1
|
Liu Z, Ling JL, Liu YY, Zheng BH, Wu CD. Incorporation of enzyme-mimic species in porous materials for the construction of porous biomimetic catalysts. Chem Commun (Camb) 2024; 60:12964-12976. [PMID: 39415700 DOI: 10.1039/d4cc04223a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The unique catalytic properties of natural enzymes have inspired chemists to develop biomimetic catalyst platforms for the intention of retaining the unique functions and solving the application limitations of enzymes, such as high costs, instability and unrecyclable ability. Porous materials possess unique advantages for the construction of biomimetic catalysts, such as high surface areas, thermal stability, permanent porosity and tunability. These characteristics make them ideal porous matrices for the construction of biomimetic catalysts by immobilizing enzyme-mimic active sites inside porous materials. The developed porous biomimetic catalysts demonstrate high activity, selectivity and stability. In this feature article, we categorize and discuss the recently developed strategies for introducing enzyme-mimic active species inside porous materials, which are based on the type of employed porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), molecular sieves, porous metal silicate (PMS) materials and porous carbon materials. The advantages and limitations of these porous materials-based biomimetic catalysts are discussed, and the challenges and future directions in this field are also highlighted.
Collapse
Affiliation(s)
- Zikun Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Jia-Long Ling
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yang-Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Bu-Hang Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
2
|
Guo Y, Tai W, Zhao M, Chen X, Chai Y, Wu G, Li L. Synthesis of self-pillared pentasil zeolites without organic templates and seeds. NANOSCALE 2024. [PMID: 39494461 DOI: 10.1039/d4nr03824j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Self-pillared pentasil (SPP) zeolites have received considerable interest due to their distinctive intergrowth structure, while the precise process and mechanism for the formation of SPP zeolites remain obscure. Herein, SPP zeolites (ZSM-5) have been successfully synthesized by pre-aging an Al-rich gel without employing any organic templates or seeds for the first time. The as-synthesized SPP zeolites possess a notably high external surface area while the micropores for Ar adsorption are partially blocked by excess Na+, which can be fully recovered by Mg2+ or H+ exchange. The crystallization process is monitored and the impacts of synthesis parameters are investigated. The results show that self-pillaring originates from the partial lattice distortion at the intersections of nanosheets, offering a new insight into the self-pillaring process. Typically, with decreasing SiO2/Al2O3 ratio, more crossovers could be observed in the crystals, hinting that self-pillaring predominately occurs at the (101) plane of twins in the ZSM-5 precursor due to Al-rich lattice distortion. Finally, in the catalytic cracking of n-heptane, H-SPP zeolites exhibit superior performance to commercial H-ZSM-5 zeolites due to their abundant Brønsted acid sites arising from a low framework SiO2/Al2O3 ratio of ∼21 and the short diffusion path originating from the house-of-cards structure.
Collapse
Affiliation(s)
- Yuliang Guo
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenshu Tai
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingyu Zhao
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuchao Chai
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Guangjun Wu
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Landong Li
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Ezenwa S, Gounder R. Advances and challenges in designing active site environments in zeolites for Brønsted acid catalysis. Chem Commun (Camb) 2024; 60:12118-12143. [PMID: 39344420 DOI: 10.1039/d4cc04728a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Zeolites contain proton active sites in diverse void environments that stabilize the reactive intermediates and transition states formed in converting hydrocarbons and oxygenates to chemicals and energy carriers. The catalytic diversity that exists among active sites in voids of varying sizes and shapes, even within a given zeolite topology, has motivated research efforts to position and quantify active sites within distinct voids (synthesis-structure) and to link active site environment to catalytic behavior (structure-reactivity). This Feature Article describes advances and challenges in controlling the position of framework Al centers and associated protons within distinct voids during zeolite synthesis or post-synthetic modification, in identifying and quantifying distinct active site environments using characterization techniques, and in determining the influence of active site environments on catalysis. During zeolite synthesis, organic structure directing agents (SDAs) influence Al substitution at distinct lattice positions via intermolecular interactions (e.g., electrostatics, hydrogen bonding) that depend on the size, structure, and charge distribution of organic SDAs and their mobility when confined within zeolitic voids. Complementary post-synthetic strategies to alter intrapore active site distributions include the selective removal of protons by differently-sized titrants or unreactive organic residues and the selective exchange of framework heteroatoms of different reactivities, but remain limited to certain zeolite frameworks. The ability to identify and quantify active sites within distinct intrapore environments depends on the resolution with which a given characterization technique can distinguish Al T-site positions or proton environments in a given zeolite framework. For proton sites in external unconfined environments, various (post-)synthetic strategies exist to control their amounts, with quantitative methods to distinguish them from internal sites that largely depend on using stoichiometric or catalytic probes that only interact with external sites. Protons in different environments influence reactivity by preferentially stabilizing larger transition states over smaller precursor states and influence selectivity by preferentially stabilizing or destabilizing competing transition states of varying sizes that share a common precursor state. We highlight opportunities to address challenges encountered in the design of active site environments in zeolites by closely integrating precise (post-)synthetic methods, validated characterization techniques, well-defined kinetic probes, and properly calibrated theoretical models. Further advances in understanding the molecular details that underlie synthesis-structure-reactivity relationships for active site environments in zeolite catalysis can accelerate the predictive design of tailored zeolites for desired catalytic transformations.
Collapse
Affiliation(s)
- Sopuruchukwu Ezenwa
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Rajamani Gounder
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Fu W, Hu W, Hu C, Wang Y, Ai J, Wang Z, Wang C, Yang W. Realizing the Direct Synthesis of High Silica IWS Zeolite with Improved Hydrothermal Stability. Inorg Chem 2024; 63:16908-16917. [PMID: 39190605 DOI: 10.1021/acs.inorgchem.4c02849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Direct synthesis of germanosilicate zeolites with low Ge content and improved hydrothermal stability is a great challenge. Herein, we successfully achieve the direct synthesis of IWS zeolite with a Si/Ge ratio higher than 4 for the first time. High silica IWS zeolites can be prepared in a wide range of Si/Ge ratios (4-16) by utilizing bulky 1,3-bis(1-adamantyl)-imidazolium (BAdaI+) as an efficient organic structure-directing agent from the concentrated synthesis gel under fluoride conditions. It is proven by a series of characterizations that Ge atoms preferentially occupy the double-four-ring (D4R) units. Theoretical calculations reveal the preferential interactions of guest organic structure-directing agents (OSDAs) and host IWS zeolites with different Si/Ge ratios. The introduction of more Ge atoms cannot improve the host-guest interaction when the BAdaI+ molecule is accommodated within the nanopores of IWS zeolite compared to other OSDAs. The obtained IWS zeolite shows an extremely high specific surface area (905 m2/g) and pore volume (1.31 cm3/g). Due to the low Ge content, IWS zeolite exhibits outstanding hydrothermal stability and experiences high temperature steam heating with no loss of crystallinity and only a slight loss of microporosity.
Collapse
Affiliation(s)
- Wenhua Fu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology Co., Ltd., SINOPEC, Shanghai 201208, China
| | - Wende Hu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology Co., Ltd., SINOPEC, Shanghai 201208, China
| | - Chao Hu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology Co., Ltd., SINOPEC, Shanghai 201208, China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology Co., Ltd., SINOPEC, Shanghai 201208, China
| | - Jing Ai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology Co., Ltd., SINOPEC, Shanghai 201208, China
| | - Zhendong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology Co., Ltd., SINOPEC, Shanghai 201208, China
| | - Chuanming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology Co., Ltd., SINOPEC, Shanghai 201208, China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology Co., Ltd., SINOPEC, Shanghai 201208, China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Liu Y, Dai W, Zheng J, Du Y, Wang Q, Hedin N, Qin B, Li R. Selective and Controllable Cracking of Polyethylene Waste by Beta Zeolites with Different Mesoporosity and Crystallinity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404426. [PMID: 38976554 PMCID: PMC11425912 DOI: 10.1002/advs.202404426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Indexed: 07/10/2024]
Abstract
Waste plastics bring about increasingly serious environmental challenges, which can be partly addressed by their interconversion into valuable compounds. It is hypothesized that the porosity and acidity of a zeolite-based catalyst will affect the selectivity and effectiveness, enabling a controllable and selective conversion of polyethylene (PE) into gas-diesel or lubricating base oil. A series of embryonic, partial- and well-crystalline zeolites beta with adjustable porosity and acidity are prepared from mesoporous SBA-15. The catalysts and catalytic systems are studied with nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and adsorption kinetics and catalytic reactions. The adjustable porosity and acidity of zeolite-beta-based catalysts achieve a controllable selectivity toward gas-diesel or lubricating base oil for PE cracking. With a catalyst with mesopores and appropriate acid sites, a fast escape and reduced production of cracking of intermediates are observed, leading to a significant fraction (88.7%) of lubricating base oil. With more micropores, a high acid density, and strong acid strength, PE is multiply cracked into low carbon number hydrocarbons. The strong acid center of the zeolite is confirmed to facilitate significantly the activation of hydrogen (H2), and, an in situ ammonia poisoning strategy can significantly inhibit hydrogen transfer and effectively regulate the product distribution.
Collapse
Affiliation(s)
- Yanchao Liu
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Weijiong Dai
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Jiajun Zheng
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Yanze Du
- SINOPEC Dalian Research Institute of Petroleum & Petrochemicals Co., LtdDalian116045China
| | - Quanhua Wang
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Niklas Hedin
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐10691Sweden
| | - Bo Qin
- SINOPEC Dalian Research Institute of Petroleum & Petrochemicals Co., LtdDalian116045China
| | - Ruifeng Li
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| |
Collapse
|
6
|
Resende K, Zhao R, Liu Y, Baráth E, Lercher JA. Impact of Sn Lewis Acid Sites on the Dehydration of Cyclohexanol. ACS Catal 2024; 14:11741-11748. [PMID: 39114088 PMCID: PMC11301620 DOI: 10.1021/acscatal.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
The impact of Sn on the concentration and strength of acid sites in Al containing zeolites with MFI topology and their catalytic activity for the dehydration of cyclohexanol in the aqueous phase has been investigated. The materials maintain constant Al concentrations and consequently Bro̷nsted acid site (BAS) concentrations, while exhibiting an increasing concentration of Sn Lewis acid sites (LAS). The presence of water alters LAS(Sn), leading to weak BAS(Sn) that increases the concentration of water in the zeolite micropore, while leaving the rate of dehydration of cyclohexanol unchanged. The TOF increases with the concentration of BAS(Al) in close contact with framework LAS(Sn), referred to as BAS(Pair). The increase in the Arrhenius pre-exponential factor, without affecting the activation barrier (E a), leads to the hypothesis that the proximity of both sites allows for a later transition state induced by the polarization of the C-O bond, leading in turn to a higher transition entropy.
Collapse
Affiliation(s)
- Karen
A. Resende
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Ruixue Zhao
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Yue Liu
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Eszter Baráth
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Johannes A. Lercher
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
7
|
Yuan EH, Han R, Deng JY, Zhou W, Zhou A. Acceleration of Zeolite Crystallization: Current Status, Mechanisms, and Perspectives. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29521-29546. [PMID: 38830265 DOI: 10.1021/acsami.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Zeolites are important classes of crystalline materials and possess well-defined channels and cages with molecular dimensions. They have been extensively employed as heterogeneous catalysts and gas adsorbents due to their relatively large specific surface areas, high pore volumes, compositional flexibility, definite acidity, and hydrothermal stability. The zeolite synthesis normally undergoes high-temperature hydrothermal treatments with a relatively long crystallization time, which exhibits low synthesis efficiency and high energy consumption. Various strategies, e.g., modulation of the synthesis gel compositions, employment of special silica/aluminum sources, addition of seeds, fluoride, hydroxyl (·OH) free radical initiators, and organic additives, regulation of the crystallization conditions, development of new approaches, etc., have been developed to overcome these obstacles. And, these achievements make prominent contributions to the topic of acceleration of the zeolite crystallization and promote the fundamental understanding of the zeolite formation mechanism. However, there is a lack of the comprehensive summary and analysis on them. Herein, we provide an overview of the recent achievements, highlight the significant progress in the past decades on the developments of novel and remarkable strategies to accelerate the crystallization of zeolites, and basically divide them into three main types, i.e., chemical methods, physical methods, and the derived new approaches. The principles/acceleration mechanisms, effectiveness, versatility, and degree of reality for the corresponding approaches are thoroughly discussed and summarized. Finally, the rational design of the prospective strategies for the fast synthesis of zeolites is commented on and envisioned. The information gathered here is expected to provide solid guidance for developing a more effective route to improve the zeolite crystallization and obtain the functional zeolite-based materials with more shortened durations and lowered cost and further promote their applications.
Collapse
Affiliation(s)
- En-Hui Yuan
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Rui Han
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jun-Yu Deng
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Wenwu Zhou
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Anning Zhou
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
8
|
Khan O, Anjikar ND, Nalabothu MK, Dunn ME, Sweilem WBI, Yang S. The Synthesis of Amino-Acid-Anchored Two-Dimensional Silicoaluminophosphates and Congo Red Adsorption Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10526-10533. [PMID: 38709572 DOI: 10.1021/acs.langmuir.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Two-dimensional (2D) materials with nanometer thickness have the advantage of a large specific surface area and excellent surface accessibility. They have great potential for adsorption, catalysis, and many other applications. 2D zeolitic silicoaluminophosphates (SAPOs) can be synthesized through a dual structure directing agent (SDA) strategy. But the materials have been primarily used in their organic-free form. In this work, we demonstrate that the same synthesis strategy is effective for developing amino-acid-anchored 2D SAPOs through a one-step synthesis. Because of the addition of amino acids, the surficial amino and carboxylic groups serve as active sites for adsorption and catalysis. Congo red adsorption is used to evaluate the potential of using the organic functional groups as active adsorption sites. The 2D SAPO materials have demonstrated excellent Congo red removal efficiency with close to complete removal for certain concentrations. The effects of the amino acid concentration and hydrothermal synthesis time on material morphology development will be discussed. Thorough characterization by SEM, TEM, FTIR, XRD, and nitrogen adsorption has been done to reveal the properties of the amino-acid-anchored 2D SAPOs.
Collapse
Affiliation(s)
- Obaid Khan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Ninad D Anjikar
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Mohan K Nalabothu
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Madelyne E Dunn
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Ward B I Sweilem
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Shaowei Yang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States
| |
Collapse
|
9
|
Erlebach A, Šípka M, Saha I, Nachtigall P, Heard CJ, Grajciar L. A reactive neural network framework for water-loaded acidic zeolites. Nat Commun 2024; 15:4215. [PMID: 38760371 PMCID: PMC11101627 DOI: 10.1038/s41467-024-48609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Under operating conditions, the dynamics of water and ions confined within protonic aluminosilicate zeolite micropores are responsible for many of their properties, including hydrothermal stability, acidity and catalytic activity. However, due to high computational cost, operando studies of acidic zeolites are currently rare and limited to specific cases and simplified models. In this work, we have developed a reactive neural network potential (NNP) attempting to cover the entire class of acidic zeolites, including the full range of experimentally relevant water concentrations and Si/Al ratios. This NNP has the potential to dramatically improve sampling, retaining the (meta)GGA DFT level accuracy, with the capacity for discovery of new chemistry, such as collective defect formation mechanisms at the zeolite surface. Furthermore, we exemplify how the NNP can be used as a basis for further extensions/improvements which include data-efficient adoption of higher-level (hybrid) references via Δ-learning and the acceleration of rare event sampling via automatic construction of collective variables. These developments represent a significant step towards accurate simulations of realistic catalysts under operando conditions.
Collapse
Affiliation(s)
- Andreas Erlebach
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| | - Martin Šípka
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
- Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75, Prague, Czech Republic
| | - Indranil Saha
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Christopher J Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| |
Collapse
|
10
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
11
|
Zhang P, Zhuang J, Yu J, Guan Y, Zhu X, Yang F. Disinfectant-Assisted Preparation of Hierarchical ZSM-5 Zeolite with Excellent Catalytic Stabilities in Propane Aromatization. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:802. [PMID: 38727396 PMCID: PMC11085285 DOI: 10.3390/nano14090802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
A series of quaternary ammonium or phosphonium salts were applied as zeolite growth modifiers in the synthesis of hierarchical ZSM-5 zeolite. The results showed that the use of methyltriphenylphosphonium bromide (MTBBP) could yield nano-sized hierarchical ZSM-5 zeolite with a "rice crust" morphology feature, which demonstrates a better catalytic performance than other disinfect candidates. It was confirmed that the addition of MTBBP did not cause discernable adverse effects on the microstructures or acidities of ZSM-5, but it led to the creation of abundant meso- to marco- pores as a result of aligned tiny particle aggregations. Moreover, the generation of the special morphology was believed to be a result of the coordination and competition between MTBBP and Na+ cations. The as-synthesized hierarchical zeolite was loaded with Zn and utilized in the propane aromatization reaction, which displayed a prolonged lifetime (1430 min vs. 290 min compared with conventional ZSM-5) and an enhanced total turnover number that is four folds of the traditional one, owing to the attenuated hydride transfer reaction and slow coking rate. This work provides a new method to alter the morphological properties of zeolites with low-cost disinfectants, which is of great potential for industrial applications.
Collapse
Affiliation(s)
- Peng Zhang
- Engineering Research Center of Large-Scale Reactor Engineering and Technology, East China University of Science & Technology, Ministry of Education, Shanghai 200237, China; (P.Z.)
| | - Jianguo Zhuang
- Engineering Research Center of Large-Scale Reactor Engineering and Technology, East China University of Science & Technology, Ministry of Education, Shanghai 200237, China; (P.Z.)
| | - Jisheng Yu
- Engineering Research Center of Large-Scale Reactor Engineering and Technology, East China University of Science & Technology, Ministry of Education, Shanghai 200237, China; (P.Z.)
| | - Yingjie Guan
- Engineering Research Center of Large-Scale Reactor Engineering and Technology, East China University of Science & Technology, Ministry of Education, Shanghai 200237, China; (P.Z.)
| | - Xuedong Zhu
- Engineering Research Center of Large-Scale Reactor Engineering and Technology, East China University of Science & Technology, Ministry of Education, Shanghai 200237, China; (P.Z.)
| | - Fan Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201208, China
| |
Collapse
|
12
|
Gao S, Wang B, Chen F, He G, Zhang T, Li L, Li J, Zhou Y, Feng B, Mei D, Yu J. Confinement of CsPbBr 3 Perovskite Nanocrystals into Extra-large-pore Zeolite for Efficient and Stable Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202319996. [PMID: 38316641 DOI: 10.1002/anie.202319996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
Metal halide perovskites (MHPs), renowned for their outstanding optoelectronic properties, hold significant promise as photocatalysts for hydrogen evolution reaction (HER). However, the low stability and insufficient exposure of catalytically active sites of bulky MHPs seriously impair their catalytic efficiency. Herein, we utilized an extra-large-pore zeolite ZEO-1 (JZO) as a host to confine and stabilize the CsPbBr3 nanocrystals (3.4 nm) for boosting hydrogen iodide (HI) splitting. The as-prepared CsPbBr3@ZEO-1 featured sufficiently exposed active sites, superior stability in acidic media, along with intrinsic extra-large pores of ZEO-1 that were favorable for molecule/ion adsorption and diffusion. Most importantly, the unique nanoconfinement effect of ZEO-1 led to the narrowing of the band gap of CsPbBr3, allowing for more efficient light utilization. As a result, the photocatalytic HER rate of the as-prepared CsPbBr3@ZEO-1 photocatalyst was increased to 1734 μmol ⋅ h-1 ⋅ g-1 (CsPbBr3) under visible light irradiation compared with bulk CsPbBr3 (11 μmol ⋅ h-1 ⋅ g-1 (CsPbBr3)), and the long-term durability (36 h) can be achieved. Furthermore, Pt was incorporated with well-dispersed CsPbBr3 nanocrystals into ZEO-1, resulting in a significant enhancement in activity (4826 μmol ⋅ h-1 ⋅ g-1 (CsPbBr3)), surpassing most of the Pt-integrated perovskite-based photocatalysts. Density functional theory (DFT) calculations and charge-carrier dynamics investigation revealed that the dramatically boosted photocatalytic performance of Pt/CsPbBr3@ZEO-1 could be attributed to the promotion of charge separation and transfer, as well as to the substantially lowered energy barrier for HER. This work highlights the advantage of extra-large-pore zeolites as the nanoscale platform to accommodate multiple photoactive components, opening up promising prospects in the design and exploitation of novel zeolite-confined photocatalysts for energy harvesting and storage.
Collapse
Affiliation(s)
- Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| | - Feijian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| | - Guangyuan He
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, 300387, Tianjin, China
| | - Tianjun Zhang
- College of Chemistry and Materials Science, Hebei University, 071002, Baoding, China
| | - Lin Li
- Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yida Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Binyao Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Donghai Mei
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, 300387, Tianjin, China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| |
Collapse
|
13
|
Yang Y, Sun Y, Lu G, Gao W, Yang T. From Lewis Acid to Lewis Base by La 3+-to-Y 3+ Substitution in α-YB 5O 9: Local Structure Modification Induced Lewis Basicity. J Phys Chem Lett 2024; 15:3554-3558. [PMID: 38526310 DOI: 10.1021/acs.jpclett.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Different from the common perspective of average structure, we propose that the locally elongated metal-oxygen bonds induced by La3+-to-Y3+ substitution to a Lewis acid α-YB5O9 generate medium-strength basic sites. Experimentally, NH3- and CO2-TPD experiments prove that the La3+ doping of α-Y1-xLaxB5O9 (0 ≤ x ≤ 0.24) results in the emergence of new medium-strength basic sites and the increasing La3+ concentration modifies the number, not the strength, of the acidic and basic sites. The catalytic IPA conversion exhibits a reversal of the product selectivity, i.e., from 93% of propylene for α-YB5O9 to ∼90% of acetone for α-Y0.76La0.24B5O9, which means the La3+ doping gradually turns the solid from a Lewis acid to a Lewis base. Besides, α-Y0.76RE0.24B5O9 (RE = Ce, Eu, Gd, Tm) compounds were prepared to consolidate the above conjecture, where the acetone selectivity exhibits a linear dependence on the ionic radius (or electronegativity). This work suggests that the substitution-induced local structure change deserves more attention.
Collapse
Affiliation(s)
- Yao Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yurong Sun
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Guangxiang Lu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Wenliang Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
14
|
Zhang Y, Tang K, Bao X. Computational insights into the zeolite-supported gold nanocluster-catalyzed ethanol dehydrogenation to acetaldehyde. Phys Chem Chem Phys 2024; 26:9593-9600. [PMID: 38465799 DOI: 10.1039/d3cp05372e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Zeolite-supported gold nanoclusters play increasingly important roles in heterogeneous catalysis and exhibit unique catalytic properties for ethanol dehydrogenation to acetaldehyde. Nevertheless, the reaction mechanism and potential roles of the zeolite-encapsulated gold nanoclusters during the catalytic process remain unclear. Herein, computational studies were carried out to gain mechanistic insights into ethanol dehydrogenation to acetaldehyde under both aerobic and anaerobic conditions catalyzed by a silicalite-1 zeolite-encapsulated Au3 cluster cation (Au3+-S1). The presence of O2 can significantly promote the ethanol dehydrogenation catalyzed by Au3+-S1. A feasible mechanistic pathway could be initiated via the O2 induced H-atom transfer (HAT) step from the hydrogen of the hydroxyl group to afford ethoxy and OOH radical species. Subsequently, the OOH induced second HAT from α-C-H of the ethoxy intermediate could follow to afford the acetaldehyde product. Moreover, the possible confinement and stabilization effect of the zeolite channels on the ethanol dehydrogenation reaction was discussed.
Collapse
Affiliation(s)
- Yi Zhang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| | - Kangjian Tang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
15
|
Veselý O, Shamzhy M, Roth WJ, Morris RE, Čejka J. Controlling Crystal Morphology of Anisotropic Zeolites with Elemental Composition. CRYSTAL GROWTH & DESIGN 2024; 24:2406-2414. [PMID: 38525100 PMCID: PMC10958493 DOI: 10.1021/acs.cgd.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
The morphology of zeolite crystals strongly affects their textural, catalytic, and mechanical attributes. However, controlling zeolite crystal morphology without using modifiers or structure-directing agents remains a challenging task because of our limited understanding of the relationships between zeolite crystal shape, crystallization mechanism, and composition of the starting synthesis mixture. In this study, we aimed at developing a general method for controlling the morphology of zeolites by assessing the impact of the Si/T molar ratio of the synthesis gel on the growth rate of zeolite crystals in various crystallographic directions and on the final crystal morphology of the UTL germanosilicate with a 2D system of intersecting 14- and 12-ring pores. Our results showed that flat UTL crystals progressively thicken with the Si/Ge molar ratio, demonstrating that Ge concentration controls the relative rate of crystal growth in the perpendicular direction to the pore system. The morphology of other zeolites and zeotypes with an anisotropic structure, including AFI (12R), IFR (12R), MWW (10-10R), and IWW (12-10-8R), can also be predicted based on their Si/T ratio, suggesting a systematic pattern across zeolite structures and in a wide range of zeolite framework elements. Combined, these findings introduce a facile and cost-efficient method for directly controlling crystal morphology of zeolites with anisotropic structures with a high potential for scale-up while providing further insights into the role of elemental composition in zeolite crystal growth.
Collapse
Affiliation(s)
- Ondřej Veselý
- Faculty
of Sciences, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Mariya Shamzhy
- Faculty
of Sciences, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Wiesław J. Roth
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Russell E. Morris
- EaStChem
School of Chemistry, University of St. Andrews, North Haugh, Fife, St. Andrews KY16 9ST, U.K.
| | - Jiří Čejka
- Faculty
of Sciences, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
16
|
Gomes GJ, Zalazar MF, Padilha JC, Costa MB, Bazzi CL, Arroyo PA. Unveiling the mechanisms of carboxylic acid esterification on acid zeolites for biomass-to-energy: A review of the catalytic process through experimental and computational studies. CHEMOSPHERE 2024; 349:140879. [PMID: 38061565 DOI: 10.1016/j.chemosphere.2023.140879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
In recent years, there has been significant interest from industrial and academic areas in the esterification of carboxylic acids catalyzed by acidic zeolites, as it represents a sustainable and economically viable approach to producing a wide range of high-value-added products. However, there is a lack of comprehensive reviews that address the intricate reaction mechanisms occurring at the catalyst interface at both the experimental and atomistic levels. Therefore, in this review, we provide an overview of the esterification reaction on acidic zeolites based on experimental and theoretical studies. The combination of infrared spectroscopy with atomistic calculations and experimental strategies using modulation excitation spectroscopy techniques combined with phase-sensitive detection is presented as an approach to detecting short-lived intermediates at the interface of zeolitic frameworks under realistic reaction conditions. To achieve this goal, this review has been divided into four sections: The first is a brief introduction highlighting the distinctive features of this review. The second addresses questions about the topology and activity of different zeolitic systems, since these properties are closely correlated in the esterification process. The third section deals with the mechanisms proposed in the literature. The fourth section presents advances in IR techniques and theoretical calculations that can be applied to gain new insights into reaction mechanisms. Finally, this review concludes with a subtle approach, highlighting the main aspects and perspectives of combining experimental and theoretical techniques to elucidate different reaction mechanisms in zeolitic systems.
Collapse
Affiliation(s)
- Glaucio José Gomes
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada Del Nordeste Argentino, (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Del Nordeste (CONICET-UNNE), Avenida Libertad 5460, 3400, Corrientes, Argentina; Laboratório de Catálise Heterogênea e Biodiesel (LCHBio), Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, (87020-900), Maringá, Paraná, Brazil; Programa de Pós-Graduação Interdisciplinar Em Energia e Sustentabilidade, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Presidente Tancredo Neves, 3838, (85870-650), Foz Do Iguaçu, Paraná, Brazil.
| | - María Fernanda Zalazar
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada Del Nordeste Argentino, (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Del Nordeste (CONICET-UNNE), Avenida Libertad 5460, 3400, Corrientes, Argentina.
| | - Janine Carvalho Padilha
- Programa de Pós-Graduação Interdisciplinar Em Energia e Sustentabilidade, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Presidente Tancredo Neves, 3838, (85870-650), Foz Do Iguaçu, Paraná, Brazil
| | - Michelle Budke Costa
- Universidade Tecnológica Federal Do Paraná (UTFPR), Avenida Brasil 4232, (85884-000), Medianeira, Brazil
| | - Claudio Leones Bazzi
- Universidade Tecnológica Federal Do Paraná (UTFPR), Avenida Brasil 4232, (85884-000), Medianeira, Brazil
| | - Pedro Augusto Arroyo
- Laboratório de Catálise Heterogênea e Biodiesel (LCHBio), Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, (87020-900), Maringá, Paraná, Brazil
| |
Collapse
|
17
|
Hoffman AJ, Temmerman W, Campbell E, Damin AA, Lezcano-Gonzalez I, Beale AM, Bordiga S, Hofkens J, Van Speybroeck V. A Critical Assessment on Calculating Vibrational Spectra in Nanostructured Materials. J Chem Theory Comput 2024; 20:513-531. [PMID: 38157404 PMCID: PMC10809426 DOI: 10.1021/acs.jctc.3c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Vibrational spectroscopy is an omnipresent spectroscopic technique to characterize functional nanostructured materials such as zeolites, metal-organic frameworks (MOFs), and metal-halide perovskites (MHPs). The resulting experimental spectra are usually complex, with both low-frequency framework modes and high-frequency functional group vibrations. Therefore, theoretically calculated spectra are often an essential element to elucidate the vibrational fingerprint. In principle, there are two possible approaches to calculate vibrational spectra: (i) a static approach that approximates the potential energy surface (PES) as a set of independent harmonic oscillators and (ii) a dynamic approach that explicitly samples the PES around equilibrium by integrating Newton's equations of motions. The dynamic approach considers anharmonic and temperature effects and provides a more genuine representation of materials at true operating conditions; however, such simulations come at a substantially increased computational cost. This is certainly true when forces and energy evaluations are performed at the quantum mechanical level. Molecular dynamics (MD) techniques have become more established within the field of computational chemistry. Yet, for the prediction of infrared (IR) and Raman spectra of nanostructured materials, their usage has been less explored and remain restricted to some isolated successes. Therefore, it is currently not a priori clear which methodology should be used to accurately predict vibrational spectra for a given system. A comprehensive comparative study between various theoretical methods and experimental spectra for a broad set of nanostructured materials is so far lacking. To fill this gap, we herein present a concise overview on which methodology is suited to accurately predict vibrational spectra for a broad range of nanostructured materials and formulate a series of theoretical guidelines to this purpose. To this end, four different case studies are considered, each treating a particular material aspect, namely breathing in flexible MOFs, characterization of defects in the rigid MOF UiO-66, anharmonic vibrations in the metal-halide perovskite CsPbBr3, and guest adsorption on the pores of the zeolite H-SSZ-13. For all four materials, in their guest- and defect-free state and at sufficiently low temperatures, both the static and dynamic approach yield qualitatively similar spectra in agreement with experimental results. When the temperature is increased, the harmonic approximation starts to fail for CsPbBr3 due to the presence of anharmonic phonon modes. Also, the spectroscopic fingerprints of defects and guest species are insufficiently well predicted by a simple harmonic model. Both phenomena flatten the potential energy surface (PES), which facilitates the transitions between metastable states, necessitating dynamic sampling. On the basis of the four case studies treated in this Review, we can propose the following theoretical guidelines to simulate accurate vibrational spectra of functional solid-state materials: (i) For nanostructured crystalline framework materials at low temperature, insights into the lattice dynamics can be obtained using a static approach relying on a few points on the PES and an independent set of harmonic oscillators. (ii) When the material is evaluated at higher temperatures or when additional complexity enters the system, e.g., strong anharmonicity, defects, or guest species, the harmonic regime breaks down and dynamic sampling is required for a correct prediction of the phonon spectrum. These guidelines and their illustrations for prototype material classes can help experimental and theoretical researchers to enhance the knowledge obtained from a lattice dynamics study.
Collapse
Affiliation(s)
| | - Wim Temmerman
- Center
for Molecular Modeling, Ghent University, 9000 Ghent, Belgium
| | - Emma Campbell
- Cardiff
Catalysis Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
| | | | - Ines Lezcano-Gonzalez
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Andrew M. Beale
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Silvia Bordiga
- Department
of Chemistry, University of Turin, 10124 Turin, Italy
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3000 Leuven, Belgium
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | | |
Collapse
|
18
|
Maertens A, Aprile C. Indium-Based Silica Materials: Sustainable Syntheses Combined with a Challenging Insertion in SiO 2 Mesoporous Structures. Molecules 2023; 29:102. [PMID: 38202685 PMCID: PMC10779520 DOI: 10.3390/molecules29010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Optimized sustainable procedures in both acidic and basic conditions are considered to meet some of the current environmental challenges of the scientific community. In this paper, the successful syntheses of two classes of indium-based silica nanomaterials are reported. Both procedures were conceived to enhance the sustainability of the synthesis methods and promote their preparations at room temperature while avoiding the hydrothermal treatment under static conditions at 100 °C. A fast, room-temperature synthesis of porous nanospheres was conceived together with an "acid-free" procedure for SBA-15-like materials. Moreover, the isomorphic substitution of silicon with indium was achieved. All the materials were deeply characterized to probe their structural, textural and morphological properties (e.g., transmission electron microscopy, N2 physisorption, ss MAS NMR of 29Si). The high specific surface area and the mesoporosity were always preserved even under the mild reaction conditions employed. The honeycomb structure and the spherical morphology of SBA-15-like materials and nanospheres, respectively, were also observed. The insertion of indium was confirmed via X-ray photoelectron spectroscopy (XPS) investigations.
Collapse
Affiliation(s)
| | - Carmela Aprile
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium;
| |
Collapse
|
19
|
Boukair K, Salazar JM, Weber G, Badawi M, Ouaskit S, Simon JM. Toward the development of sensors for lung cancer: The adsorption of 1-propanol on hydrophobic zeolites. J Chem Phys 2023; 159:214712. [PMID: 38059548 DOI: 10.1063/5.0168230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
A healthy breath is mainly composed of water, carbon dioxide, molecular nitrogen, and oxygen and it contains many species, in small quantities, which are related to the ambient atmosphere and the metabolism. The breath of a person affected by lung cancer presents a concentration of 1-propanol higher than usual. In this context, the development of specific sensors to detect 1-propanol from breath is of high interest. The amount of propanol usually detected on the breath is of few ppb; this small quantity is a handicap for a reliable diagnostic. This limitation can be overcome if the sensor is equipped with a pre-concentrator. Our studies aim to provide an efficient material playing this role. This will contribute to the development of reliable and easy to use lung cancer detectors. For this, we investigate the properties of a few hydrophobic porous materials (chabazite, silicalite-1, and dealuminated faujasite). Hydrophobic structures are used to avoid saturation of materials by the water present in the exhaled breath. Our experimental and simulation results suggest that silicalite -1 (MFI) is the most suitable structure to be used as a pre-concentrator.
Collapse
Affiliation(s)
- K Boukair
- Laboratoire de Physique de la Matière Condensée, Hassan 2 University, Casablanca, Morroco
| | - J M Salazar
- ICB-UMR 6303 CNRS, Bourgogne Franche Comté University, Dijon, France
| | - G Weber
- ICB-UMR 6303 CNRS, Bourgogne Franche Comté University, Dijon, France
| | - M Badawi
- Laboratoire de Physique et Chimie Théoriques, University of Lorraine, Nancy, France
- Université de Lorraine, CNRS, L2CM, F-57000 Metz, France
| | - S Ouaskit
- Laboratoire de Physique de la Matière Condensée, Hassan 2 University, Casablanca, Morroco
| | - J-M Simon
- ICB-UMR 6303 CNRS, Bourgogne Franche Comté University, Dijon, France
| |
Collapse
|
20
|
Yatomi M, Hikino T, Yamazoe S, Kuroda K, Shimojima A. Immobilization of isolated dimethyltin species on crystalline silicates through surface modification of layered octosilicate. Dalton Trans 2023. [PMID: 38018470 DOI: 10.1039/d3dt03231k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Single metal atoms supported on silica are attractive catalysts, and precise control of the local environment around the metal species is essential. Crystalline silica is useful as an efficient support for the incorporation of well-defined metal sites. Dimethyltin species were regularly grafted onto the layer surfaces of layered octosilicate, a type of two-dimensional (2D) crystalline silica. Dimethyltin dichlorides react with the surface silanol (SiOH) groups of the silicate layers. The formation of Si-O-Sn bonds was confirmed by 29Si magic-angle spinning (MAS) NMR. X-ray absorption fine structure (XAFS) analysis showed the four-coordinated Sn species. These results suggested the presence of well-defined dipodal dimethyltin species on the layer surfaces. The degree of modification of the silanol groups with the dimethyltin groups increased with increasing amounts of dimethyltin dichloride; however, the maximum degree of modification was approximately 50%. This value was interpreted as an alternate modification of the octosilicate reaction sites with dimethyltin groups. These results demonstrate the potential for developing highly active single metal catalysts with a high density of regularly arranged active sites on high surface area supports.
Collapse
Affiliation(s)
- Masashi Yatomi
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Takuya Hikino
- Department of Advanced Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
21
|
Wang Y, Tong C, Liu Q, Han R, Liu C. Intergrowth Zeolites, Synthesis, Characterization, and Catalysis. Chem Rev 2023; 123:11664-11721. [PMID: 37707958 DOI: 10.1021/acs.chemrev.3c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Microporous zeolites that can act as heterogeneous catalysts have continued to attract a great deal of academic and industrial interest, but current progress in their synthesis and application is restricted to single-phase zeolites, severely underestimating the potential of intergrowth frameworks. Compared with single-phase zeolites, intergrowth zeolites possess unique properties, such as different diffusion pathways and molecular confinement, or special crystalline pore environments for binding metal active sites. This review first focuses on the structural features and synthetic details of all the intergrowth zeolites, especially providing some insightful discussion of several potential frameworks. Subsequently, characterization methods for intergrowth zeolites are introduced, and highlighting fundamental features of these crystals. Then, the applications of intergrowth zeolites in several of the most active areas of catalysis are presented, including selective catalytic reduction of NOx by ammonia (NH3-SCR), methanol to olefins (MTO), petrochemicals and refining, fine chemicals production, and biomass conversion on Beta, and the relationship between structure and catalytic activity was profiled from the perspective of intergrowth grain boundary structure. Finally, the synthesis, characterization, and catalysis of intergrowth zeolites are summarized in a comprehensive discussion, and a brief outlook on the current challenges and future directions of intergrowth zeolites is indicated.
Collapse
Affiliation(s)
- Yanhua Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Chengzheng Tong
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Qingling Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Rui Han
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Caixia Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
Wang Z, Lu P, Li S, Shan Y, Li L, Wang X, Liu S, Han L, Liu S, Liu Y. A surface modification strategy to prepare hierarchical Beta molecular sieves for glucose dehydration. Dalton Trans 2023; 52:13507-13516. [PMID: 37712245 DOI: 10.1039/d3dt01538f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
In order to balance the contradiction between mesopore introduction and loss of microporosity, a surface modification strategy is proposed by selectively adsorbing organic alkaline molecules on Beta molecular sieves before NaOH etching. Organic alkaline molecules adsorb on framework aluminum sites and the protective function of organic bases is affected by the adsorption configuration and physical barrier effect of organic bases. Organic alkaline molecules serve as a protective agent to increase the bond length of Al-O bonds. Therefore, the as-synthesized hierarchical Beta molecular sieves have more acid sites due to the preservation of aluminum atoms. When employed as catalysts in the dehydration reaction of glucose, 5-hydroxymethylfurfural (5-HMF) is obtained under the synergistic effect of Brønsted and Lewis acid sites. The unique contribution is to realize the porosity regulation and alleviate the acidity loss of Beta molecular sieves. These results are important to broaden the application fields of aluminum-silicon molecular sieves especially for large molecule-engaged acid catalyzed reactions.
Collapse
Affiliation(s)
- Zhongxu Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Peng Lu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Shuo Li
- College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yuling Shan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Lu Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Xiaosheng Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Shuwei Liu
- Hydrocarbon High-Efficiency Utilization Technology Research Center, Shaanxi Yanchang Petroleum (Group) Corp. Ltd, Xi'an, China
| | - Lei Han
- Hydrocarbon High-Efficiency Utilization Technology Research Center, Shaanxi Yanchang Petroleum (Group) Corp. Ltd, Xi'an, China
| | - Shiwei Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
- State Key Laboratory of Efficient Utilization of Coal and Green Chemical Industry, Ningxia 750021, China
| | - Yuxiang Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
23
|
Van Speybroeck V, Bocus M, Cnudde P, Vanduyfhuys L. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. ACS Catal 2023; 13:11455-11493. [PMID: 37671178 PMCID: PMC10476167 DOI: 10.1021/acscatal.3c01945] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Indexed: 09/07/2023]
Abstract
Within this Perspective, we critically reflect on the role of first-principles molecular dynamics (MD) simulations in unraveling the catalytic function within zeolites under operating conditions. First-principles MD simulations refer to methods where the dynamics of the nuclei is followed in time by integrating the Newtonian equations of motion on a potential energy surface that is determined by solving the quantum-mechanical many-body problem for the electrons. Catalytic solids used in industrial applications show an intriguing high degree of complexity, with phenomena taking place at a broad range of length and time scales. Additionally, the state and function of a catalyst critically depend on the operating conditions, such as temperature, moisture, presence of water, etc. Herein we show by means of a series of exemplary cases how first-principles MD simulations are instrumental to unravel the catalyst complexity at the molecular scale. Examples show how the nature of reactive species at higher catalytic temperatures may drastically change compared to species at lower temperatures and how the nature of active sites may dynamically change upon exposure to water. To simulate rare events, first-principles MD simulations need to be used in combination with enhanced sampling techniques to efficiently sample low-probability regions of phase space. Using these techniques, it is shown how competitive pathways at operating conditions can be discovered and how broad transition state regions can be explored. Interestingly, such simulations can also be used to study hindered diffusion under operating conditions. The cases shown clearly illustrate how first-principles MD simulations reveal insights into the catalytic function at operating conditions, which could not be discovered using static or local approaches where only a few points are considered on the potential energy surface (PES). Despite these advantages, some major hurdles still exist to fully integrate first-principles MD methods in a standard computational catalytic workflow or to use the output of MD simulations as input for multiple length/time scale methods that aim to bridge to the reactor scale. First of all, methods are needed that allow us to evaluate the interatomic forces with quantum-mechanical accuracy, albeit at a much lower computational cost compared to currently used density functional theory (DFT) methods. The use of DFT limits the currently attainable length/time scales to hundreds of picoseconds and a few nanometers, which are much smaller than realistic catalyst particle dimensions and time scales encountered in the catalysis process. One solution could be to construct machine learning potentials (MLPs), where a numerical potential is derived from underlying quantum-mechanical data, which could be used in subsequent MD simulations. As such, much longer length and time scales could be reached; however, quite some research is still necessary to construct MLPs for the complex systems encountered in industrially used catalysts. Second, most currently used enhanced sampling techniques in catalysis make use of collective variables (CVs), which are mostly determined based on chemical intuition. To explore complex reactive networks with MD simulations, methods are needed that allow the automatic discovery of CVs or methods that do not rely on a priori definition of CVs. Recently, various data-driven methods have been proposed, which could be explored for complex catalytic systems. Lastly, first-principles MD methods are currently mostly used to investigate local reactive events. We hope that with the rise of data-driven methods and more efficient methods to describe the PES, first-principles MD methods will in the future also be able to describe longer length/time scale processes in catalysis. This might lead to a consistent dynamic description of all steps-diffusion, adsorption, and reaction-as they take place at the catalyst particle level.
Collapse
Affiliation(s)
| | - Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
24
|
Matveeva VG, Bronstein LM. Design of Bifunctional Nanocatalysts Based on Zeolites for Biomass Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2274. [PMID: 37630859 PMCID: PMC10458776 DOI: 10.3390/nano13162274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Bifunctional catalysts consisting of metal-containing nanoparticles (NPs) and zeolite supports have received considerable attention due to their excellent catalytic properties in numerous reactions, including direct (biomass is a substrate) and indirect (platform chemical is a substrate) biomass processing. In this short review, we discuss major approaches to the preparation of NPs in zeolites, concentrating on methods that allow for the best interplay (synergy) between metal and acid sites, which is normally achieved for small NPs well-distributed through zeolite. We focus on the modification of zeolites to provide structural integrity and controlled acidity, which can be accomplished by the incorporation of certain metal ions or elements. The other modification avenue is the adjustment of zeolite morphology, including the creation of numerous defects for the NP entrapment and designed hierarchical porosity for improved mass transfer. In this review, we also provide examples of synergy between metal and acid sites and emphasize that without density functional theory calculations, many assumptions about the interactions between active sites remain unvalidated. Finally, we describe the most interesting examples of direct and indirect biomass (waste) processing for the last five years.
Collapse
Affiliation(s)
- Valentina G. Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia;
- Regional Technological Centre, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia
| | - Lyudmila M. Bronstein
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia;
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
| |
Collapse
|
25
|
Ooe K, Seki T, Yoshida K, Kohno Y, Ikuhara Y, Shibata N. Direct imaging of local atomic structures in zeolite using optimum bright-field scanning transmission electron microscopy. SCIENCE ADVANCES 2023; 9:eadf6865. [PMID: 37531431 PMCID: PMC10396294 DOI: 10.1126/sciadv.adf6865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Zeolites are used in industries as catalysts, ion exchangers, and molecular sieves because of their unique porous atomic structures. However, direct observation of zeolitic local atomic structures via electron microscopy is difficult owing to low electron irradiation resistance. Subsequently, their fundamental structure-property relationships remain unclear. A low-electron-dose imaging technique, optimum bright-field scanning transmission electron microscopy (OBF STEM), has recently been developed. It reconstructs images with a high signal-to-noise ratio and a dose efficiency approximately two orders of magnitude higher than that of conventional methods. Here, we performed low-dose atomic-resolution OBF STEM observations of two types of zeolite, effectively visualizing all atomic sites in their frameworks. In addition, we visualized the complex local atomic structure of the twin boundaries in a faujasite (FAU)-type zeolite and Na+ ions with low occupancy in eight-membered rings in a Na-Linde Type A (LTA) zeolite. The results of this study facilitate the characterization of local atomic structures in many electron beam-sensitive materials.
Collapse
Affiliation(s)
- Kousuke Ooe
- Institute of Engineering Innovation, School of Engineering, the University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032, Japan
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Mutsuno 2-4-1, Atsuta, Nagoya 456-8587, Japan
| | - Takehito Seki
- Institute of Engineering Innovation, School of Engineering, the University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kaname Yoshida
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Mutsuno 2-4-1, Atsuta, Nagoya 456-8587, Japan
| | - Yuji Kohno
- JEOL Ltd., 1-2-3 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, School of Engineering, the University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032, Japan
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Mutsuno 2-4-1, Atsuta, Nagoya 456-8587, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, School of Engineering, the University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032, Japan
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Mutsuno 2-4-1, Atsuta, Nagoya 456-8587, Japan
| |
Collapse
|
26
|
Guo Y, Zhao L, Bi M, Zhang B, Guo K, Miao L, Cai C, Chen L, Shi X, Cheng W. Molecular volume-controlled shape-selective catalysis for synthesis of cinnamate over microporous zeolites. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
27
|
Methane Oxidation over the Zeolites-Based Catalysts. Catalysts 2023. [DOI: 10.3390/catal13030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Zeolites have ordered pore structures, good spatial constraints, and superior hydrothermal stability. In addition, the active metal elements inside and outside the zeolite framework provide the porous material with adjustable acid–base property and good redox performance. Thus, zeolites-based catalysts are more and more widely used in chemical industries. Combining the advantages of zeolites and active metal components, the zeolites-based materials are used to catalyze the oxidation of methane to produce various products, such as carbon dioxide, methanol, formaldehyde, formic acid, acetic acid, and etc. This multifunction, high selectivity, and good activity are the key factors that enable the zeolites-based catalysts to be used for methane activation and conversion. In this review article, we briefly introduce and discuss the effect of zeolite materials on the activation of C–H bonds in methane and the reaction mechanisms of complete methane oxidation and selective methane oxidation. Pd/zeolite is used for the complete oxidation of methane to carbon dioxide and water, and Fe- and Cu-zeolite catalysts are used for the partial oxidation of methane to methanol, formaldehyde, formic acid, and etc. The prospects and challenges of zeolite-based catalysts in the future research work and practical applications are also envisioned. We hope that the outcome of this review can stimulate more researchers to develop more effective zeolite-based catalysts for the complete or selective oxidation of methane.
Collapse
|
28
|
Velty A, Corma A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO 2 to chemicals and fuels. Chem Soc Rev 2023; 52:1773-1946. [PMID: 36786224 DOI: 10.1039/d2cs00456a] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
For many years, capturing, storing or sequestering CO2 from concentrated emission sources or from air has been a powerful technique for reducing atmospheric CO2. Moreover, the use of CO2 as a C1 building block to mitigate CO2 emissions and, at the same time, produce sustainable chemicals or fuels is a challenging and promising alternative to meet global demand for chemicals and energy. Hence, the chemical incorporation and conversion of CO2 into valuable chemicals has received much attention in the last decade, since CO2 is an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon building block. Nevertheless, CO2 is the most oxidized form of carbon, thermodynamically the most stable form and kinetically inert. Consequently, the chemical conversion of CO2 requires highly reactive, rich-energy substrates, highly stable products to be formed or harder reaction conditions. The use of catalysts constitutes an important tool in the development of sustainable chemistry, since catalysts increase the rate of the reaction without modifying the overall standard Gibbs energy in the reaction. Therefore, special attention has been paid to catalysis, and in particular to heterogeneous catalysis because of its environmentally friendly and recyclable nature attributed to simple separation and recovery, as well as its applicability to continuous reactor operations. Focusing on heterogeneous catalysts, we decided to center on zeolite and ordered mesoporous materials due to their high thermal and chemical stability and versatility, which make them good candidates for the design and development of catalysts for CO2 conversion. In the present review, we analyze the state of the art in the last 25 years and the potential opportunities for using zeolite and OMS (ordered mesoporous silica) based materials to convert CO2 into valuable chemicals essential for our daily lives and fuels, and to pave the way towards reducing carbon footprint. In this review, we have compiled, to the best of our knowledge, the different reactions involving catalysts based on zeolites and OMS to convert CO2 into cyclic and dialkyl carbonates, acyclic carbamates, 2-oxazolidones, carboxylic acids, methanol, dimethylether, methane, higher alcohols (C2+OH), C2+ (gasoline, olefins and aromatics), syngas (RWGS, dry reforming of methane and alcohols), olefins (oxidative dehydrogenation of alkanes) and simple fuels by photoreduction. The use of advanced zeolite and OMS-based materials, and the development of new processes and technologies should provide a new impulse to boost the conversion of CO2 into chemicals and fuels.
Collapse
Affiliation(s)
- Alexandra Velty
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
29
|
Suib SL, Přech J, Szaniawska E, Čejka J. Recent Advances in Tetra- (Ti, Sn, Zr, Hf) and Pentavalent (Nb, V, Ta) Metal-Substituted Molecular Sieve Catalysis. Chem Rev 2023; 123:877-917. [PMID: 36547404 DOI: 10.1021/acs.chemrev.2c00509] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal substitution of molecular sieve systems is a major driving force in developing novel catalytic processes to meet current demands of green chemistry concepts and to achieve sustainability in the chemical industry and in other aspects of our everyday life. The advantages of metal-substituted molecular sieves include high surface areas, molecular sieving effects, confinement effects, and active site and morphology variability and stability. The present review aims to comprehensively and critically assess recent advances in the area of tetra- (Ti, Sn, Zr, Hf) and pentavalent (V, Nb, Ta) metal-substituted molecular sieves, which are mainly characterized for their Lewis acidic active sites. Metal oxide molecular sieve materials with properties similar to those of zeolites and siliceous molecular sieve systems are also discussed, in addition to relevant studies on metal-organic frameworks (MOFs) and some composite MOF systems. In particular, this review focuses on (i) synthesis aspects determining active site accessibility and local environment; (ii) advances in active site characterization and, importantly, quantification; (iii) selective redox and isomerization reaction applications; and (iv) photoelectrocatalytic applications.
Collapse
Affiliation(s)
- Steven L Suib
- Departments of Chemistry and Chemical and Biomolecular Engineering, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Jan Přech
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Ewelina Szaniawska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
30
|
Bae J, Dusselier M. Synthesis strategies to control the Al distribution in zeolites: thermodynamic and kinetic aspects. Chem Commun (Camb) 2023; 59:852-867. [PMID: 36598011 DOI: 10.1039/d2cc05370e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The activity and selectivity of acid-catalyzed chemistry is highly dependent on the Brønsted and Lewis acid sites generated by Al substitutions in a zeolite framework with the desired pore architecture. The siting of two Al atoms in close proximity in the framework of high-silica zeolites can also play a decisive role in improving the performance of redox catalysts by producing exchangeable positions for extra-framework multivalent cations. Thus, considerable attention has been devoted to controlling the Al incorporation through direct synthesis approaches and post-synthesis treatments to optimize the performance as (industrial) solid catalysts and to develop new acid- and redox-catalyzed reactions. This Feature Article highlights bottom-up synthetic strategies to fine-tune the Al incorporation in zeolites, interpreted with respect to thermodynamic and kinetic aspects. They include (i) variation in extra-framework components in zeolite synthesis, (ii) isomorphous substitution of other heteroatoms in the zeolite framework, and (iii) control over the (alumino)silicate network in the initial synthesis mixture via in situ and ex situ methods. Most synthetic approaches introduced here tentatively showed that the energy barriers associated with Al incorporation in zeolites can be variable during zeolite crystallization processes, occurring in complex media with multiple chemical interactions. Although the generic interpretation of each strategy and underlying crystallization mechanism remains largely unknown (and often limited to a specific framework), this review will provide guidance on more efficient methods to prepare fine-tuned zeolites with desired chemical properties.
Collapse
Affiliation(s)
- Juna Bae
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
31
|
Li W, Chai Y, Wu G, Li L. Stable and Uniform Extraframework Cations in Faujasite Zeolites. J Phys Chem Lett 2022; 13:11419-11429. [PMID: 36468947 DOI: 10.1021/acs.jpclett.2c02969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extraframework transition metal ions (TMIs) in zeolites can serve as active sites for adsorption and catalysis. However, due to the complexity and mobility of extraframework cation sites, their applications are significantly limited and the structure-performance relationship is poorly understood. In this Perspective, stable and uniform TMIs in zeolites are exemplified and their characteristics are discussed. A series of TMIs can be introduced to specific cation sites of faujasite via a ligand-protected in situ synthesis route to construct uniform TMIs in the zeolite matrix, namely, TMI@FAU (TMI= Co, Ni, Cu, Rh, and Pt). Coordinatively unsaturated TMIs within faujasite are active for small-molecule adsorption and activation, and therefore, TMI@FAU zeolites show unique properties in adsorption and catalysis. TMI@FAU zeolites appear to be ideal model systems, and the well-defined structure of TMI@FAU greatly facilitates the mechanism studies by spectroscopic investigations and theoretical simulations.
Collapse
Affiliation(s)
- Weijie Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuchao Chai
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangjun Wu
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Landong Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
32
|
Vanlommel S, Hoffman AEJ, Smet S, Radhakrishnan S, Asselman K, Chandran CV, Breynaert E, Kirschhock CEA, Martens JA, Van Speybroeck V. How Water and Ion Mobility Affect the NMR Fingerprints of the Hydrated JBW Zeolite: A Combined Computational-Experimental Investigation. Chemistry 2022; 28:e202202621. [PMID: 36005885 PMCID: PMC10092413 DOI: 10.1002/chem.202202621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/08/2022]
Abstract
An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.
Collapse
Affiliation(s)
- Siebe Vanlommel
- Center for Molecular Modeling (CMM)Ghent UniversityTechnologiepark 469052ZwijnaardeBelgium
| | | | - Sam Smet
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Sambhu Radhakrishnan
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Karel Asselman
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - C. Vinod Chandran
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Eric Breynaert
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- National High Magnetic Field Laboratory 1800 E. Paul Dirac Dr.TallahasseeFL32310United States
| | | | - Johan A. Martens
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | | |
Collapse
|
33
|
A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238578. [PMID: 36500669 PMCID: PMC9739862 DOI: 10.3390/molecules27238578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Numerous attempts have been made to produce new materials and technology for renewable energy and environmental improvements in response to global sustainable solutions stemming from fast industrial expansion and population growth. Zeolites are a group of crystalline materials having molecularly ordered micropore arrangements. Over the past few years, progress in zeolites has been observed in transforming biomass and waste into fuels. To ensure effective transition of fossil energy carriers into chemicals and fuels, zeolite catalysts play a key role; however, their function in biomass usage is more obscure. Herein, the effectiveness of zeolites has been discussed in the context of biomass transformation into valuable products. Established zeolites emphasise conversion of lignocellulosic materials into green fuels. Lewis acidic zeolites employ transition of carbohydrates into significant chemical production. Zeolites utilise several procedures, such as catalytic pyrolysis, hydrothermal liquefaction, and hydro-pyrolysis, to convert biomass and lignocelluloses. Zeolites exhibit distinctive features and encounter significant obstacles, such as mesoporosity, pore interconnectivity, and stability of zeolites in the liquid phase. In order to complete these transformations successfully, it is necessary to have a thorough understanding of the chemistry of zeolites. Hence, further examination of the technical difficulties associated with catalytic transformation in zeolites will be required. This review article highlights the reaction pathways for biomass conversion using zeolites, their challenges, and their potential utilisation. Future recommendations for zeolite-based biomass conversion are also presented.
Collapse
|
34
|
Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203899. [PMID: 36285802 PMCID: PMC9798988 DOI: 10.1002/advs.202203899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Indexed: 06/04/2023]
Abstract
Addressing climate change challenges by reducing greenhouse gas levels requires innovative adsorbent materials for clean energy applications. Recent progress in machine learning has stimulated technological breakthroughs in the discovery, design, and deployment of materials with potential for high-performance and low-cost clean energy applications. This review summarizes basic machine learning methods-data collection, featurization, model generation, and model evaluation-and reviews their use in the development of robust adsorbent materials. Key case studies are provided where these methods are used to accelerate adsorbent materials design and discovery, optimize synthesis conditions, and understand complex feature-property relationships. The review provides a concise resource for researchers wishing to use machine learning methods to rapidly develop effective adsorbent materials with a positive impact on the environment.
Collapse
Affiliation(s)
- Haoxin Mai
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| | - Tu C. Le
- School of EngineeringSTEM CollegeRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | - Dehong Chen
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| | - David A. Winkler
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- School of Biochemistry and ChemistryLa Trobe UniversityKingsbury DriveBundoora3042Australia
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Rachel A. Caruso
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| |
Collapse
|
35
|
Mishra RK, Chistie SM, Naika SU, Mohanty K. Catalytic pyrolysis of biomass over zeolites for bio-oil and chemical production: A review on their structure, porosity and acidity co-relation. BIORESOURCE TECHNOLOGY 2022; 366:128189. [PMID: 36309176 DOI: 10.1016/j.biortech.2022.128189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The oxygenated compounds found in bio-oil limit their application as a transportation fuel. Several studies were reported on eliminating the oxygenated components from bio-oil so as to improve its fuel properties. This work is dedicated to studying the shape selectivity, porosity, structure, acidity of zeolites and their effect in bio-oil and chemicals production. The unified pore size, specific structure, controlled Si/Al ratio, unique channels and circular entrances, mesoporosity, and acidity are the utmost discerning parameters for aromatics production and deoxygenation reaction. The conversion of biomass-derived oxygenates to aromatics using zeolite is subjected to the reactants entering the pore, conversion inside the pore, and diffusing out of the products from the zeolite pores. These approaches were considered for an in-depth understanding of zeolite properties, which will enhance the fundamental understanding of pyrolysis.
Collapse
Affiliation(s)
- Ranjeet Kumar Mishra
- Department of Chemical Engineering, Ramaiah Institute of Technology, Bangalore 560054, India
| | - Syeda Minnat Chistie
- Department of Chemical Engineering, Ramaiah Institute of Technology, Bangalore 560054, India
| | - Sneha Ullhas Naika
- Department of Chemical Engineering, Ramaiah Institute of Technology, Bangalore 560054, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India.
| |
Collapse
|
36
|
Dong Z, Chen W, Xu K, Liu Y, Wu J, Zhang F. Understanding the Structure–Activity Relationships in Catalytic Conversion of Polyolefin Plastics by Zeolite-Based Catalysts: A Critical Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Zhongwen Dong
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Wenjun Chen
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Keqing Xu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Yue Liu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Jing Wu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Fan Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| |
Collapse
|
37
|
Wang M, Yang Q. Microenvironment engineering of supported metal nanoparticles for chemoselective hydrogenation. Chem Sci 2022; 13:13291-13302. [PMID: 36507185 PMCID: PMC9682894 DOI: 10.1039/d2sc04223a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022] Open
Abstract
Selective hydrogenation with supported metal catalysts widely used in the production of fine chemicals and pharmaceuticals often faces a trade-off between activity and selectivity, mainly due to the inability to adjust one factor of the active sites without affecting other factors. In order to solve this bottleneck problem, the modulation of the microenvironment of active sites has attracted more and more attention, inspired by the collaborative catalytic mode of enzymes. In this perspective, we aim to summarize recent advances in the regulation of the microenvironment surrounding supported metal nanoparticles (NPs) using porous materials enriched with organic functional groups. Insights on how the microenvironment induces the enrichment, oriented adsorption and activation of substrates through non-covalent interaction and thus determines the hydrogenation activity and selectivity will be particularly discussed. Finally, a brief summary will be provided, and challenges together with a perspective in microenvironment engineering will be proposed.
Collapse
Affiliation(s)
- Maodi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
38
|
Zhang J, Bai R, Zhou Y, Chen Z, Zhang P, Li J, Yu J. Impact of a polymer modifier on directing the non-classical crystallization pathway of TS-1 zeolite: accelerating nucleation and enriching active sites. Chem Sci 2022; 13:13006-13014. [PMID: 36425513 PMCID: PMC9667963 DOI: 10.1039/d2sc04544c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/29/2022] [Indexed: 03/09/2024] Open
Abstract
The crystallization process directly affects the physicochemical properties and active centers of zeolites; however, controllable tuning of the zeolite crystallization process remains a challenge. Herein, we utilized a polymer (polyacrylamide, PAM) to control the precursor structure evolution of TS-1 zeolite through a two-step crystallization process, so that the crystallization path was switched from a classical to a non-classical mechanism, which greatly accelerated nucleation and enriched active Ti sites. The TS-1 crystallization process was investigated by means of various advanced characterization techniques. It was found that specific interactions between PAM and Si/Ti species promoted the assembly of colloidal precursors containing ordered structural fragments and stabilized Ti species in the precursors, leading to a 1.5-fold shortened crystallization time and enriched Ti content in TS-1 (Si/Ti = 29). The PAM-regulated TS-1 zeolite exhibited enhanced catalytic performance in oxidative reactions compared to conventional samples.
Collapse
Affiliation(s)
- Jiani Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Risheng Bai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Yida Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Ziyi Chen
- Department of Chemistry, Dalhousie University Halifax Nova Scotia B4H4R2 Canada
| | - Peng Zhang
- Department of Chemistry, Dalhousie University Halifax Nova Scotia B4H4R2 Canada
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
39
|
Chen W, Qian G, Wan Y, Chen D, Zhou X, Yuan W, Duan X. Mesokinetics as a Tool Bridging the Microscopic-to-Macroscopic Transition to Rationalize Catalyst Design. Acc Chem Res 2022; 55:3230-3241. [PMID: 36321554 DOI: 10.1021/acs.accounts.2c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heterogeneous catalysis is the workhorse of the chemical industry, and a heterogeneous catalyst possesses numerous active sites working together to drive the conversion of reactants to desirable products. Over the decades, much focus has been placed on identifying the factors affecting the active sites to gain deep insights into the structure-performance relationship, which in turn guides the design and preparation of more active, selective, and stable catalysts. However, the molecular-level interplay between active sites and catalytic function still remains qualitative or semiquantitative, ascribed to the difficulty and uncertainty in elucidating the nature of active sites for its controllable manipulation. Hence, bridging the microscopic properties of active sites and the macroscopic catalytic performance, that is, microscopic-to-macroscopic transition, to afford a quantitative description is intriguing yet challenging, and progress toward this promises to revolutionize catalyst design and preparation.In this Account, we propose mesokinetics modeling, for the first time enabling a quantitative description of active site characteristics and the related mechanistic information, as a versatile tool to guide rational catalyst design. Exemplified by a pseudo-zero-order reaction, the kinetics derivation from the Pt particle size-sensitive catalytic activity and size-insensitive activation energy suggests only one type of surface site as the dominant active site, in which the Pt(111) with almost unchanged turnover frequency (TOF111) is further identified as the dominating active site. Such a method has been extended to identify and quantify the number (Ni) of active sites for various thermo-, electro-, and photocatalysts in chemical synthesis, hydrogen generation, environment application, etc. Then, the kinetics derivation from the kinetic compensation effects suggests a thermodynamic balance between the activation entropy and enthalpy, which exhibit linear dependences on Pt charge. Accordingly, the Pt charge can serve as a catalytic descriptor for its quantitative determination of TOFi. This strategy has been further applied to Pt-catalyzed CO oxidation with nonzero-order reaction characteristic by taking the site coverages of surface species into consideration.Hence, substituting the above statistical correlations of Ni and TOFi into the rate equation R = ∑Ni × TOFi offers the mesokinetics model, which can precisely predict catalytic function and screen catalysts. Finally, based on the disentanglement of the factors underlying Pt electronic structures, a de novo strategy, from the interfacial charge distribution to reaction mechanism, kinetics, and thermodynamics parameters of the rate-determining step, and ultimately catalytic performance, is developed to map the unified mechanistic and kinetics picture of reaction. Overall, the mesokinetics not only demonstrates much potential to elucidate the quantitative interplay between active sites and catalytic activity but also provides a new research direction in kinetics analysis to rationalize catalyst design.
Collapse
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ying Wan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
40
|
Sasaki K, Gaitan JAH, Okue T, Matoba S, Tokuda Y, Miyake K, Uchida Y, Nishiyama N. Amorphous Aluminosilicate Nanosheets as Universal Precursors for the Synthesis of Diverse Zeolite Nanosheets for Polymer-Cracking Reactions. Angew Chem Int Ed Engl 2022; 61:e202213773. [PMID: 36136349 PMCID: PMC9828233 DOI: 10.1002/anie.202213773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 01/12/2023]
Abstract
Zeolites catalyze some reactions in their molecular-sized pores, but large molecules can react only on their external surface. Zeolite-nanosheets (NSs) have been developed as catalysts for large molecules. The previously reported methods to synthesize zeolite-NSs are specialized for each zeolite type. Here we propose a new method to synthesize various zeolite-NSs from the same amorphous aluminosilicate NSs (AAS-NSs) as a universal precursor. We successfully synthesized the unprecedented AAS-NSs in the hydrophilic space of the stable hyperswollen lyotropic lamellar (HL) phase. The four zeolite types could be obtained from the single-species AAS-NSs. These results imply that this method enables us to synthesize almost all types of zeolite-NSs. Moreover, the synthesized CHA-NSs have great potential for various applications because of their thickness and large external surface area.
Collapse
Affiliation(s)
- Koki Sasaki
- Graduate School of Engineering ScienceOsaka University1–3 MachikaneyamaToyonaka, Osaka560-8531Japan
| | - Jose A. Hernandez Gaitan
- Graduate School of Engineering ScienceOsaka University1–3 MachikaneyamaToyonaka, Osaka560-8531Japan
| | - Tsuyoshi Okue
- Graduate School of Engineering ScienceOsaka University1–3 MachikaneyamaToyonaka, Osaka560-8531Japan
| | - Shotaro Matoba
- Graduate School of Engineering ScienceOsaka University1–3 MachikaneyamaToyonaka, Osaka560-8531Japan
| | - Yuki Tokuda
- Graduate School of Engineering ScienceOsaka University1–3 MachikaneyamaToyonaka, Osaka560-8531Japan
| | - Koji Miyake
- Graduate School of Engineering ScienceOsaka University1–3 MachikaneyamaToyonaka, Osaka560-8531Japan
| | - Yoshiaki Uchida
- Graduate School of Engineering ScienceOsaka University1–3 MachikaneyamaToyonaka, Osaka560-8531Japan
| | - Norikazu Nishiyama
- Graduate School of Engineering ScienceOsaka University1–3 MachikaneyamaToyonaka, Osaka560-8531Japan
| |
Collapse
|
41
|
He W, Li F, Gu Y, Wang X, Gu H, Fu H, Liang X, Li Z. Synthesis of Chainlike ZSM-5 with a Polyelectrolyte as a Second Template for Oleic Acid and Ethanol Cracking into Light Olefins. ACS OMEGA 2022; 7:40520-40531. [PMID: 36385821 PMCID: PMC9647844 DOI: 10.1021/acsomega.2c05763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Chainlike ZSM-5 was synthesized in a tetrapropylammonium hydroxide (TPAOH) and poly(diallydimethylammonium chloride) (PDDA) dual-template system. The synthesis parameters and formation mechanism of chainlike zeolites were investigated. The optimized composition of the synthesis mixture was as follows: the PDDA/SiO2, TPAOH/SiO2, SiO2/Al2O3, and H2O/SiO2 molar ratios are, respectively, 0.16, 0.4, 50, and 40, with tetraethyl orthosilicate and aluminum nitrate as silicon/aluminum sources. The resultant ZSM-5 showed a cross-linked chainlike morphology, mesopore-dominated pore structure, and mild acidity. The formation of the chainlike zeolite was attributed to synergistic actions between PDDA and TPAOH. TPAOH acted as an alkali source and helped to induce nucleation and control the crystal size. PDDA acted as a soft template to promote crystal nucleation, and a hard template to form a three-dimensional mesoporous structure. Light olefin (C2-4 =) selectivities from cracking of ethanol and oleic acid over the present chainlike ZSM-5 at 400 °C reached 90 and 75.7%, respectively, which were much higher than those from commercial ZSM-5 (75 and 52.3%, respectively), demonstrating the excellent hydrothermal stability and catalytic performance of the synthesized chainlike zeolite.
Collapse
|
42
|
Rusdan NA, Timmiati SN, Isahak WNRW, Yaakob Z, Lim KL, Khaidar D. Recent Application of Core-Shell Nanostructured Catalysts for CO 2 Thermocatalytic Conversion Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3877. [PMID: 36364653 PMCID: PMC9655136 DOI: 10.3390/nano12213877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Carbon-intensive industries must deem carbon capture, utilization, and storage initiatives to mitigate rising CO2 concentration by 2050. A 45% national reduction in CO2 emissions has been projected by government to realize net zero carbon in 2030. CO2 utilization is the prominent solution to curb not only CO2 but other greenhouse gases, such as methane, on a large scale. For decades, thermocatalytic CO2 conversions into clean fuels and specialty chemicals through catalytic CO2 hydrogenation and CO2 reforming using green hydrogen and pure methane sources have been under scrutiny. However, these processes are still immature for industrial applications because of their thermodynamic and kinetic limitations caused by rapid catalyst deactivation due to fouling, sintering, and poisoning under harsh conditions. Therefore, a key research focus on thermocatalytic CO2 conversion is to develop high-performance and selective catalysts even at low temperatures while suppressing side reactions. Conventional catalysts suffer from a lack of precise structural control, which is detrimental toward selectivity, activity, and stability. Core-shell is a recently emerged nanomaterial that offers confinement effect to preserve multiple functionalities from sintering in CO2 conversions. Substantial progress has been achieved to implement core-shell in direct or indirect thermocatalytic CO2 reactions, such as methanation, methanol synthesis, Fischer-Tropsch synthesis, and dry reforming methane. However, cost-effective and simple synthesis methods and feasible mechanisms on core-shell catalysts remain to be developed. This review provides insights into recent works on core-shell catalysts for thermocatalytic CO2 conversion into syngas and fuels.
Collapse
Affiliation(s)
- Nisa Afiqah Rusdan
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Wan Nor Roslam Wan Isahak
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zahira Yaakob
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kean Long Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Dalilah Khaidar
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
43
|
Madhu J, Madurai Ramakrishnan V, Santhanam A, Natarajan M, Palanisamy B, Velauthapillai D, Lan Chi NT, Pugazhendhi A. Comparison of three different structures of zeolites prepared by template-free hydrothermal method and its CO 2 adsorption properties. ENVIRONMENTAL RESEARCH 2022; 214:113949. [PMID: 35934143 DOI: 10.1016/j.envres.2022.113949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, zeolite sodalite SOD (50NaO2:Al2O3:5SiO2), zeolite LTA (2NaO2:Al2O3:1.926SiO2) and zeolite FAU (16NaO2:Al2O3:4SiO2) of different structures were synthesized successfully through simple conventional hydrothermal crystallization technique without using any template agent. Morphological analysis of three different types of zeolites revealed that the samples exhibit three different shapes such as the "Raspberry-like", "Dice" cube like and "Octahedral" shaped morphology respectively. The thermal stability was found to be about 4.8%, 14.6% and 20.5% for the synthesized zeolites SOD, LTA and FAU respectively. From the N2 adsorption-desorption studies, it was observed that adsorption types IV and I correspond to the synthesized samples. CO2 adsorption by the synthesized zeolite SOD, LTA and FAU were examined in the pressure range from 0 to 101.325 kPa at a constant temperature of 297.15 K. The highest adsorption capacity of 3.7 mmol/g was obtained for zeolite FAU. The synthesized zeolite was studied using a nonlinear regression curve fit to determine the adsorption isotherm model using Langmuir and Freundlich isotherm model. It has been found that the synthesized zeolites have a large electric field gradient due to which they can strongly adsorb quadrupole of CO2 molecules.
Collapse
Affiliation(s)
- Jayaprakash Madhu
- Department of Physics, Coimbatore Institute of Technology, Coimbatore, 641 014, Tamil Nadu, India
| | | | - Agilan Santhanam
- Department of Physics, Coimbatore Institute of Technology, Coimbatore, 641 014, Tamil Nadu, India
| | | | - Balraju Palanisamy
- Department of Physics, Coimbatore Institute of Technology, Coimbatore, 641 014, Tamil Nadu, India
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, 5063, Bergen, Norway
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
44
|
Cui L, Liu C, Yao B, Edwards PP, Xiao T, Cao F. A review of catalytic hydrogenation of carbon dioxide: From waste to hydrocarbons. Front Chem 2022; 10:1037997. [PMID: 36304742 PMCID: PMC9592991 DOI: 10.3389/fchem.2022.1037997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 12/01/2022] Open
Abstract
With the rapid development of industrial society and humankind’s prosperity, the growing demands of global energy, mainly based on the combustion of hydrocarbon fossil fuels, has become one of the most severe challenges all over the world. It is estimated that fossil fuel consumption continues to grow with an annual increase rate of 1.3%, which has seriously affected the natural environment through the emission of greenhouse gases, most notably carbon dioxide (CO2). Given these recognized environmental concerns, it is imperative to develop clean technologies for converting captured CO2 to high-valued chemicals, one of which is value-added hydrocarbons. In this article, environmental effects due to CO2 emission are discussed and various routes for CO2 hydrogenation to hydrocarbons including light olefins, fuel oils (gasoline and jet fuel), and aromatics are comprehensively elaborated. Our emphasis is on catalyst development. In addition, we present an outlook that summarizes the research challenges and opportunities associated with the hydrogenation of CO2 to hydrocarbon products.
Collapse
Affiliation(s)
- Lingrui Cui
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Cao Liu
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Benzhen Yao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Peter P. Edwards
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Tiancun Xiao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| | - Fahai Cao
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| |
Collapse
|
45
|
Xing SY, Wang TF, Han MH. Effect of different frameworks on the zeolite catalyzed alkylation of benzene with 1-dodecene. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Chen P, Xie M, Zhai Y, Wang Y, Huang Z, Yang T, Sun W, Wang Y, Sun J. Stabilization of Extra‐Large‐Pore Zeolite by Boron Substitution for the production of commercially applicable catalysts. Chemistry 2022; 28:e202202170. [DOI: 10.1002/chem.202202170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pohua Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
| | - Mingguan Xie
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing (RIPP) SINOPEC Beijing 100083 P. R. China
| | - Yunping Zhai
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing (RIPP) SINOPEC Beijing 100083 P. R. China
| | - Youju Wang
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing (RIPP) SINOPEC Beijing 100083 P. R. China
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry Stockholm University Stockholm SE-10691 Sweden
| | - Taimin Yang
- Department of Materials and Environmental Chemistry Stockholm University Stockholm SE-10691 Sweden
| | - Wenjia Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
| | - Yongrui Wang
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing (RIPP) SINOPEC Beijing 100083 P. R. China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
| |
Collapse
|
47
|
Asaftei IV, Lungu NC, Bîrsa LM, Ignat M. Validation of Zn–Cu/ZSM-5 catalyst performance, at pilot scale, in the catalytic conversion of butane ( nC 4 +i-C 4 ) technical fraction. CR CHIM 2022. [DOI: 10.5802/crchim.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Cong W, Song P, Zhang Y, Yang S, Liu W, Zhang T, Zhou J, Wang M, Liu X. Supramolecular confinement pyrolysis to carbon-supported Mo nanostructures spanning four scales for hydroquinone determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129327. [PMID: 35709622 DOI: 10.1016/j.jhazmat.2022.129327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Metal nanostructures with high atom utilization, abundant active sites, and special electron structures should be beneficial to the electrochemical monitoring of hydroquinone (HQ), a highly toxic environmental pollutant. However, traditional nanostructures, especially non-noble metals generally suffer from severe aggregation, or consist of a mixture of nanoparticles and nanoclusters, resulting in low detection sensitivity. Herein, we precisely control the size of Mo-based nanostructures spanning four scales (viz. Mo2C nanoparticles, Mo2C nanodots, Mo nanoclusters and Mo single atoms) anchored on N, P, O co-doped carbon support. The detection sensitivity of four samples toward the HQ follows the orders of Mo single atoms>Mo2C nanodots>Mo nanoclusters>Mo2C nanoparticles. The catalytic ability of four catalysts is investigated, also showing the same order. The supported Mo single atoms show superior electro-sensing performance for HQ with wide linear range (0.02-200 μM) and low detection limit (0.005 μM), surpassing most previously reported catalysts. Moreover, the coexistence of dihydroxybenzene isomers of catechol (CC) and resorcinol (RC) does not interfere with the detection of HQ on the Mo single-atom sensor. This work opens up a polyoxometalate-based confinement pyrolysis approach to constructing ultrafine metal-based nanostructures spanning multiple-scales for efficient electrochemical applications.
Collapse
Affiliation(s)
- Wenhua Cong
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Pin Song
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yong Zhang
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Su Yang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Weifeng Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Meiling Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
49
|
Farberow CA, Wegener EC, Kumar A, Miller JH, Dupuis DP, Kim S, Ruddy DA. Connecting cation site location to alkane dehydrogenation activity in Ni/BEA catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|