials and Device Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Bundang-gu, Seongnam 13509, Republic
of Korea
- Mechanical
Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- Department
of Nano Engineering, Department of Nano Science and Technology, SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jun-Hyeok Jeon
- Electronic
Convergence Materials and Device Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Bundang-gu, Seongnam 13509, Republic
of Korea
- Mechanical
Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seung-Beom Cho
- Mechanical
Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Edric John Cruz Nacpil
- Department
of Nano Engineering, Department of Nano Science and Technology, SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Il Jeon
- Department
of Nano Engineering, Department of Nano Science and Technology, SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jae-Boong Choi
- Mechanical
Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hyeongkeun Kim
- Electronic
Convergence Materials and Device Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Bundang-gu, Seongnam 13509, Republic
of Korea
| |
Collapse
|
18
|
Longato A, Vanzan M, Colusso E, Corni S, Martucci A. Enhancing Tungsten Oxide Gasochromism with Noble Metal Nanoparticles: The Importance of the Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205522. [PMID: 36464497 DOI: 10.1002/smll.202205522] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Crystalline tungsten trioxide (WO3 ) thin films covered by noble metal (gold and platinum) nanoparticles are synthesized via wet chemistry and used as optical sensors for gaseous hydrogen. Sensing performances are strongly influenced by the catalyst used, with platinum (Pt) resulting as best. Surprisingly, it is found that gold (Au) can provide remarkable sensing activity that tuned out to be strongly dependent on the nanoparticle size: devices sensitized with smaller nanoparticles display better H2 sensing performance. Computational insight based on density functional theory calculations suggested that this can be related to processes occurring specifically at the Au nanoparticle-WO3 interface (whose extent is in fact dependent on the nanoparticle size), where the hydrogen dissociative adsorption turns out to be possible. While both experiments and calculations single out Pt as better than Au for sensing, the present work reveals how an exquisitely nanoscopic effect can yield unexpected sensing performance for Au on WO3 , and how these performances can be tuned by controlling the nanoscale features of the system.
Collapse
Affiliation(s)
- Alessandro Longato
- Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131, Italy
| | - Mirko Vanzan
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
| | - Elena Colusso
- Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, Modena, 41125, Italy
| | - Alessandro Martucci
- Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131, Italy
| |
Collapse
|
19
|
Jašík J, Valtera S, Vaidulych M, Bunian M, Lei Y, Halder A, Tarábková H, Jindra M, Kavan L, Frank O, Bartling S, Vajda Š. Oxidative dehydrogenation of cyclohexene on atomically precise subnanometer Cu 4-nPd n (0 ≤ n ≤ 4) tetramer clusters: the effect of cluster composition and support on performance. Faraday Discuss 2023; 242:70-93. [PMID: 36214279 DOI: 10.1039/d2fd00108j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The pronounced effects of the composition of four-atom monometallic Cu and Pd and bimetallic CuPd clusters and the support on the catalytic activity and selectivity in the oxidative dehydrogenation of cyclohexene are reported. The ultra-nanocrystalline diamond supported clusters are highly active and dominantly produce benzene; some of the mixed clusters also produce cyclohexadiene, which are all clusters with a much suppressed combustion channel. The also highly active TiO2-supported tetramers solely produce benzene, without any combustion to CO2. The selectivity of the zirconia-supported mixed CuPd clusters and the monometallic Cu cluster is entirely different; though they are less active in comparison to clusters with other supports, these clusters produce significant fractions of cyclohexadiene, with their selectivity towards cyclohexadiene gradually increasing with the increasing number of copper atoms in the cluster, reaching about 50% for Cu3Pd1. The zirconia-supported copper tetramer stands out from among all the other tetramers in this reaction, with a selectivity towards cyclohexadiene of 70%, which far exceeds those of all the other cluster-support combinations. The findings from this study indicate a positive effect of copper on the stability of the mixed tetramers and potential new ways of fine-tuning catalyst performance by controlling the composition of the active site and via cluster-support interactions in complex oxidative reactions under the suppression of the undesired combustion of the feed.
Collapse
Affiliation(s)
- Juraj Jašík
- Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
| | - Stanislav Valtera
- Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
| | - Mykhailo Vaidulych
- Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
| | - Muntaseer Bunian
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Yu Lei
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Avik Halder
- Materials Science Division, Argonne National Laboratory, 9600 South Cass Avenue, Lemont, Illinois 60439, USA
| | - Hana Tarábková
- Department of Electrochemical Materials, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Martin Jindra
- Department of Electrochemical Materials, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.,Department of Physical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Ladislav Kavan
- Department of Electrochemical Materials, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Otakar Frank
- Department of Electrochemical Materials, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Stephan Bartling
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Strasse 29a, D-18059 Rostock, Germany
| | - Štefan Vajda
- Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
| |
Collapse
|
20
|
Gura L, Soares EA, Paier J, Stavale F, Freund HJ. Models for Reactions in Confined Space: Can Surface Science Contribute? A Review and Perspective. Top Catal 2023. [DOI: 10.1007/s11244-023-01787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractThis paper reports and discusses some of our recent advances in surface science research on a silica film supported on a Ru(0001) substrate. This system is unique, as the silica is bound to the metal surface by dispersive forces only, and thus opens the possibility to study reactions in the confined space between the metal substrate and the silica film, acting as a permeable membrane. We demonstrate that this system allows for detailed insights into the complexity of reactions in confined space, including phenomena due to the response of the confined space to the presence of the reactants, and direct comparison to the situation when the same reaction occurs in open space.
Collapse
|
21
|
Han SS, Thacharon A, Kim J, Chung K, Liu X, Jang W, Jetybayeva A, Hong S, Lee KH, Kim Y, Cho EJ, Kim SW. Boosted Heterogeneous Catalysis by Surface-Accumulated Excess Electrons of Non-Oxidized Bare Copper Nanoparticles on Electride Support. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204248. [PMID: 36394076 PMCID: PMC9839873 DOI: 10.1002/advs.202204248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Engineering active sites of metal nanoparticle-based heterogeneous catalysts is one of the most prerequisite approaches for the efficient production of chemicals, but the limited active sites and undesired oxidation on the metal nanoparticles still remain as key challenges. Here, it is reported that the negatively charged surface of copper nanoparticles on the 2D [Ca2 N]+ ∙e- electride provides the unrestricted active sites for catalytic selective sulfenylation of indoles and azaindoles with diaryl disulfides. Substantial electron transfer from the electride support to copper nanoparticles via electronic metal-support interactions results in the accumulation of excess electrons at the surface of copper nanoparticles. Moreover, the surface-accumulated excess electrons prohibit the oxidation of copper nanoparticle, thereby maintaining the metallic surface in a negatively charged state and activating both (aza)indoles and disulfides under mild conditions in the absence of any further additives. This study defines the role of excess electrons on the nanoparticle-based heterogeneous catalyst that can be rationalized in versatile systems.
Collapse
Affiliation(s)
- Sung Su Han
- Department of ChemistryChung‐Ang UniversitySeoul06974Republic of Korea
| | - Athira Thacharon
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Jun Kim
- Department of ChemistryChung‐Ang UniversitySeoul06974Republic of Korea
| | - Kyungwha Chung
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Xinghui Liu
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Woo‐Sung Jang
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Albina Jetybayeva
- Department of Materials Science and EngineeringKAISTDaejeon34141Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKAISTDaejeon34141Republic of Korea
| | - Kyu Hyoung Lee
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Young‐Min Kim
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Eun Jin Cho
- Department of ChemistryChung‐Ang UniversitySeoul06974Republic of Korea
| | - Sung Wng Kim
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
22
|
Vijayakumar A, Zhao Y, Wang K, Chao Y, Chen H, Wang C, Wallace GG. A Nitrogen‐Doped Porous Carbon Supported Copper Catalyst from a Scalable One‐Step Method for Efficient Carbon Dioxide Electroreduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Amruthalakshmi Vijayakumar
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Researjch Institute AIIM Facility University of Wollongong North Wollongong NSW 2500 Australia
| | - Yong Zhao
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Researjch Institute AIIM Facility University of Wollongong North Wollongong NSW 2500 Australia
| | - Kezhong Wang
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Researjch Institute AIIM Facility University of Wollongong North Wollongong NSW 2500 Australia
| | - Yunfeng Chao
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Researjch Institute AIIM Facility University of Wollongong North Wollongong NSW 2500 Australia
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Collaborative Innovation Center Changzhou University China
| | - Caiyun Wang
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Researjch Institute AIIM Facility University of Wollongong North Wollongong NSW 2500 Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Researjch Institute AIIM Facility University of Wollongong North Wollongong NSW 2500 Australia
| |
Collapse
|
23
|
Liu B, Nakagawa Y, Li C, Yabushita M, Tomishige K. Selective C–O Hydrogenolysis of Terminal C–OH Bond in 1,2-Diols over Rutile-Titania-Supported Iridium-Iron Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Ben Liu
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Congcong Li
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
24
|
Influence of the metal − support and metal − metal interactions on Pd nucleation and NO adsorption in a Pd4/γ-Al2O3 (110D) model. J Mol Model 2022; 28:394. [DOI: 10.1007/s00894-022-05374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
|
25
|
Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Gao C, Terasaki O. Counting charges per metal nanoparticle. Science 2022; 378:133-134. [PMID: 36227986 DOI: 10.1126/science.ade6051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Charges on a metal nanoparticle are measured with precision by electron holography.
Collapse
Affiliation(s)
- Chuanbo Gao
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Osamu Terasaki
- Center for High-resolution Electron Microscopy (ChEM) and Shanghai Key Laboratory of High-resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
27
|
Aso R, Hojo H, Takahashi Y, Akashi T, Midoh Y, Ichihashi F, Nakajima H, Tamaoka T, Yubuta K, Nakanishi H, Einaga H, Tanigaki T, Shinada H, Murakami Y. Direct identification of the charge state in a single platinum nanoparticle on titanium oxide. Science 2022; 378:202-206. [PMID: 36227985 DOI: 10.1126/science.abq5868] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A goal in the characterization of supported metal catalysts is to achieve particle-by-particle analysis of the charge state strongly correlated with the catalytic activity. Here, we demonstrate the direct identification of the charge state of individual platinum nanoparticles (NPs) supported on titanium dioxide using ultrahigh sensitivity and precision electron holography. Sophisticated phase-shift analysis for the part of the NPs protruding into the vacuum visualized slight potential changes around individual platinum NPs. The analysis revealed the number (only one to six electrons) and sense (positive or negative) of the charge per platinum NP. The underlying mechanism of platinum charging is explained by the work function differences between platinum and titanium dioxide (depending on the orientation relationship and lattice distortion) and by first-principles calculations in terms of the charge transfer processes.
Collapse
Affiliation(s)
- Ryotaro Aso
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hajime Hojo
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Yoshio Takahashi
- Research and Development Group, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Tetsuya Akashi
- Research and Development Group, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Yoshihiro Midoh
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumiaki Ichihashi
- Research and Development Group, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Hiroshi Nakajima
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takehiro Tamaoka
- The Ultramicroscopy Research Center, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kunio Yubuta
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Nakanishi
- National Institute of Technology, Akashi College, Akashi, Hyogo 674-8501, Japan
| | - Hisahiro Einaga
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Toshiaki Tanigaki
- Research and Development Group, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Hiroyuki Shinada
- Research and Development Group, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Yasukazu Murakami
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.,The Ultramicroscopy Research Center, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
28
|
Irikura KK. Theoretical dissociation, ionization, and spin–orbit energetics of the diatomic platinum hydrides PtH, PtH +, and PtH –. J Chem Phys 2022; 157:104304. [DOI: 10.1063/5.0107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spin–orbit configuration interaction (SO-CI) and coupled-cluster [CCSDT(Q)] theoretical methods are combined to evaluate zero-temperature thermochemical properties of PtH, PtH+, and PtH−. We obtain vibrational zero-point energies and spin–orbit stabilization energies, which lead to predictions for observable quantities: ionization energy IE(PtH) = (9.44 ± 0.07) eV; electron affinity EA(PtH) = (1.65 ± 0.04) eV; and dissociation energies D0(Pt–H) = (329.6 ± 3.9) kJ mol−1, D0(Pt+–H) = (279.3 ± 5.7) kJ mol−1, and D0(Pt−–H) = (285.0 ± 2.4) kJ mol−1 (uncertainty coverage factor = 2). Compared with available experiments, our value of D0(Pt+–H) is higher by (8 ± 8) kJ mol−1, EA(PtH) is higher by 0.15 eV, and D0(Pt–H) is lower than the upper bound by (2 ± 4) kJ mol−1.
Collapse
Affiliation(s)
- Karl K. Irikura
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA
| |
Collapse
|
29
|
Greener Approach for Pd–NPs Synthesis Using Mangifera Indica Leaf Extract: Heterogeneous Nano Catalyst for Direct C–H Arylation of (Poly)Fluorobenzene, Hiyama Coupling Reaction and Hydrogen Evolution Reaction Study. Catal Letters 2022. [DOI: 10.1007/s10562-022-04138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
30
|
Li M, Groß A, Behm RJ. Effect of O-Vacancy Concentration and Proximity on Electronic Metal–Support Interactions: Ru/ZrO 2 Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengru Li
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - R. Jürgen Behm
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
31
|
Tang M, Wang Y. The Significant Role of the Atomic Surface Structure of Support in Strong Metal‐Support Interaction. Chemistry 2022; 28:e202104519. [DOI: 10.1002/chem.202104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
- Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
32
|
Abstract
Two-dimensional (2D) ultrathin silica films have the potential to reach technological importance in electronics and catalysis. Several well-defined 2D-silica structures have been synthesized so far. The silica bilayer represents a 2D material with SiO2 stoichiometry. It consists of precisely two layers of tetrahedral [SiO4] building blocks, corner connected via oxygen bridges, thus forming a self-saturated silicon dioxide sheet with a thickness of ∼0.5 nm. Inspired by recent successful preparations and characterizations of these 2D-silica model systems, scientists now can forge novel concepts for realistic systems, particularly by atomic-scale studies with the most powerful and advanced surface science techniques and density functional theory calculations. This Review provides a solid introduction to these recent developments, breakthroughs, and implications on ultrathin 2D-silica films, including their atomic/electronic structures, chemical modifications, atom/molecule adsorptions, and catalytic reactivity properties, which can help to stimulate further investigations and understandings of these fundamentally important 2D materials.
Collapse
Affiliation(s)
- Jian-Qiang Zhong
- School of Physics, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121 Zhejiang, China
| | - Hans-Joachim Freund
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
33
|
Wang Z, Wang C, Mao S, Lu B, Chen Y, Zhang X, Chen Z, Wang Y. Decoupling the electronic and geometric effects of Pt catalysts in selective hydrogenation reaction. Nat Commun 2022; 13:3561. [PMID: 35729175 PMCID: PMC9213482 DOI: 10.1038/s41467-022-31313-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
Decoupling the electronic and geometric effects has been a long cherished goal for heterogeneous catalysis due to their tangled relationship. Here, a novel orthogonal decomposition method is firstly proposed to settle this issue in p-chloronitrobenzene hydrogenation reaction on size- and shape-controlled Pt nanoparticles (NPs) carried on various supports. Results suggest Fermi levels of catalysts can be modulated by supports with varied work function (Wf). And the selectivity on Pt NPs of similar size and shape is linearly related with the Wf of support. Optimized Fermi levels of the catalysts with large Wf weaken the ability of Pt NPs to fill valence electrons into the antibonding orbital of C–Cl bond, finally suppressing the hydrodehalogenation side reaction. Foremost, the geometric effect is firstly spun off through orthogonal relation based on series of linear relationships over various sizes of Pt NPs reflecting the electronic effect. Moreover, separable nested double coordinate system is established to quantitatively evaluate the two effects. Decoupling the electronic and geometric effects has been a long cherished goal for heterogeneous catalysis due to their tangled relationship. Here the authors propose a novel orthogonal decomposition method to decouple the electronic and geometric effect for supported metal catalysts.
Collapse
Affiliation(s)
- Zhe Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, People's Republic of China.,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, People's Republic of China
| | - Chunpeng Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, People's Republic of China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, People's Republic of China.
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, People's Republic of China
| | - Yuzhuo Chen
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, People's Republic of China
| | - Xie Zhang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, People's Republic of China
| | - Zhirong Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, People's Republic of China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, People's Republic of China.
| |
Collapse
|
34
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
35
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
36
|
Liu CY, Ye S, Li M, Senftle TP. A rapid feature selection method for catalyst design: Iterative Bayesian additive regression trees (iBART). J Chem Phys 2022; 156:164105. [PMID: 35490030 DOI: 10.1063/5.0090055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Feature selection (FS) methods often are used to develop data-driven descriptors (i.e., features) for rapidly predicting the functional properties of a physical or chemical system based on its composition and structure. FS algorithms identify descriptors from a candidate pool (i.e., feature space) built by feature engineering (FE) steps that construct complex features from the system's fundamental physical properties. Recursive FE, which involves repeated FE operations on the feature space, is necessary to build features with sufficient complexity to capture the physical behavior of a system. However, this approach creates a highly correlated feature space that contains millions or billions of candidate features. Such feature spaces are computationally demanding to process using traditional FS approaches that often struggle with strong collinearity. Herein, we address this shortcoming by developing a new method that interleaves the FE and FS steps to progressively build and select powerful descriptors with reduced computational demand. We call this method iterative Bayesian additive regression trees (iBART), as it iterates between FE with unary/binary operators and FS with Bayesian additive regression trees (BART). The capabilities of iBART are illustrated by extracting descriptors for predicting metal-support interactions in catalysis, which we compare to those predicted in our previous work using other state-of-the-art FS methods (i.e., least absolute shrinkage and selection operator + l0, sure independence screening and sparsifying operator, and Bayesian FS). iBART matches the performance of these methods yet uses a fraction of the computational resources because it generates a maximum feature space of size O(102), as opposed to O(106) generated by one-shot FE/FS methods.
Collapse
Affiliation(s)
- Chun-Yen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Shengbin Ye
- Department of Statistics, Rice University, Houston, Texas 77005, USA
| | - Meng Li
- Department of Statistics, Rice University, Houston, Texas 77005, USA
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
37
|
Kang B, Vincent JL, Lee Y, Ke L, Crozier PA, Zhu Q. Modeling surface spin polarization on ceria-supported Pt nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:255002. [PMID: 35354123 DOI: 10.1088/1361-648x/ac62a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
In this work, we employ density functional theory simulations to investigate possible spin polarization of CeO2-(111) surface and its impact on the interactions between a ceria support and Pt nanoparticles. With a Gaussian type orbital basis, our simulations suggest that the CeO2-(111) surface exhibits a robust surface spin polarization due to the internal charge transfer between atomic Ce and O layers. In turn, it can lower the surface oxygen vacancy formation energy and enhance the oxide reducibility. We show that the inclusion of spin polarization can significantly reduce the major activation barrier in the proposed reaction pathway of CO oxidation on ceria-supported Pt nanoparticles. For metal-support interactions, surface spin polarization enhances the bonding between Pt nanoparticles and ceria surface oxygen, while CO adsorption on Pt nanoparticles weakens the interfacial interaction regardless of spin polarization. However, the stable surface spin polarization can only be found in the simulations based on the Gaussian type orbital basis. Given the potential importance in the design of future high-performance catalysts, our present study suggests a pressing need to examine the surface ferromagnetism of transition metal oxides in both experiment and theory.
Collapse
Affiliation(s)
- Byungkyun Kang
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, United States of America
| | - Joshua L Vincent
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, United States of America
| | - Yongbin Lee
- Ames Laboratory, US Department of Energy, Ames, IA 50011, United States of America
| | - Liqin Ke
- Ames Laboratory, US Department of Energy, Ames, IA 50011, United States of America
| | - Peter A Crozier
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, United States of America
| | - Qiang Zhu
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, United States of America
| |
Collapse
|
38
|
Grinter DC, Thornton G. Structure and reactivity of model CeO 2surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:253001. [PMID: 35287117 DOI: 10.1088/1361-648x/ac5d89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
As a key component in many industrial heterogeneous catalysts, the surface structure and reactivity of ceria, CeO2, has attracted a lot of attention. In this topical review we discuss some of the approaches taken to form a deeper understanding of the surface physics and chemistry of this important and interesting material. In particular, we focus on the preparation of ultrathin ceria films, nanostructures and supported metal nanoparticles. Cutting-edge microscopic and spectroscopic experimental techniques are highlighted which can probe the behaviour of oxygen species and atomic defects on these model surfaces.
Collapse
Affiliation(s)
- David C Grinter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Geoff Thornton
- Department of Chemistry and London Centre for Nanotechnology, University College London, London WC1H 0AJ, United Kingdom
| |
Collapse
|
39
|
Wang C, Wang Z, Mao S, Chen Z, Wang Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Gatin AK, Sarvadii SY, Dokhlikova NV, Kharitonov VA, Ozerin SA, Shub BR, Grishin MV. Oxidation of Supported Nickel Nanoparticles at Low Exposure to O 2: Charging Effects and Selective Surface Activity. NANOMATERIALS 2022; 12:nano12071038. [PMID: 35407156 PMCID: PMC9000863 DOI: 10.3390/nano12071038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
The oxidation of Ni nanoparticles supported on highly oriented pyrolytic graphite was investigated under conditions of low exposure to oxygen by methods of scanning tunneling microscopy and spectroscopy. It was found that charge transfer effects at the Ni-C interface influenced the surface activity of the nanoparticles. The O2 dissociation and the Ni oxidation were shown to occur only at the top of the nanoparticle, while the border of the Ni-C interface was the less preferable area for these processes. The O2 dissociation was inhibited, and atomic oxygen diffusion was suppressed in the given nanosystem, due to the decrease in holes concentration.
Collapse
|
41
|
Thang HV, Chen HYT. Do stoichiometric or nonstoichiometric models of a polar surface affect their structural, energetic and electronic structure properties? A DFT case study of Ru/MgO(111). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:214007. [PMID: 35189606 DOI: 10.1088/1361-648x/ac5704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The structural, energetic and electronic structure properties of stoichiometric and nonstoichiometric slab models of bare MgO(111) and Ru/MgO(111) with different coverages of 1 monolayer (ML), 1/4 ML and 1/16 ML have been investigated using spin-polarized density functional theory. Calculated results show that the structural, energetic properties and charge transfer of both bare MgO(111) and Ru/MgO(111) are independent of the stoichiometric and nonstoichiometric models. In contrast, their density of state (DOS) profiles demonstrate metal and half-metal characters for the stoichiometric and nonstoichiometric bare MgO(111) surfaces, respectively. The Ru-O orbital coupling characters of these two types of Ru/MgO(111) models are also different. This work indicates that for a polar surface model, the calculated features and trends of the structural and energetic properties, charge distributions and magnetic structures might not be affected by their stoichiometric and nonstoichiometric models; however, the detailed features of their DOS features would strongly depend on the models constructed.
Collapse
Affiliation(s)
- Ho Viet Thang
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang, Danang 550000, Vietnam
| | - Hsin-Yi Tiffany Chen
- Department of Engineering and System Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
42
|
Zhou J, Wang T, Cheng C, Pan F, Zhu Y, Ma H, Niu J. Ultralong-lifetime Ti/RuO 2-IrO 2@Pt anodes with a strong metal-support interaction for efficient electrochemical mineralization of perfluorooctanoic acid. NANOSCALE 2022; 14:3579-3588. [PMID: 35179172 DOI: 10.1039/d1nr08098a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic oxidation is regarded as an effective technique for decomposing refractory organic compounds like perfluorooctanoic acid (PFOA). However, achieving highly efficient and long-life electrodes is still a great challenge. Herein, Ti/RuO2-IrO2@Pt anodes consisting of Pt4+ and Pt0 species were fabricated by combining modified microemulsion technology with a calcination process, in which Pt nanoparticles were highly dispersed and encapsulated in Ru-Ir composite oxides to form a strong metal-support interaction (SMSI) structure. The as-constructed SMSI layer on the Ti/RuO2-IrO2@Pt anode resulted in the improvement of the charge transfer capability and also increased the degradation (99.30%) and mineralization (91.32%) of PFOA during the electrochemical oxidation process. Notably, the service lifetime of Ti/RuO2-IrO2@Pt anodes was remarkably improved from 24 to 42.3 h compared to commercial Ti/RuO2-IrO2 anodes. Moreover, the possible degradation mechanism of PFOA was also speculated through the detection of short-chain perfluorocarboxylic acids and reactive radicals. These results not only revealed that the concept and methodology of SMSI could be an effective way for constructing highly efficient and stable electrocatalysts but also greatly advanced fundamental understanding.
Collapse
Affiliation(s)
- Jianjun Zhou
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Tian Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Cheng Cheng
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Fan Pan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Junfeng Niu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
43
|
Han C, Lyu Y, Wang S, Liu B, Zhang Y, Du H. Role of Noncovalent Interactions on the Electrocatalytic Oxidation of Ethanol in Alkali Metal Hydroxide Solutions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5318-5327. [PMID: 35049292 DOI: 10.1021/acsami.1c20964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ethanol is considered to be one of the most promising fuels for fuel cells. However, ethanol fuel cells have a sluggish Faraday efficiency due to complex interactions between the electrolyte, electrode, and ethanol. Recent studies have further suggested that noncovalent interactions originated from the hydrated alkali metal cations and the adsorbed OHad at the Pt electrode surface also played an important role in the electron transfer. In this regard, the noncovalent interactions in different alkali metal hydroxide (AMH) solutions have been systematically investigated in this study, and it was observed that the noncovalent interactions could result in the occupation of the Pt electrode surface active sites and sluggish migration of ethanol molecules in the electrical double layer, significantly affecting the electro-oxidation efficiency. Further, it was concluded that the electro-oxidation efficiency in different AMH solutions followed the order of K+ > Na+ > Rb+ > Cs+ > Li+ due to the noncovalent interactions.
Collapse
Affiliation(s)
- Chenjie Han
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yeqing Lyu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaona Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Biao Liu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Du
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Xiao M, Yu X, Guo Y, Ge M. Boosting Toluene Combustion by Tuning Electronic Metal-Support Interactions in In Situ Grown Pt@Co 3O 4 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1376-1385. [PMID: 34939778 DOI: 10.1021/acs.est.1c07016] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electronic metal-support interaction (EMSI) has attracted great attention in volatile organic compound (VOC) abatement. Herein, Pt@Co3O4 catalysts were prepared via a metal-organic framework (MOF) in situ growth approach to boost toluene degradation. The partial electron transfer from Co3O4 to Pt species was induced by the EMSI effect to generate the electron-rich Pt and Co3+ species. The electrophilic O2 molecules could be activated by picking up the electrons from electron-rich Pt species to form nucleophilic oxygen species, which is conducive to attack C-H bonds in toluene. The redox ability and surface oxygen species activity of catalysts were improved due to strong EMSI. As expected, the excellent toluene activity was achieved, meanwhile exhibiting satisfactory water resistance and long-term stability for toluene combustion. In situ diffuse reflectance infrared Fourier transform spectroscopy results elucidated that surface lattice oxygen species should deeply participate in toluene degradation, which could be efficiently replenished by gaseous oxygen. This work may provide a new idea for exploring the relationship between the electron transfer effect and efficient catalytic performance of VOCs.
Collapse
Affiliation(s)
- Menglan Xiao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaolin Yu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yucong Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| |
Collapse
|
45
|
Zheng E, He G, Shang C, Chen B, Wang Q, Liu Y. Insights into graphdiyne-supported single Ti for water dissociation reaction. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Yang Y, Li P, Zheng X, Sun W, Dou SX, Ma T, Pan H. Anion-exchange membrane water electrolyzers and fuel cells. Chem Soc Rev 2022; 51:9620-9693. [DOI: 10.1039/d2cs00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The key components, working management, and operating techniques of anion-exchange membrane water electrolyzers and fuel cells are reviewed for the first time.
Collapse
Affiliation(s)
- Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
| | - Peng Li
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shi Xue Dou
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
47
|
Zhou Q, Zhao Z, Yao Z, Wei Z, Huang S, Shao F, Li A, Wang J. Engineering the geometric and electronic structure of Ru via Ru–TiO2 interaction for enhanced selective hydrogenation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01678d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru/TiO2-Vo-250H with the structure of TiO2-Vo-partially encapsulated Ru nanoparticles, balances the active sites for H2 dissociation and the adsorption sites for 6-chloroquinoline, achieving the selective hydrogenation even at room temperature.
Collapse
Affiliation(s)
- Qiang Zhou
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Zijiang Zhao
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Zihao Yao
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
- SINOPEC Ningbo New Materials Research Institute Company Limited, Ningbo 315207, Zhejiang, China
| | - Songtao Huang
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Fangjun Shao
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Aiyuan Li
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, Ningbo 315800, Zhejiang, China
| | - Jianguo Wang
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| |
Collapse
|
48
|
Model Catalysis with HOPG-Supported Pd Nanoparticles and Pd Foil: XPS, STM and C2H4 Hydrogenation. Catal Letters 2021; 152:2892-2907. [PMID: 36196216 PMCID: PMC9525433 DOI: 10.1007/s10562-021-03868-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
A surface science based approach was applied to model carbon supported Pd nanoparticle catalysts. Employing physical vapour deposition of Pd on sputtered surfaces of highly oriented pyrolytic graphite (HOPG), model catalysts were prepared that are well-suited for characterization by X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Analysis of the HOPG substrate before and after ion-bombardment, and of Pd/HOPG before and after annealing, revealed the number of “nominal” HOPG defects (~ 1014 cm−2) as well as the nucleation density (~ 1012 cm−2) and structural characteristics of the Pd nanoparticles (mean size/height/distribution). Two model systems were stabilized by UHV annealing to 300 °C, with mean Pd particles sizes of 4.3 and 6.8 nm and size/height aspect ratio up to ~ 10. A UHV-compatible flow microreactor and gas chromatography were used to determine the catalytic performance of Pd/HOPG in ethylene (C2H4) hydrogenation up to 150 °C under atmospheric pressure, yielding temperature-dependent conversion values, turnover frequencies (TOFs) and activation energies. The performance of Pd nanocatalysts is compared to that of polycrystalline Pd foil and contrasted to Pt/HOPG and Pt foil, pointing to a beneficial effect of the metal/carbon phase boundary, reflected by up to 10 kJ mol−1 lower activation energies for supported nanoparticles.
Collapse
|
49
|
Zeng L, Luo J, Mao G, Wu D, Li R, Huang L, Wang D, Zhou Q, Sun T, Xiao F, Tang R. Boosted hydrogen evolution in alkaline media enabled by a facile oxidation-involving surface modification. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Qiao Z, Wang C, Zeng Y, Spendelow JS, Wu G. Advanced Nanocarbons for Enhanced Performance and Durability of Platinum Catalysts in Proton Exchange Membrane Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006805. [PMID: 34061449 DOI: 10.1002/smll.202006805] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Insufficient stability of current carbon supported Pt and Pt alloy catalysts is a significant barrier for proton-exchange membrane fuel cells (PEMFCs). As a primary degradation cause to trigger Pt nanoparticle migration, dissolution, and aggregation, carbon corrosion remains a significant challenge. Compared with enhancing Pt and PtM alloy particle stability, improving support stability is rather challenging due to carbon's thermodynamic instability under fuel cell operation. In recent years, significant efforts have been made to develop highly durable carbon-based supports concerning innovative nanostructure design and synthesis along with mechanistic understanding. This review critically discusses recent progress in developing carbon-based materials for Pt catalysts and provides synthesis-structure-performance correlations to elucidate underlying stability enhancement mechanisms. The mechanisms and impacts of carbon support degradation on Pt catalyst performance are first discussed. The general strategies are summarized to tailor the carbon structures and strengthen the metal-support interactions, followed by discussions on how these designs lead to enhanced support stability. Based on current experimental and theoretical studies, the critical features of carbon supports are analyzed concerning their impacts on the performance and durability of Pt catalysts in fuel cells. Finally, the perspectives are shared on future directions to develop advanced carbon materials with favorable morphologies and nanostructures to increase Pt utilization, strengthen metal-support interactions, facilitate mass/charge transfer, and enhance corrosion resistance.
Collapse
Affiliation(s)
- Zhi Qiao
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chenyu Wang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jacob S Spendelow
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|