1
|
Tang X, Wang L, Zhang Y, Sun C. Relationship between antioxidant activity and ESIPT process based on flavonoid derivatives: A comprehensive analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125370. [PMID: 39531972 DOI: 10.1016/j.saa.2024.125370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Antioxidant activity, as a topic of current interest, is discussed together with the excited state intramolecular proton transfer (ESIPT) process for three flavonoid derivatives, based on density functional theory (DFT)and time-dependent DFT (TD-DFT) methods, as well as DPPH free radical scavenging assay. The potential energy curves and transition states demonstrate that the three molecules can undergo only single proton transfer in the excited state, and all of them are ultrafast ESIPT processes. The absorption spectra of all the molecules show effective protection against UV radiation with low fluorescence intensity, especially Baicalein (Bai), which demonstrates their great potential for sunscreen applications. The density of states, HOMO energy values, global and local indices reveal that the antioxidant activity of the molecules after ESIPT process is enhanced, with Bai having the highest antioxidant activity, which is significantly attributed to the number and position of phenolic hydroxyl groups. Moreover, by comparing the DPPH free radical scavenging activity under the dark and UV radiation conditions, the radical scavenging activity (RSA) value in the UV radiation is remarkably higher than that in the dark condition, in which Bai achieves RSA value of 93.4%. Overall, the antioxidant activity of all three ESIPT-based flavonoid derivatives, especially Bai, is significantly elevated in the keto* form, which reinforces the significant relationship between antioxidant activity and ESIPT process, and provides new application prospects for molecules with ESIPT properties.
Collapse
Affiliation(s)
- Xingzhu Tang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China.
| | - Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Li A, Yang Y, Bai X, Bao H, He M, Zeng X, Wang Y, Li F, Qin S, Yang W, Li X. Trimetallic MOF-derived Fe-Mn-Sn oxide heterostructure enabling exceptional catalytic degradation of organic pollutants. J Colloid Interface Sci 2025; 679:232-244. [PMID: 39447466 DOI: 10.1016/j.jcis.2024.10.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Developing efficient and environmentally benign heterogeneous catalysts that activate peroxymonosulfate (PMS) for the degradation of persistent organic contaminants remains a challenge. Metal-organic frameworks (MOFs)-derived metal oxide catalysts in advanced oxidation processes (AOPs) have received considerable attention research fraternity. Herein, we report an innovative magnetic trimetallic MOF-derived Fe-Mn-Sn oxide heterostructure (FeMnO@Sn) with adjustable morphology, size and Sn content, prepared through an impregnation-calcination strategy. The formation of a novel magnetic Fe2O3/Fe3O4/Mn3O4 heterostructure induces the generation of abundant Fe2+ and Mn2+ sites on the FeMnO@Sn surface. Meanwhile, the introduction of SnO2 into the Fe2O3/Fe3O4/Mn3O4 heterostructure facilitates the cleavage of the OO bond in adsorbed PMS. The synergy among the different functionalities of each metal oxide plays a vital role in the swift and effective degradation of pollutants. In addition, the uniquely designed catalyst exhibits magnetic properties that facilitate easy recycling and repeated use, thereby meeting environmental protection requirements. Overall, this research highlights the design of heterogeneous catalysts for the effective activation of PMS and provides valuable insights for the advancement of future environmental catalysts.
Collapse
Affiliation(s)
- Anqi Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yu Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xuening Bai
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hebin Bao
- Army logistics Academy of PLA, Chongqing 401331, China
| | - Miao He
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xuzhong Zeng
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yejin Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Fang Li
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Shijiang Qin
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China.
| | - Wenjing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
3
|
Shafie A, Adnan Ashour A. Advances in Organic Fluorescent and Colorimetric Probes for The Detection of Cu 2+ and Their Applications in Cancer Cell Imaging (2020-2024). Crit Rev Anal Chem 2025:1-27. [PMID: 39835738 DOI: 10.1080/10408347.2025.2455381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Organic fluorescence and colorimetric probes have emerged as vital tools for detecting metal ions, due to their high sensitivity, selectivity, and rapid response times. Copper, an essential trace element, plays a critical role in biological systems, yet its imbalance can lead to severe disorders such as neurodegenerative diseases, cancer, and Wilson's disease. Over the past few years, advancements in probe design have unlocked innovative avenues for not only detecting Cu2+ in environmental and biological samples but also for visualizing its distribution through fluorescence imaging. These probes offering robust performance under diverse conditions. Fluorescence imaging using these probes plays a pivotal role in cancer diagnosis, prognosis, and treatment monitoring by offering real-time visualization of tumor morphology and biomolecular interactions at cellular and tissue levels. This review aims to explore the diversity of organic fluorescence and colorimetric probes developed for the detection of Cu2+, with a particular focus on their applications in fluorescence imaging from 2020 to 2024. The discussion highlights the use of these probes in visualizing Cu2+ in various cancer cells such as SiHa, HCT 116, GES-1, RAW 264.7, HepG2, HeLa, MCF-7 and DrG cell lines, tissues, and small living organisms. By targeting cancer-specific pathways and monitoring copper-related physiological changes, these probes have significantly advanced the fields of cancer diagnostics and therapeutics. This comprehensive analysis emphasizes the potential of fluorescence imaging as a powerful tool for elucidating the roles of Cu2+ in health and disease, paving the way for future advances in biomedical research.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| |
Collapse
|
4
|
Liu XM, Yu Y, Xu SY, Ju XH. Elaborating H-bonding effect and excited state intramolecular proton transfer of 2-(2-hydroxyphenyl)benzothiazole based D-π-A fluorescent dye. Phys Chem Chem Phys 2025. [PMID: 39821243 DOI: 10.1039/d4cp04141k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
2-(2-Hydroxyphenyl)benzothiazole (HBT) derivatives with donor-π-acceptor (D-π-A) structure have received extensive attention as a class of excited state intramolecular proton transfer (ESIPT) compounds in the fields of biochemistry and photochemistry. The effects of electron-donors (triphenylamine and anthracenyl), the position of substituents and solvent polarity on the fluorescence properties and ESIPT mechanisms of HBT derivatives were investigated through time-dependent density functional theory (TDDFT) calculations. Potential energy curves (PECs) and frontier molecular orbitals (FMOs) reveal that the introduction of the triphenylamine group on the benzene ring enhances intramolecular HB, thereby benefiting the ESIPT process. Analysis of their spectra reveals that P-TPA (para position for TPA) and M-TPA (meta position for TPA) are both excellent candidates for fluorescent dyes because of their large Stokes shifts. The PECs of four derivatives indicate that the ESIPT process of P-TPA in dimethyl sulfoxide (DMSO) solvent is the most likely to occur. The research revealed that both P-TPA and P-En (para positions for both TPA and En) can undergo a spontaneous transformation from the enol to the keto form in the S1 state. Furthermore, the ESIPT process was found to be enhanced with an increase in polarity. The energy barrier of P-TPA(N*) → P-TPA(K*) is 3.06 kcal mol-1 in the S1 state and its reversed energy barrier is 4.47 kcal mol-1. The para triphenylamine group could accelerate the ESIPT reactions, as it has a greater impact on the excited state intramolecular hydrogen bond (ESIHB) compared to meta-substitution of the triphenylamine group.
Collapse
Affiliation(s)
- Xiu-Min Liu
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Yin Yu
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Shu-Ying Xu
- Institute of Research and Development Design, Xinxiang Aviation Industry (Group) CO., LTD, Xinxiang 453000, P. R. China
| | - Xue-Hai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
5
|
Tang X, Zhang Y, Sun C. External electric field induced emission behavior for ESIPT-based 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol towards near-infrared region. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125045. [PMID: 39216142 DOI: 10.1016/j.saa.2024.125045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Organic light-emitting diodes (OLEDs) for low energy transfer and double emission, but the current methods for regulating ESIPT processes are mostly solvent and substituent effects. Here, utilizing the density theory functional (DFT) and time-dependent density functional theory (TD-DFT) methods, the ESIPT process controlled by an external electric field (EEF) is proposed, and the changes in photophysical properties of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) are investigated. Structural parameter variations and IR vibrational spectra measure the prerequisite for the ESIPT process, namely, intramolecular hydrogen bond (IHB) strength, and the scanned potential energy curves (PECs) demonstrate that the ESIPT process of PyHBT is harder to execute as the positive EEF increases, and the opposite is true for the negative EEF. The absorption and fluorescence spectra show shifts under the distinct EEFs, and even the emission wavelength reaches the short-wave near-infrared (SW-NIR) region (780-1100 nm), such as 815.2 nm for a positive EEF of + 30 × 10-4 a.u. in the keto form. Additionally, the fluorescence intensity of PyHBT is strongly influenced by the positive EEF, especially in the enol form, and the investigation of the mechanism by hole-electron analysis demonstrates that under the positive EEF, the twisted intramolecular charge transfer (TICT) process is induced, which triggers the weakening of the fluorescence intensity. In summary, our work not only complements the theoretical approach to modulate the ESIPT process, but also reveals that the photophysical properties of materials affected by the external electric field are even expected to reach the NIR region.
Collapse
Affiliation(s)
- Xingzhu Tang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Peng W, Li W, Chai L, Dai Y, Wei Z, Zhan Z. Construction of a sequence activated fluorescence probe for simultaneous detection of γ-glutamyl transpeptidase and peroxynitrite in acute kidney injury. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125066. [PMID: 39216143 DOI: 10.1016/j.saa.2024.125066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Acute kidney injury (AKI) can result in a sudden decline in kidney function and, if not promptly diagnosed and treated, can lead to a high mortality rate. Therefore, there is a critical need for the development of a non-invasive and dependable early diagnostic method for AKI to prevent its progression and deterioration. To address the risk of misdiagnosis or overlooked diagnosis due to reliance on a single biomarker, we developed a novel molecular fluorescent probe (HX-GP) to simultaneously detect and image two biomarkers, γ-Glutamyl transpeptidase (γ-GGT) and Peroxynitrite (ONOO-), in the AKI process. HX-GP can specifically detect γ-GGT in the red fluorescence channel (λem = 613 nm) and ONOO- in the green fluorescence channel (λem = 518 nm). HX-GP demonstrated high sensitivity, selectivity, and rapid response, showing excellent biocompatibility and detection performance. In addition, HX-GP was successful in imaging experiments in a cell model of cisplatin-induced AKI, a result that highlights its potential application value in early diagnosis of AKI.
Collapse
Affiliation(s)
- Wu Peng
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenlai Li
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Chai
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongcheng Dai
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zeliang Wei
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Kaushik B, Agarwal A, Singh A, Rahaman Laskar I. Electronic Substitution Effect on ESIPT-Driven pH and Amine Sensing: Exploring Mechanism. Chem Asian J 2025:e202401217. [PMID: 39785233 DOI: 10.1002/asia.202401217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
It is required to have a more straightforward and easier way to check the quality of food to ensure the safety of the public health. The decomposition of meat protein results in ammonia and biogenic amines (BAs). Consequently, to evaluate the safety and quality of meat products throughout the storage, transit, and consumption depends on the sensitive detection of the released BAs. Here, we have designed and synthesized three luminescent-based probe molecules, which originated from 2-(2-hydroxyphenyl) benzothiazole (HBT) derivatives and showed the excited state-induced proton transfer (ESIPT) phenomenon. The two substituents (OMe and NO2) were used rationally at the para position of HBT, and the electronic properties were evaluated using Hammett substituent constants. The proton donating ability of the O-H to the acceptor is largely facilitated by the presence of a strong electron-withdrawing group, which in this case is NO2. The proton transfer rate can be controlled, and in this case, to a slower rate with the influence of the electron donating group OMe. The controllability of proton transfer led us to use it in pH sensing. A prominent and multi-color change with pH variation was observed in the case of the OMe substituted compound. These probes were further employed for amine sensing, and the limit of detection (LOD) was determined to be 28.6 μM and 61.34 nM for ammonia and hydrazine, respectively. In addition, strip-based detection of spoilage of chicken meat was studied for real-world applications via both contact and non-contact modes.
Collapse
Affiliation(s)
- Bharat Kaushik
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, Pilani, India
| | - Annu Agarwal
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, Pilani, India
| | - Ajeet Singh
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, Pilani, India
| | - Inamur Rahaman Laskar
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, Pilani, India
| |
Collapse
|
8
|
Kosgei GK, Fernando PUAI. Recent Advances in Fluorescent Based Chemical Probes for the Detection of Perchlorate Ions. Crit Rev Anal Chem 2025:1-25. [PMID: 39783983 DOI: 10.1080/10408347.2024.2447299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
This review highlights recent advancements and challenges in fluorescence-based chemical sensors for selective and sensitive detection of perchlorate, a persistent environmental pollutant and global concern due to its health and safety implications. Perchlorate is a highly persistent inorganic pollutant found in drinking water, soil, and air, with known endocrine-disruptive properties due to its interference with iodide uptake by the thyroid gland. Human exposure mainly occurs through contaminated water and food. Additionally, perchlorates are prevalent in improvised explosives, causing numerous civilian casualties, making their detection important in a worldwide aspect. Fluorescence-based chemical sensors provide a valuable tool for the selective detection of perchlorate ions due to their simplicity and applicability across various fields, including biology, pharmacology, military, and environmental science. This review article overviews perchlorate chemistry, occurrence, and remediation strategies, compares regulatory limits, and examines fluorescence-based detection mechanisms. It systematically summarizes recent advancements in designing at least a dozen fluorescence-based chemical materials for detecting perchlorate in the environment over the past decade. Key focus areas include the design and molecular architecture of synthetic chemical chromophores for perchlorate sensing and the photochemistry mechanisms driving their effectiveness. The main findings indicate that there has been significant progress in the development of reliable and robust fluorescence-based sensors with higher selectivity and sensitivity for perchlorate detection. However, several challenges remain, such as improving detection limits and sensor stability. The review outlines potential future research directions, emphasizing the need for further innovation in sensor design and development. It aims to enhance understanding and spur advances that could create more efficient and robust chemical scaffolds for perchlorate sensing. By addressing current limitations and identifying opportunities for improvement, the review provides a comprehensive resource for researchers working to develop better detection methods for this significant environmental pollutant.
Collapse
Affiliation(s)
- Gilbert K Kosgei
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA
| | | |
Collapse
|
9
|
Suebphanpho J, Hasodsong A, Supprung P, Boonmak J. Dual-mode luminescence and colorimetric sensing for Al 3+ and Fe 2+/Fe 3+ ions in water using a zinc coordination polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125729. [PMID: 39805242 DOI: 10.1016/j.saa.2025.125729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
A zinc(II) coordination polymer, [Zn(H2dhtp)(2,2'-bpy)(H2O)]n (1), has been utilized as a dual-mode luminescence-colorimetric sensor (H2dhtp2- = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in H2dhtp2- can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence. This luminescence signal can be considerably enhanced and blue-shifted upon the addition of Al3+ ions with a limit of detection (LOD) of 0.15 μM, and it demonstrates significant resistance to interference from several competing metal ions. To demonstrate a practical application, 1@paper strips were fabricated that can visually detect the Al3+ ion under a UV lamp. Moreover, 1 can detect either Fe2+ or Fe3+ ions in aqueous solutions by a visible color shift. Upon the incremental addition of Fe2+ or Fe3+ ions, the solution color changed from colorless to pink, exhibiting a pronounced absorption band at around 521 nm. The LODs were determined to be 1.55 and 0.34 μM for Fe2+ and Fe3+, respectively. Furthermore, compound 1 was used for the determination of Fe3+ ions in the real water samples, which can be evaluated on-site in real-time via a smartphone color-scanning application. The detection efficacy of 1 toward Al3+ and Fe2+/Fe3+ maintains significant luminescence stability and reusability.
Collapse
Affiliation(s)
- Jitti Suebphanpho
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Akarapon Hasodsong
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Paskorn Supprung
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand.
| |
Collapse
|
10
|
Erdemir S, Oguz M, Malkondu S. Fast tracking of Hg 2+ ions in living cells, food, and environmental samples using a new mitochondria-targeted red emitting probe and its portable applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125637. [PMID: 39756568 DOI: 10.1016/j.envpol.2025.125637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Mercury is one of the most hazardous heavy metals and is capable of biomagnification, thereby posing severe risks to ecosystems and human health. Therefore, selective, sensitive, and rapid detection of Hg2+ in a wide range of samples is essential. Herein, we report the synthesis of a new 2-(benzo[d]thiazol-2-yl) phenol-based fluorescent probe (PyS) and its potential as a fluorescent probe for detecting Hg2+ ions in various real samples such as rice, garlic, shrimp, and root samples. When interacting with Hg2⁺, the non-fluorescent probe solution emitted strong red fluorescence at 638 nm in a solution of DMSO/H2O (1/9, v/v). The other ions showed no significant interference during Hg2+ detection. In addition, PyS displayed a rapid response time among the reaction-based systems (3-4 min), low detection limit (72.5 nM), linear response trend in the range of 0-22.00 μM, and large Stokes shift (243 nm). Additionally, PyS can serve as a paper, cotton swab, and polysulfone capsule kit for qualitative detection of Hg2⁺, enabling on-site quantitative detection of Hg2⁺ in beach soil and water samples using a smartphone app. It also can effectively detect Hg2⁺ in living cells in a concentration-dependent manner, thereby highlighting its potential for bioimaging in living organisms.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey.
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun, 28200, Turkey
| |
Collapse
|
11
|
Fu Y, Zhang X, Wu L, Wu M, James TD, Zhang R. Bioorthogonally activated probes for precise fluorescence imaging. Chem Soc Rev 2025; 54:201-265. [PMID: 39555968 DOI: 10.1039/d3cs00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, in situ imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated in situ fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise in situ imaging, while also discussing future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Youxin Fu
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
12
|
Du W, Liu X, Sun F, Lam JWY, Yang J, Tang BZ. Development of Controllable Hetero-Pauson-Khand Polymerization to Functional Stimuli-Responsive Poly(γ-lactam)s. Angew Chem Int Ed Engl 2025; 64:e202413275. [PMID: 39219145 DOI: 10.1002/anie.202413275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Polymers containing lactam structures play a crucial role in both natural biological systems and human life, and their synthesis, functions and applications are of utmost importance for biomimetics and the creation of new materials. In this study, we developed an efficient heterogeneous Pauson-Khand polymerization (h-PKP) method for the controlled synthesis of main-chain poly(γ-lactam)s containing α, β-unsaturated γ-lactam functionalities using readily available internal alkynes and imines. The molecular weights of the resulting poly(N-Ts/γ-lactam)s can be precisely controlled by adjusting the ratio of phenyl formate and nickel. These polymers exhibit high solid-state luminescence and demonstrate rapid and sensitive dual responsiveness to light and acid stimuli. They further demonstrate strong reactive oxygen species (ROS) generation capability. The unique dual-emission peaks observed in poly(N-H/γ-lactam)s obtained through post-treatment under acidic conditions demonstrate a mechanism of aggregation-induced intermolecular excited-state proton transfer specific to lactam structures. The efficient one-pot synthetic method for poly(γ-lactam) provides a novel strategy for constructing polymers with γ-lactam structures in the main chain and the simple and efficient post-modification method offer a versatile toolbox for functionalizing poly(γ-lactam)s to expand their potential applications.
Collapse
Affiliation(s)
- Wutong Du
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, P. R. China
| | - Xinyue Liu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
| | - Feiyi Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
| | - Jinglei Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian, Shenzhen, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China
| |
Collapse
|
13
|
Kumar S, Singh P. Novel Perylene Diimide-Benzothaizole Hybrid: A Reaction-Based Probe for the Detection and Discrimination of H 2S, Cys and DTT. LUMINESCENCE 2025; 40:e70078. [PMID: 39838542 DOI: 10.1002/bio.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
The reaction-based probe perylene diimide-hydroxyphenyl benzothiazole (PR) can be used for the detection and discrimination of H2S, DTT and Cys in 20% HEPES buffer-DMSO and DMSO. The H2S induced radical anion formation of PR in 20% HEPES buffer and thiolysis of the ether bond of PR in DMSO. However, the addition of DTT showed only a decrease in the absorbance intensity and Cys showed insignificant behaviour towards PR in DMSO. The optical, AFM and DLS studies along with isolation of the reaction product in the model reaction support the interaction of the PR with bio thiols.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, India
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
14
|
Tang X, Wang Y, Wang L, Zhang Y, Sun C. Excited-state antioxidant activity for apigenin based on external electric field-modulated ESIPT behavior: TD-DFT and molecular docking calculations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113087. [PMID: 39733526 DOI: 10.1016/j.jphotobiol.2024.113087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
Apigenin (Api), a flavonoid possessing dual features of antioxidant activity and intramolecular hydrogen bond (IMHB), is subjected to an external electric field (EEF) to investigate its excited-state antioxidant activity after excited state intramolecular proton transfer (ESIPT) behavior employing the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, as well as molecular docking. The existence of IMHB is demonstrated by structural parameters and AIM topological analysis, where Api in the enol⁎ form under an EEF of +60 × 10-4 a.u. possesses strong IMHB. The potential energy curves confirm that the ESIPT process varies from barrierless to barriered as the positive EEF grows, thus determining the excited-state form. Api exhibits strong excited-state antioxidant activity in vitro whether or not under an EEF, especially under the EEF of -40 × 10-4 a.u., utilizing HOMO energy. According to average local ionization energy (ALIE), the electrophilic reaction site also changes after ESIPT process under the EEF, and the activity is significantly increased. Furthermore, activation of the antioxidant Keap1-Nrf2-ARE pathway in vivo, namely, the interaction of Keap1 protein with Api, calculated by molecular docking, suggests that an interaction between the Keap1 and excited-state Api exists accompanying lower and variable bind energy under the distinct EEFs. Taken together, combining the modulation of the ESIPT process with the excited-state antioxidant activity is an effective approach to enhance the antioxidant activity of compounds.
Collapse
Affiliation(s)
- Xingzhu Tang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Ye Wang
- College of Physics and Electronic Information, Baicheng Normal University, Baicheng 137000, China.
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China.
| | - Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
15
|
Hu Z, Li J, Feng L, Zhu Y, Zhao R, Yu C, Xu R, Wang W, Ding H, Yang P. Coassembly of Dual-Modulated AIE-ESIPT Photosensitizers and UCNPs for Enhanced NIR-Excited Photodynamic Therapy. NANO LETTERS 2024; 24:16426-16435. [PMID: 39661654 DOI: 10.1021/acs.nanolett.4c05497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Aggregation-induced emission (AIE) photosensitizers are promising for photodynamic therapy, yet their short excitation wavelengths present a limitation. In this study, we develop a series of organic photosensitizers with dual modulation capabilities based on excited-state intramolecular proton transfer (ESIPT) and AIE. Notably, we synthesize near-infrared (NIR)-excited photosensitive nanoparticles through a coassembly strategy utilizing upconversion nanoparticles (UCNPs) and amphiphilic polymers. The spectroscopic analysis and theoretical calculations elucidate the significant impact of additional or π-spacer groups on the conformational change and the energy barrier of the ESIPT process. An efficient Förster resonance energy transfer between the photosensitizer and UCNPs is achieved through the coassembly strategy. Both in vitro and in vivo experiments demonstrate the antitumor efficacy of these nanoparticles under NIR excitation. This work not only introduces a novel approach for simultaneously modulating AIE properties and the ESIPT process but also provides a robust solution for overcoming the excitation wavelength limitations of many organic photosensitizers.
Collapse
Affiliation(s)
- Zhen Hu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Jialin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Rongchen Xu
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, P. R. China
| | - Wenzhuo Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
16
|
Lin Z, Liao Y, Tian D, Liao J, Chen Q, Yin J. Small-Molecule Fluorescent Probes for Butyrylcholinesterase. ChemMedChem 2024:e202400875. [PMID: 39714828 DOI: 10.1002/cmdc.202400875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Butyrylcholinesterase plays an indispensable role in organisms, and its abnormal expression poses a significant threat to human health and safety, covering various aspects including liver-related diseases, diabetes, obesity, cardiovascular and cerebrovascular diseases, and neurodegenerative diseases. In addition, toxic substances such as organophosphorus and carbamate pesticides markedly inhibit BChE activity. BChE activity serves as a critical parameter for the clinical diagnosis of acute organophosphorus pesticide poisoning and the evaluation of organophosphorus and carbamate pesticide residues. Therefore, the accurate and reliable detection of butyrylcholinesterase activity is particularly urgent and important for in-depth analysis of its biological function, diagnosis and therapy of related diseases, drug screening and sensitive detection of pesticide residues. Fluorescent probes have become a promising tool for sensing and imaging of butyrylcholinesterase, due to its advantages of high spatio-temporal resolution, high selectivity, non-invasive, high sensitivity, and tailored molecule structures. Here, this paper provides a comprehensive overview of the research progress in the sensing, imaging and therapy of butyrylcholinesterase utilizing fluorescent probes. This paper might be a useful guideline for researchers to design new high-performance fluorescence probes for BChE, and making further contributions to this intriguing field.
Collapse
Affiliation(s)
- Zibo Lin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yuanyuan Liao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Donglei Tian
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Junyu Liao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Qiong Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Jun Yin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
17
|
Roy SK, Moser S, Dürr-Mayer T, Hinkelmann R, Jessen HJ. ESIPT fluorescence turn-on sensors for detection of short chain inorganic polyphosphate in water. Org Biomol Chem 2024. [PMID: 39714782 DOI: 10.1039/d4ob01926a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu2+ coordination. Removal of the copper ion through decomplexation by the analyte accesses the on-state. The probes detect polyphosphates over other biologically occurring phosphates, pyrophosphate, and nucleotides such as ATP, ADP, GTP. An optimal fluorescence response is observed with the short-chain polyphosphate polyP8. Furthermore, the probe shows selectivity towards linear polyphosphates over cyclic metaphosphates. The rapid 'turn-off-turn-on' fluorescence responses upon consecutive addition of Cu2+ and polyP8 are reversible, further highlighting sensor performance in an aqueous environment. One of the sensors is then used to monitor polyP digestion by an exopolyphosphatase (PPX).
Collapse
Affiliation(s)
- Subhra Kanti Roy
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany.
| | - Sandra Moser
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany.
| | - Tobias Dürr-Mayer
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany.
| | - Rahel Hinkelmann
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany.
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany.
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Joshi S, Moody A, Budthapa P, Gurung A, Gautam R, Sanjel P, Gupta A, Aryal SP, Parajuli N, Bhattarai N. Advances in Natural-Product-Based Fluorescent Agents and Synthetic Analogues for Analytical and Biomedical Applications. Bioengineering (Basel) 2024; 11:1292. [PMID: 39768110 PMCID: PMC11727039 DOI: 10.3390/bioengineering11121292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Fluorescence is a remarkable property exhibited by many chemical compounds and biomolecules. Fluorescence has revolutionized analytical and biomedical sciences due to its wide-ranging applications in analytical and diagnostic tools of biological and environmental importance. Fluorescent molecules are frequently employed in drug delivery, optical sensing, cellular imaging, and biomarker discovery. Cancer is a global challenge and fluorescence agents can function as diagnostic as well as monitoring tools, both during early tumor progression and treatment monitoring. Many fluorescent compounds can be found in their natural form, but recent developments in synthetic chemistry and molecular biology have allowed us to synthesize and tune fluorescent molecules that would not otherwise exist in nature. Naturally derived fluorescent compounds are generally more biocompatible and environmentally friendly. They can also be modified in cost-effective and target-specific ways with the help of synthetic tools. Understanding their unique chemical structures and photophysical properties is key to harnessing their full potential in biomedical and analytical research. As drug discovery efforts require the rigorous characterization of pharmacokinetics and pharmacodynamics, fluorescence-based detection accelerates the understanding of drug interactions via in vitro and in vivo assays. Herein, we provide a review of natural products and synthetic analogs that exhibit fluorescence properties and can be used as probes, detailing their photophysical properties. We have also provided some insights into the relationships between chemical structures and fluorescent properties. Finally, we have discussed the applications of fluorescent compounds in biomedical science, mainly in the study of tumor and cancer cells and analytical research, highlighting their pivotal role in advancing drug delivery, biomarkers, cell imaging, biosensing technologies, and as targeting ligands in the diagnosis of tumors.
Collapse
Affiliation(s)
- Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Alexis Moody
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Padamlal Budthapa
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Anita Gurung
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Rachana Gautam
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Prabha Sanjel
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Aakash Gupta
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA;
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
19
|
Han Z, He M, Wang G, Lehn JM, Li Q. Visible-Light-Driven Solid-State Fluorescent Photoswitches for High-Level Information Encryption. Angew Chem Int Ed Engl 2024; 63:e202416363. [PMID: 39318067 DOI: 10.1002/anie.202416363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Developing visible-light-driven fluorescent photoswitches in the solid state remains an enormous challenge in smart materials. Such photoswitches are obtained from salicylaldimines through excited-state intramolecular proton transfer (ESIPT) and subsequent cis-trans isomerization strategies. By incorporating a bulky naphthalimide fluorophore into a Schiff base, three photoswitches achieve dual-mode changes (both in color and fluorescence) in the solid state. In particular, the optimal one generates triple fluorescence changing from green, to yellow and finally to orange upon visible-light irradiation. This switching process is fully reversible and can be repeated at least 10 times without obvious attenuation, suggesting its good photo-fatigue resistance. Mechanism studies reveal that the naphthalimide group not only enables the tuning of multicolor with an additional emission, but also induces a folded structure, reducing molecular stacking and facilitating ESIPT and cis-trans isomerization. As such, photopatterning, ternary encoding and transient information recording and erasing are successfully developed. The present study provides a reliable strategy for visible-light-driven fluorescent photoswitches, showing implications for advanced information encryption materials.
Collapse
Affiliation(s)
- Zhiyuan Han
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Meixia He
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Gang Wang
- School of Chemical Engineering, Xi'an University, Xi'an, 710065, China
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (lSlS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
20
|
Muthukumar A, Kalaiyar S. AIE paper shred for the detection of evolved amine vapor from putrefaction processes of fish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124860. [PMID: 39067361 DOI: 10.1016/j.saa.2024.124860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/28/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Seafood plays a major role in the human diet. During transportation, without proper storage and supply chain, its quality deteriorates easily. The post-harvesting processes such as the storage of food play a crucial role in human health. So it is highly imperative to have a technique for identifying food spoilage earlier to ensure the food safety and security of the consumers. Herein we have developed a highly selective and sensitive fluorescent 'Turn-on' probe 2-amino-5-nitrobenzo [d] thiazol-2-yl) imino)methylphenol ANT based on aggregation induced emission (AIE). ANT molecule possesses both restricted intramolecular rotation (RIR) and excited state intramolecular proton transfer (ESIPT) properties leading to fluorescent enhancement rather than aggregation caused quenching (ACQ). The probe shows high selectivity and sensitivity towards the NH3 vapor. This probe with the AIE property is employed for the real-time detection of NH3 in both aqueous and gaseous phases. ANT molecule is deposited on the paper shred by a physical method is utilized to monitor NH3 vapor from red snapper fish as a real-time sample during its degradation processes. After two days there is a ratiometric color change in the paper shred from yellow to orange for the fish stored at room temperature indicating its rotten and unpalatability nature. Paper shred is reused by immersing it into the tetrahydrofuran (THF), in which it retains its initial color due to deprotonation of NH3, keto to enol tautomerism discloses the reusability of the fluorescent probe. Studies carried out using UV-visible and fluorescence spectroscopy infer that the ANT probe has high affinity towards NH3 vapor.
Collapse
Affiliation(s)
- Abinaya Muthukumar
- Photochemistry Research Laboratory, Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India
| | - Swarnalatha Kalaiyar
- Photochemistry Research Laboratory, Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India.
| |
Collapse
|
21
|
Gunture, Lee TY. Biomass-derived multiatom-doped carbon dots for water sensing based on excited state intraparticle proton transfer in organic solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124841. [PMID: 39089070 DOI: 10.1016/j.saa.2024.124841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024]
Abstract
The presence of trace water impurities in organic solvents can significantly influence chemical reactions and product quality; thus, the accurate detection of water content in these solvents is a critical requirement for industrial applications. Accordingly, an eco-friendly, effective, and economical sensor for detecting trace quantities of miscible water in organic solvents is required for industrial applications. In this study, we synthesized biomass-derived multi-atom-doped carbon dots (MACDs) as fluorescent probes and employed them for the detection of trace amounts of water impurities in several water-miscible organic solvents. The MACDs exhibited stable dual-color fluorescence emission under ultraviolet light irradiation and red and blue emissions in organic solvents and water. The fluorescence quantum yield was approximately 11 %, which indicates an excited intraparticle proton transfer response due to an increase in the water content within a wide response range from 0 % to 100 % (v/v) in organic solvents. The intensity of the red emission signal at 670 nm gradually decreased with an increase in the water content in the organic solvent. The MACDs could detect water with an instant response time of 55 s, a high sensitivity, and low limits of detection of 0.08 %, 1.36 %, 0.03 %, 0.04 %, 0.12 %, and 0.05 % (v/v) in ethanol, acetonitrile, dimethylformamide, methanol, isopropanol, and tetrahydrofuran, respectively. Hence, biomass-derived MACDs can serve as efficient and eco-friendly water sensors in organic solvents.
Collapse
Affiliation(s)
- Gunture
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae Yoon Lee
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Technology Education, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
22
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
23
|
Cheng J, Li Y, Zhu Z, Guan H, Zhai J, Xiang Y, Wang M. A Simple and Rapid "Turn-On" Fluorescent Probe Based on Binuclear Schiff Base for Zn 2+ and Its Application in Cell Imaging and Test Strips. Molecules 2024; 29:5850. [PMID: 39769941 PMCID: PMC11678835 DOI: 10.3390/molecules29245850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
A series of colorful binuclear Schiff bases derived from the different diamine bridges including 1,2- ethylenediamine (bis-Et-SA, bis-Et-4-NEt2, bis-Et-5-NO2, bis-Et-Naph), 1,2-phenylenediamine (bis-Ph-SA, bis-Ph-4-NEt2, bis-Ph-5-NO2, bis-Ph-Naph), dicyano-1,2-ethenediamine (bis-CN-SA, bis-CN-4-NEt2, bis-CN-5-NO2, bis-CN-Naph) have been designed and prepared. The optical properties of these binuclear Schiff base ligands were fully determined by UV-Vis absorption spectroscopy, fluorescence emission spectroscopy, and time-dependent-density functional theory (TD-DFT) calculations. The inclusion of D-A systems and/or π-extended systems in these binuclear Schiff base ligands not only enables adjustable RGB light absorption and emission spectra (300~700 nm) but also yields high fluorescence quantum efficiencies of up to 0.84 in MeCN solution. Then, with the ESIPT (excited-state intramolecular proton transfer) property, fluorescence analysis showed that the probe bis-Et-SA and bis-Ph-SA could recognize Zn2+ via the "turn on" mode in the MeCN solution. During the detection process, bis-Et-SA and bis-Ph-SA demonstrate rapid response and high selectivity upon the addition of Zn2+. The coordination of Zn2+ with the oxygen atom and Schiff base nitrogen atom in a tetrahedral geometry is confirmed by Job's plot, FT-IR, and 1H NMR spectroscopy. In addition, the paper test and Hela cells were successfully carried out to detect Zn2+. Moreover, the sensitivity of bis-Et-SA and bis-Ph-SA is much better than that of those Schiff base ligands containing only one chelating unit [O^N^N^O].
Collapse
Affiliation(s)
- Jinghui Cheng
- Key Laboratory of Chemo/Biosensing and Detection of Xuchang, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China; (Y.L.); (Z.Z.); (H.G.); (J.Z.); (Y.X.)
| | - Yi Li
- Key Laboratory of Chemo/Biosensing and Detection of Xuchang, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China; (Y.L.); (Z.Z.); (H.G.); (J.Z.); (Y.X.)
| | - Zhiye Zhu
- Key Laboratory of Chemo/Biosensing and Detection of Xuchang, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China; (Y.L.); (Z.Z.); (H.G.); (J.Z.); (Y.X.)
| | - Huijuan Guan
- Key Laboratory of Chemo/Biosensing and Detection of Xuchang, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China; (Y.L.); (Z.Z.); (H.G.); (J.Z.); (Y.X.)
| | - Jinsong Zhai
- Key Laboratory of Chemo/Biosensing and Detection of Xuchang, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China; (Y.L.); (Z.Z.); (H.G.); (J.Z.); (Y.X.)
| | - Yibing Xiang
- Key Laboratory of Chemo/Biosensing and Detection of Xuchang, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China; (Y.L.); (Z.Z.); (H.G.); (J.Z.); (Y.X.)
| | - Man Wang
- High & New Technology Research Center of Henan Academy of Sciences, No. 56 Hongzhuan Road, Zhengzhou 450002, China
| |
Collapse
|
24
|
Xiao Y, Wang H, Gao C, Ye X, Lai Y, Chen M, Ren X. Fluorescence sensing techniques for quality evaluation of traditional Chinese medicines: a review. J Mater Chem B 2024; 12:12412-12436. [PMID: 39530288 DOI: 10.1039/d4tb01886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Traditional Chinese medicines (TCMs) are highly valued and widely used worldwide. However, their complex compositions and various preparation processes have brought considerable challenges to the quality evaluation of Chinese medicines. The traditional methods for TCM quality evaluation suffer from the problems of cumbersome sample preparation, a long detection time, low sensitivity, etc. A more efficient and accurate evaluation method is urgently needed to ensure the stability and reliability of the quality of TCMs. As an emerging analytical technology, a fluorescent probe has the advantages of high sensitivity, high selectivity, easy operation, etc. It is capable of generating a specific fluorescent signal response to specific components in traditional Chinese medicines, realizing rapid and accurate detection of target components, which effectively solves the many difficulties of traditional methods. The purpose of this paper is to discuss the application of fluorescent probes in the quality evaluation of traditional Chinese medicines and the challenges they face. By introducing the principles, advantages and specific application cases of fluorescent probe technology in the quality evaluation of traditional Chinese medicines, we hope to provide new and efficient analytical ideas for the quality evaluation of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yanyu Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chenxia Gao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xinyi Ye
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yuting Lai
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meiling Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
25
|
Sülzner N, Jung G, Nuernberger P. A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead. Chem Sci 2024:d4sc07148d. [PMID: 39759939 PMCID: PMC11697080 DOI: 10.1039/d4sc07148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective. Besides explicating the spectral signatures, transient ion-pair species, and electronic states involved in an ESPT, special emphasis is put on the diversity of methods used for studying photoacids as well as on the effects of the environment on the ESPT, illustrated in detail for 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and the naphthols as examples of prototypical photoacids. The development of exceptionally acidic super-photoacids and magic photoacids is subsequently discussed, which opens the way to applications even in aprotic solvents and provides additional insight into the mechanisms underlying ESPT. In the overview of highlights from theory, a comprehensive picture of the scope of studies on HPTS is presented, along with the general conceptualization of the electronic structure of photoacids and approaches for the quantification of excited-state acidity. We conclude with a juxtaposition of established applications of photoacids together with potential open questions and prospective research directions.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum 44780 Bochum Germany +49 234 32 24523
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes 66123 Saarbrücken Germany +49 681 302 71320
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg 93040 Regensburg Germany +49 941 943 4487
| |
Collapse
|
26
|
Taneja S, Sharma K, Selvam P, Kumar SKA, Thiruppathi G, Sundararaj P, Ramasamy SK. Highly Potent Fluorenone Azine-based ESIPT Active Fluorophores for Cellular Viscosity Detection and Bioimaging Applications. J Fluoresc 2024:10.1007/s10895-024-04029-5. [PMID: 39565409 DOI: 10.1007/s10895-024-04029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Herein, synthesizes of fluorenone azine-based Schiff fluorescence probes: (E)-2-(((9H-fluoren-9-ylidene)hydrazineylidene)methyl)-5-(diethylamino)phenol (3a), (E)-9-(((9H-fluoren-9-ylidene)hydrazineylidene) methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (3b), and (E)-1-(((9H-fluoren-9-ylidene)hydrazineylidene)methyl) naphthalen-2-ol (3c). The probes were structurally characterized using Fourier-transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS) analysis. The probes exhibit hydrogen bonding between phenolic -OH and imine nitrogen, enabling excited state intramolecular proton transfer (ESIPT) and free rotation in the azine (> C = N-N = C <) functional, facilitating twisted intramolecular charge transfer (TICT), and a positive solvatochromism in solvent-dependent emission studies. Further, density functional theory (DFT) based calculations accounted for the observed photophysical TICT and ESIPT processes, revealing a non-covalent interaction between phenolic -OH and imine nitrogen. Furthermore, the fluorescence intensity (log I) showed good linearity (R2 = 0.999) with the viscosity (log η) with Förster-Hoffmann coefficient (X) values of 2.238, 1.405 and 3.121 for 3a, 3b and 3c, respectively. The study established the probes toxicity and fluorescence imaging in the Caenorhabditis elegans model. Probe 3a, the first azine-based probe for micro viscosity detection, demonstrated exceptional efficacy in detecting intercellular viscosity and facilitating bioimaging applications.
Collapse
Affiliation(s)
- Shilpa Taneja
- Department of Chemistry, M.M Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133 207, Haryana, India
| | - Khushi Sharma
- Department of Chemistry, M.M Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133 207, Haryana, India
| | - Pravinkumar Selvam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - S K Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Govindhan Thiruppathi
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Palanisamy Sundararaj
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Selva Kumar Ramasamy
- Department of Chemistry, M.M Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133 207, Haryana, India.
| |
Collapse
|
27
|
Maiti A, Kumar R, Mahato B, Ghoshal D. Excited-state intramolecular proton transfer (ESIPT) active interwoven polycatenated coordination polymer for selective detection of Al 3+ and Ag + ions along with water detection in less polar solvents. Dalton Trans 2024; 53:18003-18012. [PMID: 39436723 DOI: 10.1039/d4dt02285h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The external stimuli-responsive excited-state intramolecular proton transfer (ESIPT) on/off mechanism is a unique and expedient sensing method that offers easy monitoring through the transition between dual and single-peak emissions. To avail this advantage of ESIPT-based sensing for selective metal ion detection and trace water detection, we have synthesized a 2,5-dihydroxyterephthalate (dht)-based interwoven polycatenated coordination polymer (1). The synthesized compound has been thoroughly characterized using single-crystal and powder X-ray diffraction techniques, along with other physicochemical methods. The synthesized compound exhibits a visual luminescence color change from faint yellow to bright green under UV irradiation in the presence of Al3+ ions. This change is attributed to a blue shift in fluorescence maxima of the keto form of the dht ligand in contact with Al3+ ions. Additionally, the material detects Ag+ ions through an ESIPT-off mechanism. These significant changes in ESIPT - blue shifting for Al3+ and ESIPT-off for Ag+ - start in just 1 mM aqueous solutions of these ions. Significantly, the ESIPT-off for Ag+ is evident even in the presence of other interfering ions. Beyond metal ion detection, this material also offers both qualitative and quantitative sensing of trace amounts of water in various polar organic solvents, such as ethanol (EtOH), tetrahydrofuran (THF), isopropanol (IPA), acetone, and acetonitrile (ACN), through the ESIPT-on/off phenomenon. The activated framework of compound 1 (1') can detect 2%, 4%, 4%, 3%, and 3% water in acetone, ACN, EtOH, IPA, and THF, respectively; through the conversion from a single to dual hump emission alteration. The respective ESIPT peak shift and ESIPT-on/off in the presence of metal ions and water is explained by the interaction between the host coordination polymer and guest analytes.
Collapse
Affiliation(s)
- Anupam Maiti
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India.
| | - Rakesh Kumar
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India.
| | - Bidyadhar Mahato
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India.
| | - Debajyoti Ghoshal
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India.
| |
Collapse
|
28
|
Yu C, Di G, Li Q, Guo X, Wang L, Gong Q, Wei Y, Zhao Q, Jiao L, Hao E. Multicomponent Diversity-Oriented Access to Boronic-Acid-Derived Pyrrolide Salicyl-Hydrazone Fluorophores with Strong Solid-State Emission. Inorg Chem 2024; 63:21397-21409. [PMID: 39480134 DOI: 10.1021/acs.inorgchem.4c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Fluorescent molecular platforms are highly sought after for their applications in biology and optoelectronics but face challenges with solid-state emission quenching. To address this, bulky substituents or aggregation-induced emission luminogens to restrict intramolecular motion are used to enhance the brightness. Here, we have successfully engineered a novel class of boron complexed pyrrolide salicyl-hydrazone fluorophores named BPSHY. These dyes were synthesized through a diversity-oriented condensation of pyrrole and salicylaldehyde derivatives combined with various aromatic boronic acids. The resulting 3D structures, owing to bulky boron axially substituted aryl groups, impart excellent solubility in a variety of solvents. Significantly, the BPSHY dyes exhibit strong absorption in the visible region and remarkably large Stokes shifts. Crucially, they demonstrate intense emission in aqueous solutions due to aggregation-induced emission effects. In solid-states, these dyes achieve high quantum yields, reaching up to 58%. Further expanding their utility, we developed two new BPSHY probes: one incorporating morpholine and another containing triphenylphosphine salt. Both of them are found to specifically label subcellular organelles such as lysosomes and mitochondria within live cells. Notably, these probes demonstrate exceptional staining efficacy and two-photon fluorescence feature. This highlights the considerable promise of BPSHY fluorophores for monitoring and visualizing the dynamic transformations of organelles.
Collapse
Affiliation(s)
- Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science; Anhui Province Key Laboratory of Optoelectrical Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Guangyuan Di
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science; Anhui Province Key Laboratory of Optoelectrical Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qian Li
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science; Anhui Province Key Laboratory of Optoelectrical Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science; Anhui Province Key Laboratory of Optoelectrical Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lei Wang
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science; Anhui Province Key Laboratory of Optoelectrical Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qingbao Gong
- The First Affiliated Hospital/Yijishan Hospital of Wannan Medical College; Institutes of Brain Science, Wannan Medical College, Wuhu 241001, China
| | - Yaxiong Wei
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science; Anhui Province Key Laboratory of Optoelectrical Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Quansheng Zhao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science; Anhui Province Key Laboratory of Optoelectrical Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science; Anhui Province Key Laboratory of Optoelectrical Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science; Anhui Province Key Laboratory of Optoelectrical Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
29
|
Hou M, Jing X, Wen G, He H, Gao S. Catalyst-free and wavelength-tuned glycosylation based on excited-state intramolecular proton transfer. Nat Commun 2024; 15:9661. [PMID: 39511172 PMCID: PMC11544245 DOI: 10.1038/s41467-024-54020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
The chemoselectivity of organic reactions is a fundamental topic in organic chemistry. In the long history of chemical synthesis, achieving chemoselectivity is mainly limited to thermodynamic conditions by an exogenous activation strategy. Here, we design an endogenous activation method, which can be used to control the chemoselectivity of phenol and naphthol through the photo-induced excited-state intramolecular proton transfer (ESIPT). A wavelength-tuned glycosylation is developed to showcase the penitential of this new strategy. Traditionally, an exogenous activator (electrophilic promoters) is essential to induce the cleave of a polar single bond, and this strategy has been extensively studied and used in the glycosylation chemistry, for the formation of oxocarbenium cation intermediate. In our systems, the oxocarbenium cation intermediates can be selectively formed from glycosyl donors bearing tunable chromophoric groups under mild conditions of acid-base free and redox neutrality, which enables continuous synthesis of oligosaccharides.
Collapse
Affiliation(s)
- Min Hou
- Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai, 200062, PR China
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiaoling Jing
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Guoen Wen
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Haibing He
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Shuanhu Gao
- Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai, 200062, PR China.
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China.
| |
Collapse
|
30
|
Meng Z, Liu J, Yu T, Shang Z, Wang Y, Shuang S. Novel ratiometric fluorescent probe with large Stokes shift for selective sensing and imaging of Zn 2+ in live cell. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124645. [PMID: 38875927 DOI: 10.1016/j.saa.2024.124645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
A novel ratiometric fluorescent probe, namely 5-[(3-dicyanoylidene -5.5-dimethyl) cyclohexenyl-1-ethenyl] salicylaldehyde-3'-hydroxybenzohydrazone (DCSH) is presented for the selective sensing of Zn2+ ion in acetonitrile/water (2/3, pH 7.4) solution. Introducing Zn2+ ions notably caused the peak emission of DCSH to shift from 560 nm to 646 nm, accompanied with a significant enhancement of its intensity. A vivid change in fluorescence color from yellow to red facilitated the immediate identification of Zn2+ ions by visual observation. DCSH exhibits substantial Stokes shifts (110 and 196 nm), rapid detection capability (within 10 s) and high sensitivity to Zn2+ ions, achieving a limit of detection of 31.2 nM. The response mechanism is supposed to involve the block of C = N bond isomerization and excited state intramolecular proton transfer (ESIPT) along with the enhancement of fluorescence through chelation (CHEF) effect. DCSH was effectively utilized for ratiometric fluorescence imaging to monitor exogenous Zn2+ concentrations in HeLa cells. Significantly, DCSH is capable of monitoring elevated levels of Zn2+ ion during apoptosis induced by L-Buthionine sulfoximine (BSO).
Collapse
Affiliation(s)
- Zetong Meng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Ting Yu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Zhuobin Shang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
31
|
Shi D, Yang Y, Tong L, Zhang L, Yang F, Tao J, Zhao M. A Novel Benzothiazole-Based Fluorescent AIE Probe for the Detection of Hydrogen Peroxide in Living Cells. Molecules 2024; 29:5181. [PMID: 39519822 PMCID: PMC11547549 DOI: 10.3390/molecules29215181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
A benzothiazole-based derivative aggregation-induced emission (AIE) fluorescent 'turn-on' probe named 2-(2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)benzo[d]thiazole (probe BT-BO) was developed and synthesized successfully for detecting hydrogen peroxide (H2O2) in living cells. The synthesis method of probe BT-BO is facile. Probe BT-BO demonstrates a well-resolved emission peak at 604 nm and the ability to prevent the interference of reactive oxygen species (ROS), various metal ions and anion ions, and good sensitivity. Additionally, the probe boasts impressive pH range versatility, a fast response time to H2O2 and low cytotoxicity. Finally, probe BT-BO was applied successfully to image A549 and Hep G2 cells to monitor both exogenous and endogenous H2O2.
Collapse
Affiliation(s)
- Dezhi Shi
- The Cultivation Base of Shanxi Key Laboratory of Mining Area Ecological Restoration and Solid Wastes Utilization, Shanxi Institute of Technology, Yangquan 045000, China; (D.S.); (F.Y.); (J.T.)
- Yangquan Technology Innovation Center of Carbon Dioxide Capture, Utilization and Storage, Shanxi Institute of Technology, Yangquan 045000, China
| | - Yulong Yang
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Y.); (L.T.); (L.Z.)
| | - Luan Tong
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Y.); (L.T.); (L.Z.)
| | - Likang Zhang
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Y.); (L.T.); (L.Z.)
| | - Fengqing Yang
- The Cultivation Base of Shanxi Key Laboratory of Mining Area Ecological Restoration and Solid Wastes Utilization, Shanxi Institute of Technology, Yangquan 045000, China; (D.S.); (F.Y.); (J.T.)
| | - Jiali Tao
- The Cultivation Base of Shanxi Key Laboratory of Mining Area Ecological Restoration and Solid Wastes Utilization, Shanxi Institute of Technology, Yangquan 045000, China; (D.S.); (F.Y.); (J.T.)
| | - Mingxia Zhao
- The Cultivation Base of Shanxi Key Laboratory of Mining Area Ecological Restoration and Solid Wastes Utilization, Shanxi Institute of Technology, Yangquan 045000, China; (D.S.); (F.Y.); (J.T.)
- Yangquan Technology Innovation Center of Carbon Dioxide Capture, Utilization and Storage, Shanxi Institute of Technology, Yangquan 045000, China
| |
Collapse
|
32
|
Plaza-Pedroche R, Fernández-Liencres MP, Jiménez-Pulido SB, Illán-Cabeza NA, Achelle S, Navarro A, Rodríguez-López J. Tunable Emission and Structural Insights of 6-Arylvinyl-2,4-bis(2'-hydroxyphenyl)pyrimidines and Their O ∧N ∧O-Chelated Boron Complexes. ACS APPLIED OPTICAL MATERIALS 2024; 2:2051-2066. [PMID: 39479179 PMCID: PMC11524413 DOI: 10.1021/acsaom.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
In this study, we present the synthesis and photophysical characteristics of a novel series of 6-arylvinyl-2,4-bis(2'-hydroxyphenyl)pyrimidines. These compounds exhibit nonemissive properties attributed to the potential occurrence of a excited-state intramolecular proton transfer process from the OH groups to the nitrogen atoms of the pyrimidine ring. The introduction of an acid for protonation of the pyrimidine ring results in a significant enhancement of the fluorescence response, easily perceptible to the naked eye. Notably, these molecules serve as intriguing rigid O∧N∧O ligands for boron chelation. The incorporation of boron atoms promotes structural planarity, increases rigidity, and successfully restores fluorescence in both solution and the solid state. Moreover, the photoluminescence was found to be strongly influenced by the nature of the end groups on the arylvinylene fragment, allowing for the modulation of the emission color and covering the optical spectrum from blue to red. Strong emission solvatochromism was observed in various solvents, a finding that supports the formation of intramolecular charge-separated emitting states, particularly when terminal electron-donating groups are present in the structure. X-ray diffraction analysis enables the determination of inter- and intramolecular interactions, as well as molecular packing structures, aiding in the rationalization of distinct luminescent behaviors in the solid state. All experimental findings are elucidated through extensive density functional theory (DFT) and time-dependent DFT calculations.
Collapse
Affiliation(s)
- Rodrigo Plaza-Pedroche
- Universidad
de Castilla-La Mancha, Área de Química Orgánica,
Facultad de Ciencias y Tecnologías Químicas, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - M. Paz Fernández-Liencres
- Departamento
de Química Física y Analítica, Facultad de Ciencias
Experimentales, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Sonia B. Jiménez-Pulido
- Departamento
de Química Inorgánica y Orgánica, Facultad de
Ciencias Experimentales, Universidad de
Jaén, Campus Las
Lagunillas, 23071 Jaén, Spain
| | - Nuria A. Illán-Cabeza
- Departamento
de Química Inorgánica y Orgánica, Facultad de
Ciencias Experimentales, Universidad de
Jaén, Campus Las
Lagunillas, 23071 Jaén, Spain
| | - Sylvain Achelle
- Univ.
Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR
6226, F-35000 Rennes, France
| | - Amparo Navarro
- Departamento
de Química Física y Analítica, Facultad de Ciencias
Experimentales, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Julián Rodríguez-López
- Universidad
de Castilla-La Mancha, Área de Química Orgánica,
Facultad de Ciencias y Tecnologías Químicas, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| |
Collapse
|
33
|
Huang L, Nishimura Y. Recognition of specific monosaccharides by fluorescence change through the suppression effect on excited-state intermolecular proton transfer reactions. J Mater Chem B 2024; 12:10616-10623. [PMID: 39314207 DOI: 10.1039/d4tb01745e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Pyrene-urea derivatives and acetate anions were used to investigate the excited-state intermolecular proton transfer (ESPT) reaction, where a molecule undergoes intermolecular proton transfer to form a tautomer species in the excited state. Since ESPT occurs when intermolecular hydrogen bonds exist between urea compounds and acetate species, we hypothesize that this reaction might be influenced by compounds with hydroxy groups. In this study, cyclodextrins, saccharides, and ethanol were examined to assess the effects of hydroxy groups on the ESPT reaction. After introducing various hydroxy compounds into the urea-acetate system in dimethylformamide, we observed differences in the fluorescence spectra and fluorescence decay curves. These differences indicate varying interactions between the hydroxy compounds and complexes, leading to distinct fluorescence lifetime behaviors, which makes fluorescence lifetime imaging technology particularly suitable.
Collapse
Affiliation(s)
- Leyun Huang
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
34
|
Le Dé B, Huppert S, Spezia R, Chin AW. Extending Non-Perturbative Simulation Techniques for Open-Quantum Systems to Excited-State Proton Transfer and Ultrafast Non-Adiabatic Dynamics. J Chem Theory Comput 2024; 20:8749-8766. [PMID: 39388593 DOI: 10.1021/acs.jctc.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Excited state proton transfer is an ubiquitous phenomenon in biology and chemistry, spanning from the ultrafast reactions of photobases and acids to light-driven, enzymatic catalysis and photosynthesis. However, the simulation of such dynamics involves multiple challenges, since high-dimensional, out-of-equilibrium vibronic states play a crucial role, while a fully quantum description of the proton's dissipative, real-space dynamics is also required. In this work, we extend the powerful matrix product state approach to open quantum systems (TEDOPA) to study these demanding dynamics, and also more general nonadiabatic processes that can appear in complex photochemistry subject to strong laser driving. As an illustration, we initially consider an open model of a four-level electronic system interacting with hundreds of intramolecular vibrations that drive ultrafast excited state proton transfer, as well as an explicit photonic environment that allows us to directly monitor the resulting dual fluorescence in this system. We then demonstrate how to include a continuous "reaction coordinate" of the proton transfer that allows numerically exact simulations that can be understood, visualized and interpreted in the familiar language of diabatic and adiabatic dynamics on potential surfaces, while also retaining an exact quantum treatment of dissipation and driving effects that could be used to study diverse problems in ultrafast photochemistry.
Collapse
Affiliation(s)
- Brieuc Le Dé
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Simon Huppert
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Riccardo Spezia
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 4 place Jussieu, 75005 Paris, France
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
35
|
Das B, Bhattacharyya A, Paul B, Natarajan R, Majumdar S. An elegant approach for the synthesis of multisubstituted imidazole via FeCl 3/SiO 2 catalyzed activation of acetals: a photophysical study of an imidazole-carbazole hybrid. RSC Adv 2024; 14:33512-33523. [PMID: 39439828 PMCID: PMC11495403 DOI: 10.1039/d4ra06436d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
A simple and solvent-free catalytic system was developed for the direct conversion of multisubstituted imidazoles through the reaction of acetals and benzils with ammonium acetate/amines as the source of nitrogen. The reaction occurred under mild and benign conditions using FeCl3/SiO2 as a heterogeneous catalyst without the requirement of any toxic organic solvents. The easy preparation and recyclability of the catalyst allows the reaction to be simple and highly efficient, resulting in very good yields of imidazoles. Novel imidazole-carbazole hybrid compounds were also synthesised by adopting the present methodology. Single crystal X-ray diffraction study indicated the presence of a CH⋯π supramolecular interaction that renders effective molecular packing in the solid state. The steady-state and spectro-dynamic behaviours of these hybrid molecules were investigated, and it was revealed that a solvent-dependent excimer-coupled ICT phenomenon guided excited state photophysics. Very unusual excimer lifetime was noticed in the solid state of this bis-heterocyclic compound owing to the stacking of molecules via CH⋯π interaction, as evident from the X-ray studies.
Collapse
Affiliation(s)
- Barnali Das
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| | - Arghyadeep Bhattacharyya
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| | - Bhaswati Paul
- CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700 032 India
| | - Ramalingam Natarajan
- CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700 032 India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| |
Collapse
|
36
|
He L, Li H, Tang Y, Ren TB, Yuan L. Recent advances in fluorescent probes for fatty liver imaging by detecting lipid droplets. J Mater Chem B 2024; 12:10149-10162. [PMID: 39282742 DOI: 10.1039/d4tb01741b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Fatty liver, a major health problem worldwide, is closely associated with aberrant accumulation and alteration of energy storage organelles, lipid droplets (LDs), in the disease process. Fluorescent probes with excellent optical performance, high sensitivity/selectivity and real-time monitoring have emerged as an attractive tool for the detection of LDs used in the diagnosis of fatty liver. In this review, we summarize various probes based on different response mechanisms to image LDs in the fatty liver process using different excitation imaging modes and emission wavelengths, including the visible to the near-infrared, two/three-photon, and the second near-infrared region. The perspectives and barriers associated with the reported lipid droplet (LD) probes for future development are also discussed.
Collapse
Affiliation(s)
- Long He
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Hang Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Yao Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
37
|
Yoon H, Park S, Koninti RK, Lim M. Photoexcitation Dynamics of 4-Aminopthalimide in Solution Investigated Using Femtosecond Time-Resolved Infrared Spectroscopy. Int J Mol Sci 2024; 25:11038. [PMID: 39456819 PMCID: PMC11507449 DOI: 10.3390/ijms252011038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Excited-state intramolecular proton transfer (ESIPT) reactions are crucial in photoresponsive materials and fluorescent markers. The fluorescent compound 4-aminophthalimide (4-AP) has been reported to exhibit solvent-assisted ESIPT in protic solvents, such as methanol, wherein the solvent interacts with 4-AP to form a six-membered hydrogen-bonded ring that is strengthened upon excitation. Although the controversial observation of ESIPT in 4-AP has been extensively studied, the molecular mechanism has yet to be fully explored. In this study, femtosecond infrared spectroscopy was used to investigate the dynamics of 4-AP in methanol and acetonitrile after excitation at 350 and 300 nm, which promoted 4-AP to the S1 and S2 states, respectively. The excited 4-AP in the S1 state relaxed to the ground state, while 4-AP in the S2 state relaxed via the S1 state without the occurrence of ESIPT. The enol form of 4-AP (Enol 4-AP) in the S1 state was calculated to be ~10 kcal/mol higher in energy than the keto form in the S1 state, indicating that keto-to-enol tautomerization was endergonic, ultimately resulting in no observable ESIPT for 4-AP in the S1 state. Upon the excitation of 4-AP to the S2 state, the transition to Enol-4-AP in the S1 state was found to be exergonic; however, ESIPT must compete with an internal conversion from the S2 to the S1 state. The internal S2 → S1 conversion was significantly faster than the solvent-assisted ESIPT, resulting in a negligible ESIPT for the 4-AP excited to the S2 state. The detailed excitation dynamics of 4-AP clearly reveal the molecular mechanism underlying its negligible ESIPT, despite the fact that it forms a favorable structure for solvent-assisted ESIPT.
Collapse
Affiliation(s)
| | | | | | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (S.P.); (R.K.K.)
| |
Collapse
|
38
|
Stoerkler T, Ulrich G, Retailleau P, Achelle S, Laurent AD, Jacquemin D, Massue J. Stimuli-Induced Fluorescence Switching in Azine-Containing Fluorophores Displaying Resonance-Stabilized ESIPT Emission. Chemistry 2024; 30:e202402448. [PMID: 38967476 DOI: 10.1002/chem.202402448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
This article reports the synthesis, along with structural and photophysical characterization of 2-(2'-hydroxyphenyl)benzazole derivatives functionalized with various azaheterocycles (pyridine, pyrimidine, terpyridine). These compounds show dual-state emission properties, that is intense fluorescence both in solution and in the solid-state with a range of fluorescent color going from blue to orange. Moreover, the nature of their excited state can be tuned by the presence of external stimuli such as protons or metal cations. In the absence of stimuli, these dyes show emission stemming from anionic species obtained after deprotonation (D* transition), whereas upon protonation or metal chelation, ESIPT process occurs leading to a stabilized and highly emissive K* transition. With the help of extensive ab initio calculations, we confirm that external stimuli can switch the nature of the transitions, making this series of dyes attractive candidates for the development of stimuli-responsive fluorescent ratiometric probes.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
- Present address: University of Ottawa, Department of Chemistry, D'Iorio Hall, 10 Marie Curie, Ottawa ON, Canada, K1 N 6 N5
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Pascal Retailleau
- Service de Cristallographie Structurale, ICSN-CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, Bât. 27, 91198, Gif-sur-Yvette Cedex, France
| | - Sylvain Achelle
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Adèle D Laurent
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| |
Collapse
|
39
|
Ren F, Wu X, Liu G, Ding Y. Fluorescent response mechanism based on ESIPT and TICT of novel probe H 2Q JI: A TD-DFT investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124383. [PMID: 38772177 DOI: 10.1016/j.saa.2024.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/23/2024]
Abstract
Recently, synthesized N-linked-disalicylaldehyde H2QJI probes have been used to detect heavy metal ions in the experiment conveniently. Nevertheless, there needs to be a more in-depth examination of the excited state intramolecular proton transfer (ESIPT) mechanism and photophysical properties of the probe. This work remedied it based on quantum chemistry calculations. We contained due hydrogen bond (O1-H2 ⋯ N3 and O4-H5 ⋯ O6) and then analyzed bond parameters, IR vibration spectra, and non-covalent interaction. The bond strength is enhanced under photoexcitation, and the former is significantly stronger. The calculated electron spectra are in agreement with the experimental values. The results of the S0 and S1 potential energy curves and IRC calculations also confirm the unique ESIPT behavior, which isan excited stated stepwise double proton transfer. The fluorescence, internal conversion, and intersystem crossing rate of KD molecules (twisted-, double proton transfer) were calculated respectively to reveal the radiative and non-radiative pathways. It proved that the corresponding spectra are not obtained since the electrons are mainly deactivated by the ISC (S1->T1). Furthermore, the interfragment charge transfer (IFCT) approach indicates that the molecule possesses twisted intramolecular charge transfer (TICT) characteristics, which lead to the quenching of fluorescence introduction.
Collapse
Affiliation(s)
- Fangyu Ren
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Xiaoxue Wu
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Guoqing Liu
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Yong Ding
- School of Physics, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
40
|
Ushakou D, Józefowicz M. Excitation wavelength-dependent fluorescence anisotropy of 3-hydroxyflavone: revisiting the solvation processes and high-energy state excitation in ESIPT-active compounds. Phys Chem Chem Phys 2024; 26:25029-25047. [PMID: 39301693 DOI: 10.1039/d4cp02493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
To gain a more comprehensive understanding of the phenomenon of high-fluorescence anisotropy of the normal form emission of ESIPT-active compounds in protic solvents, excitation wavelength dependence of emission anisotropy was investigated for 3-hydroxyflavone (3HF) using steady-state spectroscopic technique and quantum chemical calculations. It was shown for the first time that the anisotropy of 3HF normal form emission is characterized by significant dependence on excitation energy. Experimental results indicate that the fluorescence anisotropy of 3HF in methanol (at 20 °C) changes abruptly from about 0.18 to about 0.10 with a decrease in excitation wavelength. This spectroscopic phenomenon can be explained by two factors: (1) breaking of intermolecular solute-solvent hydrogen bonds upon photoexcitation and (2) excitation of ESIPT-active fluorophores to the second singlet state (S2). The results of quantum chemical calculations clearly indicate that specific hydrogen bonding solvation interactions can lead to the formation of 3HF-methanol complexes with larger molecular volumes than the volume of free 3HF molecule. High excitation energy can reform and break solute-solvent bonds, which leads to a decrease in molecular system volume. This results in a decrease in rotational correlation time and fluorescence anisotropy. As is known, the fluorescence lifetime of small-sized molecules is closely correlated with the conformational changes in the excited state, and in the case of ESIPT-active compounds, the lifetime of normal form emission is almost fully determined by the ultrafast ESIPT process. Therefore, although in general, fluorescence lifetime is considered independent of excitation energy, but because the timescale of ESIPT processes is of the same order as the timescale of internal conversion, in the case of ESIPT-active compounds, fluorescence lifetime changes caused by high-energy state excitation cannot be neglected. The emission anisotropy of the normal form of an ESIPT-active compound will decrease with an increase in fluorescence lifetime caused by an increase in excitation energy sufficient to excite molecules to higher electronic states. In this work, both hypotheses are discussed and verified using experimental data and quantum chemical calculations for 3HF in methanol.
Collapse
Affiliation(s)
- Dzmitryi Ushakou
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, str. Wita Stwosza 57, 80-308 Gdańsk, Poland.
- Institute of Exact and Technical Sciences, Pomeranian University in Słupsk, str. Arciszewskiego 22d, 76-200 Słupsk, Poland
| | - Marek Józefowicz
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, str. Wita Stwosza 57, 80-308 Gdańsk, Poland.
| |
Collapse
|
41
|
Pan X, Lan L, Zhang H. Flexible organic crystals with multi-stimuli-responsive CPL for broadband multicolor optical waveguides. Chem Sci 2024:d4sc05005c. [PMID: 39371458 PMCID: PMC11447684 DOI: 10.1039/d4sc05005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Flexible organic crystals, capable of transmitting light and responding to various external stimuli, are emerging as a new frontier in optoelectronic materials. They hold immense potential for applications in molecular machines, sensors, displays, and intelligent devices. Here, we report on flexible organic crystals based on single-component enantiomeric organic compounds, demonstrating multi-stimuli-responsive circularly polarized light (CPL). These crystals exhibit remarkable elasticity, responsiveness to light and acid vapors, and tunable circularly polarized optical signals. Upon exposure to acid vapors, the fluorescence of the crystals shifts from initial yellow emission to green emission, attributable to the protonation-induced inhibition of excited-state intramolecular proton transfer. Under UV irradiation, the fluorescence emission undergoes a red-shift, resulting from the molecular transformation from an enol configuration to a ketone configuration. Notably, both processes are reversible and can be restored under daylight. The integration of reversible fluorescence changes under light and acid vapors stimuli, CPL signals, and flexible optical waveguides within a single crystal paves the way for the application of organic crystals as all-organic chiral functional materials.
Collapse
Affiliation(s)
- Xiuhong Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Linfeng Lan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
42
|
Xia Z, Xu H, Huang A, Hao W, Wu D, Yin S, He H. Theoretical Investigations on the Sensing Mechanism of Dicyanoisophorone Fluorescent Probe for the Detection of Hydrogen Sulfide. J Fluoresc 2024:10.1007/s10895-024-03911-6. [PMID: 39298055 DOI: 10.1007/s10895-024-03911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024]
Abstract
As one of the biomolecules, hydrogen sulfide (H2S) has received a lot of attention. Recent studies have shown that endogenous hydrogen sulfide plays different roles in different organs in biological systems. Fluorescent probe technology has been widely adopted due to its many advantages such as low cost, simple operation, and high sensitivity. Among many probes, dicyanoisophorone fluorophore is often used in probe design for real-time detection of endogenous H2S due to the large Stokes shift and long fluorescence emission wavelength. In this paper, the fluorescence sensing mechanism of dicyanoisophorone-like probe L and its product 3 with near-infrared fluorescence emission has been theoretically investigated by using theory methods. The analysis of infrared (IR) vibration spectra and reduced density gradient (RDG) showed that the hydrogen bond of the enolic structure of product 3 was significantly enhanced in the S1 state. The spectroscopic information revealed that the emission of NIR fluorescence originated from the keto structure of the product. Finally, potential energy curves and frontier molecular orbitals diagrams showed that the fluorescence quenching phenomenon of the probe L was attributed to the photoinduced electron transfer (PET) process, whereas the product 3 generated after the detection of H2S undergoes the excited state intramolecular proton transfer (ESIPT) process.
Collapse
Affiliation(s)
- Zhicheng Xia
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Honghong Xu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Anran Huang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Wenxuan Hao
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Dongxia Wu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Haixiang He
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
43
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
44
|
Fu HR, Zhang RY, Li T, Wei CY, Liu S, Xu JY, Zhu X, Wei J, Ding QR, Ma LF. Color-tunable and white circularly polarized luminescence through confining guests into chiral MOFs. Chem Commun (Camb) 2024; 60:10212-10215. [PMID: 39206734 DOI: 10.1039/d4cc03164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, chiral metal-organic frameworks (MOFs), DCF-20 and LCF-20, were utilized as matrices for both chirality transfer and energy transfer. HBT1@MOFs and HBT2@MOFs emit excitation-dependent circularly polarized luminescence (CPL) due to excited-state intramolecular proton transfer (ESIPT). HBT1/C152/NIR@MOFs exhibit full-color and white CPL. The luminescence dissymmetry factors (glum) were significantly increased, benefiting from the efficient chirality space transfer and high luminescence efficiency.
Collapse
Affiliation(s)
- Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Ruo-Yu Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ting Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Chen-Ying Wei
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Shuang Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Jia-Yi Xu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Xueli Zhu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Jiaojiao Wei
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Qing-Rong Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| |
Collapse
|
45
|
Galicia-Badillo D, Belmonte-Vázquez JL, Rodríguez M, Rodríguez-Molina B, García-González MC. Aggregation-Induced Emission Enhancement and Solid-State Photoswitching of Crystalline Carbazole N-Salicylidene Anilines. ACS OMEGA 2024; 9:38015-38022. [PMID: 39281905 PMCID: PMC11391533 DOI: 10.1021/acsomega.4c04764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024]
Abstract
The development of fluorescent stimuli-responsive organic materials has attracted substantial interest due to their increasing optoelectronic applications. This study systematically introduces fluorine atoms on one end of carbazole-based N-salicylidene anilines 5a-5f to elucidate the impact in their solution and solid-state photophysics. The addition of fluorine atoms at one end of the molecule induced significant changes, for example, a reduction in the quantum yield (QY) fluorescence emission in solution, going from QY near unity in compound 5a (QY ∼ 100%) to a negligible emission in 5f (QY < 1%). Similarly, compound 5a showed a very strong aggregation-induced enhancement emission behavior, whereas compounds with a higher fluorine content were almost quenched. Furthermore, the crystalline solid-state photoisomerization in N-salicylidene anilines is not trivial, and only compounds with three (5e) and five fluorine atoms (5f) exhibited reversible solid-state photoisomerization under 405 nm light source irradiation. We propose that the presence of the arene-perfluoroarene interaction in the crystalline array facilitates the latter behavior. Our findings present a comprehensive study of crystal engineering for the obtention of photoswitchable crystalline materials and adjustable photophysics response, paving the way for its implementation in other systems.
Collapse
Affiliation(s)
- Dazaet Galicia-Badillo
- Instituto de Química (IQ), Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - José L Belmonte-Vázquez
- Departamento de Química Orgánica, Facultad de Química (FQ), Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México 04510, México
| | - Mario Rodríguez
- Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, CIO, A.P. 1-948, León, Guanajuato 37000, México
| | - Braulio Rodríguez-Molina
- Instituto de Química (IQ), Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - Ma Carmen García-González
- Instituto de Química (IQ), Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| |
Collapse
|
46
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
47
|
Huang W, Huang S, Fang Y, Zhu T, Chu F, Liu Q, Yu K, Chen F, Dong J, Zeng W. AI-Powered Mining of Highly Customized and Superior ESIPT-Based Fluorescent Probes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405596. [PMID: 39021325 PMCID: PMC11425259 DOI: 10.1002/advs.202405596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Excited-state intramolecular proton transfer (ESIPT) has attracted great attention in fluorescent sensors and luminescent materials due to its unique photobiological and photochemical features. However, the current structures are far from meeting the specific demands for ESIPT molecules in different scenarios; the try-and-error development method is labor-intensive and costly. Therefore, it is imperative to devise novel approaches for the exploration of promising ESIPT fluorophores. This research proposes an artificial intelligence approach aiming at exploring ESIPT molecules efficiently. The first high-quality ESIPT dataset and a multi-level prediction system are constructed that realized accurate identification of ESIPT molecules from a large number of compounds under a stepwise distinguishing from conventional molecules to fluorescent molecules and then to ESIPT molecules. Furthermore, key structural features that contributed to ESIPT are revealed by using the SHapley Additive exPlanations (SHAP) method. Then three strategies are proposed to ensure the ESIPT process while keeping good safety, pharmacokinetic properties, and novel structures. With these strategies, >700 previously unreported ESIPT molecules are screened from a large pool of 570 000 compounds. The ESIPT process and biosafety of optimal molecules are successfully validated by quantitative calculation and experiment. This novel approach is expected to bring a new paradigm for exploring ideal ESIPT molecules.
Collapse
Affiliation(s)
- Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410083, P. R. China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410083, P. R. China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410083, P. R. China
| | - Tianyu Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410083, P. R. China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410083, P. R. China
| | - Qianhui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410083, P. R. China
| | - Kunqian Yu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410083, P. R. China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410083, P. R. China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
48
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
49
|
Tatsi E, Nitti A, Pasini D, Griffini G. Aggregation-induced emissive nanoarchitectures for luminescent solar concentrators. NANOSCALE 2024; 16:15502-15514. [PMID: 39073376 DOI: 10.1039/d4nr01910e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aggregation-induced emission (AIE), the phenomenon by which selected luminophores undergo the enhancement of emission intensity upon aggregation, has demonstrated potential in materials and biomaterials science, and in particular in those branches for which spectral management in the solid state is of fundamental importance. Its development in the area of luminescent spectral conversion devices like luminescent solar concentrators (LSCs) is instead still in its infancy. This account aims at summarizing relevant contributions made in this field so far, with a special emphasis on the design of molecular and macromolecular architectures capable of extending their spectral breadth to the deep-red (DR) and the near-infrared (NIR) wavelengths. Because of the many prospective advantages characterizing these spectral regions in terms of photon flux density and human-eye perception, it is anticipated that further development in the design, synthesis and engineering of advanced molecular and macromolecular DR/NIR-active AIE luminophores will enable faster and easier integration of LSCs into the built environment as highly transparent, active elements for unobtrusive light-to-electricity conversion.
Collapse
Affiliation(s)
- Elisavet Tatsi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 10, Pavia 27100, Italy.
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 10, Pavia 27100, Italy.
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
50
|
Zhang Z, Fang H. Theoretical Study on the Effect of Cyano- and Dimethylamine-Group on ESIPT Behavior and Luminescent Properties of Novel Flavone-Based Fluorophore. J Fluoresc 2024:10.1007/s10895-024-03914-3. [PMID: 39167341 DOI: 10.1007/s10895-024-03914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Recently, a new fluorescent senor based on 3-hydroxy-2-(naphthalen-2-yl)-4 H-chromen-4-one (HFN) for selective detection of H2Sn was obtained in the experiment (Spectrochim. Acta Part A 271(2022)120962). Based on HFN, three new compounds (HFN1, HFN2 and HFN3) are designed to explore the influences of dimethylamine (-N(CH3)2) and cyano (-CN) groups on the excited-state intramolecular proton transfer (ESIPT) process and luminescent features of HFN. After analyzing the mainly geometrical parameters, electron densities and infrared spectra, we discovered that the intramolecular hydrogen bonds (IHBs) in the target molecules become stronger upon photo-excitation. Introducing -CN or/and -N(CH3)2 groups into HFN indeed influences its ESIPT behavior and luminescent properties. The -N(CH3)2 group enhances IHB, reduces ESIPT barrier and caused absorption/ fluorescence (at T form) peak blue-shift, while the -CN group shows a counterproductive effect. The coincidence of -N(CH3)2 and -CN made the absorption/fluorescent wavelength of HFN red-shift more than single -N(CH3)2 or -CN group does.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Hua Fang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|