1
|
Yang B, Bai H, Li C, Zhang YM, Zhang SXA. Biomimetic Exploration and Reflection on Switchable Coordination and Narrow-Band Electrofluorochromic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407219. [PMID: 39052882 PMCID: PMC11423134 DOI: 10.1002/advs.202407219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Electrofluorochromic (EFC) materials and devices with controllable fluorescence properties show great application potential in advanced anticounterfeiting, information storage and display. However, the low color purity caused by the broad emission spectra and underperforming switching time of the existing EFC materials limit their application. Through biomimetic exploration and the study of reversible electrochemical responsive coordination reactions, boron-nitrogen embedded polyaromatics (B,N-PAHs) with narrow-band emission and high color purity have been successfully integrated into EFC systems, which also help to better understand the role of boron in biological activity. The EFC device achieve good performance containing quenching efficiency greater than 90% within short switching time (ton: 0.6 s, toff: 2.4 s), and nearly no performance change after 200 cycles test. Three primary color (red, green, and blue) EFC devices are successfully prepared. In addition, new phenomena are obtained and discussed in this biomimetic exploration of related boron reactions. The success and harvest of this exploration are expected to provide new ideas for optimizing properties and broadening applications of EFC materials. Moreover, it may provide ideas and reference significance for further exploring and understanding the function of boron compounds in biological systems.
Collapse
Affiliation(s)
- Baige Yang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hengyuan Bai
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chenglong Li
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Chen X, Sun L, Sukhanov AA, Doria S, Bussotti L, Zhao J, Xu H, Dick B, Voronkova VK, Di Donato M. Photophysics and photochemistry of thermally activated delayed fluorescence emitters based on the multiple resonance effect: transient optical and electron paramagnetic resonance studies. Chem Sci 2024; 15:10867-10881. [PMID: 39027280 PMCID: PMC11253189 DOI: 10.1039/d4sc02513j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
The photochemistry of two representative thermally activated delayed fluorescence (TADF) emitters based on the multiple resonance effect (MRE) (DABNA-1 and DtBuCzB) was studied. No significant TADF was observed in fluid solution, although the compounds have a long-lived triplet state (ca. 30 μs). We found that these planar boron molecules bind with Lewis bases, e.g., 4-dimethylaminopyridine (DMAP) or an N-heterocyclic carbene (NHC). A new blue-shifted absorption band centered at 368 nm was observed for DtBuCzB upon formation of the adduct; however, the fluorescence of the adduct is the same as that of the free DtBuCzB. We propose that photo-dissociation occurs for the DtBuCzB-DMAP adduct, which is confirmed by femtosecond transient absorption spectra, implying that fluorescence originates from DtBuCzB produced by photo-dissociation; the subsequent in situ re-binding was observed with nanosecdon transient absorption spectroscopy. No photo-dissociation was observed for the NHC adduct. Time-resolved electron paramagnetic resonance (TREPR) spectra show that the triplet states of DABNA-1 and DtBuCzB have similar zero field splitting (ZFS) parameters (D = 1450 MHz). Theoretical studies show that the slow ISC is due to small SOC and weak Herzberg-Teller coupling, although the S1/T1 energy gap is small (0.14 eV), which rationalizes the lack of TADF.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Lei Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453002 China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS Kazan 420029 Russia
| | - Sandra Doria
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM-CNR Via Madonna del Piano 10-12 50019 Sesto Fiorentino (FI) Italy
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Haijun Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453002 China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg Regensburg 93053 Germany
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS Kazan 420029 Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM-CNR Via Madonna del Piano 10-12 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
3
|
Kawashiro M, Mori T, Ito M, Ando N, Yamaguchi S. Photodissociative Modules that Control Dual-Emission Properties in Donor-π-Acceptor Organoborane Fluorophores. Angew Chem Int Ed Engl 2023; 62:e202303725. [PMID: 37014627 DOI: 10.1002/anie.202303725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Donor-π-acceptor fluorophores that consist of an electron-donating amino group and an electron-accepting triarylborane moiety generally exhibit substantial solvatochromism in their fluorescence while retaining high fluorescence quantum yields even in polar media. Herein, we report a new family of this compound class, which bears ortho-P(=X)R2 -substituted phenyl groups (X=O or S) as a photodissociative module. The P=X moiety that intramolecularly coordinates to the boron atom undergoes dissociation in the excited state, giving rise to dual emission from the corresponding tetra- and tricoordinate boron species. The susceptibility of the systems to photodissociation depends on the coordination ability of the P=O and P=S moieties, whereby the latter facilitates dissociation. The intensity ratios of the dual emission bands are sensitive to environmental parameters, including temperature, solution polarity, and the viscosity of the medium. Moreover, precise tuning of the P(=X)R2 group and the electron-donating amino moiety led to single-molecule white emission in solution.
Collapse
Affiliation(s)
- Midori Kawashiro
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Tatsuya Mori
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Masato Ito
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
4
|
Kitamoto Y, Oda K, Kita H, Hattori T, Oi S. Synthesis of Azadioxa-Planar Triphenylboranes Bridged by Aryl- and Alkylimino Groups and Their Photophysical Properties. J Org Chem 2023; 88:5852-5860. [PMID: 37083363 DOI: 10.1021/acs.joc.3c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Heteroatom-bridged planar triphenylboranes, in which the three phenyl groups are bridged at the ortho positions by heteroatoms, are attracting growing attention as one of the heteroatom-containing π-conjugated molecules. Herein, we developed the synthetic method of planar triphenylboranes bridged by two oxygen atoms and one nitrogen atom, and the substituent on the nitrogen atom is derived into various aryl and alkyl groups. A key intermediate bearing an imino group (-NH-) was synthesized from a bis-triflate precursor bridged by two oxo groups via a nucleophilic aromatic substitution reaction of benzyl amine and following debenzylation. The X-ray crystallographic analysis revealed that the compound exhibits a planar molecular structure which can form a one-dimensionally π-stacked structure. The photophysical and density functional theory studies revealed that their highest occupied molecular orbitals and lowest unoccupied molecular orbitals (LUMOs) are originated from the triphenylborane moiety, while introducing strong electron-withdrawing groups such as the 4-cyanophenyl group on the nitrogen atom can induce the localization of the LUMO at the aryl groups instead of the triphenylborane moiety.
Collapse
Affiliation(s)
- Yuichi Kitamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kazuma Oda
- Advanced Core Technology Center, Technology Development Headquarters, KONICA MINOLTA, INC., 2970 Ishikawa-machi, Hachioji-shi, Tokyo 192-8505, Japan
| | - Hiroshi Kita
- Advanced Core Technology Center, Technology Development Headquarters, KONICA MINOLTA, INC., 2970 Ishikawa-machi, Hachioji-shi, Tokyo 192-8505, Japan
| | - Tetsutaro Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shuichi Oi
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
5
|
Oshimizu R, Ando N, Yamaguchi S. Olefin–Borane Interactions in Donor–π–Acceptor Fluorophores that Undergo Frustrated‐Lewis‐Pair‐Type Reactions. Angew Chem Int Ed Engl 2022; 61:e202209394. [DOI: 10.1002/anie.202209394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ryo Oshimizu
- Department of Chemistry Graduate School of Science Research Center of Materials Science (RCMS) Integrated Research Consortium on Chemical Science (IRCCS) Nagoya University Furo Chikusa Nagoya, 464-8602 Japan
| | - Naoki Ando
- Department of Chemistry Graduate School of Science Research Center of Materials Science (RCMS) Integrated Research Consortium on Chemical Science (IRCCS) Nagoya University Furo Chikusa Nagoya, 464-8602 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science Research Center of Materials Science (RCMS) Integrated Research Consortium on Chemical Science (IRCCS) Nagoya University Furo Chikusa Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo Chikusa Nagoya, 464-8601 Japan
| |
Collapse
|
6
|
Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angew Chem Int Ed Engl 2022; 61:e202209271. [DOI: 10.1002/anie.202209271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Wenting Sun
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zengming Fan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
7
|
Tsutsui Y, Tanaka D, Manabe Y, Ikinaga Y, Yano K, Fukase K, Konishi A, Yasuda M. Synthesis of Cage‐Shaped Borates Bearing Pyrenylmethyl Groups: Efficient Lewis Acid Catalyst for Photoactivated Glycosylations Driven by Intramolecular Excimer Formation. Chemistry 2022; 28:e202202284. [DOI: 10.1002/chem.202202284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yuya Tsutsui
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Daiki Tanaka
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Yuka Ikinaga
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Kumpei Yano
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Akihito Konishi
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University Suita Osaka 565-0871 Japan
- Center for Atomic and Molecular Technologies Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Makoto Yasuda
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
8
|
Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Kaiqi Ye
- Jilin University College of Chemistry CHINA
| | - Chuandong Dou
- Jilin University State Key Laboratory of Supramolecular Structure and Materials No.2699 Qianjin Street 130012 Changchun CHINA
| | - Yue Wang
- Jilin University College of Chemistry CHINA
| |
Collapse
|
9
|
Oshimizu R, Ando N, Yamaguchi S. Olefin–Borane Interactions in Donor–π–Acceptor Fluorophores that Undergo Frustrated‐Lewis‐Pair‐Type Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Naoki Ando
- Nagoya Daigaku Graduate School of Science JAPAN
| | - Shigehiro Yamaguchi
- Nagoya University Department of Chemistry Graduate School of Science Furo, Chikusa 464-8602 Nagoya JAPAN
| |
Collapse
|
10
|
Sakai M, Mori M, Hirai M, Ando N, Yamaguchi S. Planarized Phenyldithienylboranes: Effects of the Bridging Moieties and π‐Extension on the Photophysical Properties and Lewis Acidity. Chemistry 2022; 28:e202200728. [DOI: 10.1002/chem.202200728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Mika Sakai
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Masayoshi Mori
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Masato Hirai
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| | - Naoki Ando
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
11
|
Narita H, Choi H, Ito M, Ando N, Ogi S, Yamaguchi S. Fully fused boron-doped polycyclic aromatic hydrocarbons: their synthesis, structure–property relationships, and self-assembly behavior in aqueous media. Chem Sci 2022; 13:1484-1491. [PMID: 35222933 PMCID: PMC8809413 DOI: 10.1039/d1sc06710a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Planarized triarylboranes are attracting increasing attention not only as models of boron-doped graphenes, but also as promising materials for organic optoelectronics. In particular, polycyclic aromatic hydrocarbon (PAH) skeletons with embedded boron atom(s) in the inner positions are of importance in light of their high chemical stability and π-stacking ability derived from their planar geometries. Herein, we disclose a robust synthesis of such fully fused boron-doped PAHs and their self-assembly behavior in aqueous media to explore their potential utility in biological applications. The synthesis using in situ-generated planar diarylboranes as a key precursor afforded a series of fully fused boron-doped PAHs, even including an amphiphilic derivative with hydrophilic side chains. These compounds exhibited red emission in solution, and slight structural modification resulted in increased fluorescence brightness. While these compounds showed relatively low Lewis acidity compared to their partially ring-fused counterparts, their Lewis acidities were slightly increased in polar solvents compared to those in nonpolar solvents. In addition, their B–N Lewis acid–base adducts, even those with a strong, charge-neutral Lewis base such as N,N-dimethylaminopyridine (DMAP), exhibited photo-dissociation behavior in the excited state. The amphiphilic derivative showed significant spectral changes with increased water content in DMSO/H2O mixed media and formed sheet-like aggregates. The disassembly and assembly processes of the aggregates were externally controlled by the addition of DMAP and an acid, accompanied by a change in the fluorescence intensity. A series of fully fused boron-doped polycyclic aromatic hydrocarbons is synthesized. Self-assembly of an amphiphilic derivative can be controlled by addition of a Lewis base or an acid in aqueous media.![]()
Collapse
Affiliation(s)
- Hiroki Narita
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Heekyoung Choi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Masato Ito
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Soichiro Ogi
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Ando N, Yamada T, Narita H, Oehlmann NN, Wagner M, Yamaguchi S. Boron-Doped Polycyclic π-Electron Systems with an Antiaromatic Borole Substructure That Forms Photoresponsive B–P Lewis Adducts. J Am Chem Soc 2021; 143:9944-9951. [DOI: 10.1021/jacs.1c04251] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naoki Ando
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Takuya Yamada
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Hiroki Narita
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Niels N. Oehlmann
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt (Main), Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt (Main), Germany
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
13
|
Kitamoto Y, Oda K, Ogino K, Hiyama K, Kita H, Hattori T, Oi S. Synthesis of an azadioxa-planar triphenylborane and investigation of its structural and photophysical properties. Chem Commun (Camb) 2021; 57:2297-2300. [PMID: 33533350 DOI: 10.1039/d0cc08331c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report here the first successful synthesis of planar triphenylborane 1 with the phenyl groups bridged by oxygen and nitrogen atoms via double nucleophilic aromatic substitution reaction. The hetero atom-bridged 1 has excellent planarity. Its structural and photophysical properties are tunable by altering the bridging atoms.
Collapse
Affiliation(s)
- Y Kitamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - K Oda
- Advanced Technology Center, Corporate R&D Headquarters, KONICA MINOLTA, INC., 2970 Ishikawa-Machi, Hachioji-shi, Tokyo 192-8505, Japan
| | - K Ogino
- Advanced Technology Center, Corporate R&D Headquarters, KONICA MINOLTA, INC., 2970 Ishikawa-Machi, Hachioji-shi, Tokyo 192-8505, Japan
| | - K Hiyama
- Advanced Technology Center, Corporate R&D Headquarters, KONICA MINOLTA, INC., 2970 Ishikawa-Machi, Hachioji-shi, Tokyo 192-8505, Japan
| | - H Kita
- Advanced Technology Center, Corporate R&D Headquarters, KONICA MINOLTA, INC., 2970 Ishikawa-Machi, Hachioji-shi, Tokyo 192-8505, Japan
| | - T Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - S Oi
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
14
|
Choi H, Ogi S, Ando N, Yamaguchi S. Dual Trapping of a Metastable Planarized Triarylborane π-System Based on Folding and Lewis Acid–Base Complexation for Seeded Polymerization. J Am Chem Soc 2021; 143:2953-2961. [DOI: 10.1021/jacs.0c13353] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Heekyoung Choi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Soichiro Ogi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
15
|
Adelizzi B, Chidchob P, Tanaka N, Lamers BAG, Meskers SCJ, Ogi S, Palmans ARA, Yamaguchi S, Meijer EW. Long-Lived Charge-Transfer State from B-N Frustrated Lewis Pairs Enchained in Supramolecular Copolymers. J Am Chem Soc 2020; 142:16681-16689. [PMID: 32880167 PMCID: PMC7530894 DOI: 10.1021/jacs.0c06921] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 12/16/2022]
Abstract
The field of supramolecular polymers is rapidly expanding; however, the exploitation of these systems as functional materials is still elusive. To become competitive, supramolecular polymers must display microstructural order and the emergence of new properties upon copolymerization. To tackle this, a greater understanding of the relationship between monomers' design and polymer microstructure is required as well as a set of functional monomers that efficiently interact with one another to synergistically generate new properties upon copolymerization. Here, we present the first implementation of frustrated Lewis pairs into supramolecular copolymers. Two supramolecular copolymers based on π-conjugated O-bridged triphenylborane and two different triphenylamines display the formation of B-N pairs within the supramolecular chain. The remarkably long lifetime and the circularly polarized nature of the resulting photoluminescence emission highlight the possibility to obtain an intermolecular B-N charge transfer. These results are proposed to be the consequences of the enchainment of B-N frustrated Lewis pairs within 1D supramolecular aggregates. Although it is challenging to obtain a precise molecular picture of the copolymer microstructure, the formation of random blocklike copolymers could be deduced from a combination of optical spectroscopic techniques and theoretical simulation.
Collapse
Affiliation(s)
- Beatrice Adelizzi
- Laboratory
of Macromolecular and Organic Chemistry and Institute for Complex Molecular
Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Pongphak Chidchob
- Laboratory
of Macromolecular and Organic Chemistry and Institute for Complex Molecular
Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Naoki Tanaka
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Brigitte A. G. Lamers
- Laboratory
of Macromolecular and Organic Chemistry and Institute for Complex Molecular
Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Stefan C. J. Meskers
- Laboratory
of Macromolecular and Organic Chemistry and Institute for Complex Molecular
Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Soichiro Ogi
- Department
of Chemistry, Graduate School of Science and Integrated Research Consortium
on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Anja R. A. Palmans
- Laboratory
of Macromolecular and Organic Chemistry and Institute for Complex Molecular
Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Shigehiro Yamaguchi
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- Department
of Chemistry, Graduate School of Science and Integrated Research Consortium
on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - E. W. Meijer
- Laboratory
of Macromolecular and Organic Chemistry and Institute for Complex Molecular
Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
16
|
Kilic A, Balci TE, Arslan N, Aydemir M, Durap F, Okumuş V, Tekin R. Synthesis of
cis
‐1,2‐diol‐type chiral ligands and their dioxaborinane derivatives: Application for the asymmetric transfer hydrogenation of various ketones and biological evaluation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ahmet Kilic
- Art and Science Faculty, Chemistry Department Harran University Sanliurfa 63190 Turkey
| | - Tuğba Ersayan Balci
- Art and Science Faculty, Chemistry Department Harran University Sanliurfa 63190 Turkey
| | - Nevin Arslan
- Department of Field Crops, Faculty of Agriculture Şırnak University Şırnak 73000 Turkey
| | - Murat Aydemir
- Department of Chemistry, Science Faculty Dicle University Diyarbakir 21280 Turkey
| | - Feyyaz Durap
- Department of Chemistry, Science Faculty Dicle University Diyarbakir 21280 Turkey
| | - Veysi Okumuş
- Department of Biology, Faculty of Science and Art University of Siirt Siirt 56100 Turkey
| | - Recep Tekin
- Department of Infectious Diseases and Clinical Microbiology DicleUniversity Faculty of Medicine Diyarbakir 21280 Turkey
| |
Collapse
|
17
|
Wolf WJ, Lin TP, Grubbs RH. Examining the Effects of Monomer and Catalyst Structure on the Mechanism of Ruthenium-Catalyzed Ring-Opening Metathesis Polymerization. J Am Chem Soc 2019; 141:17796-17808. [DOI: 10.1021/jacs.9b08835] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- William J. Wolf
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tzu-Pin Lin
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Robert H. Grubbs
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Paul I, Samanta D, Gaikwad S, Schmittel M. Selective detection of DABCO using a supramolecular interconversion as fluorescence reporter. Beilstein J Org Chem 2019; 15:1371-1378. [PMID: 31293687 PMCID: PMC6604717 DOI: 10.3762/bjoc.15.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/27/2019] [Indexed: 11/23/2022] Open
Abstract
The quantitative double self-sorting between the three-component rectangle [Cu4(1)2(2)2]4+ and the four-component sandwich complex [Cu2(1)(2)(4)]2+ is triggered by inclusion and release of DABCO (4). The fully reversible and clean switching between two multicomponent supramolecular architectures can be monitored by fluorescence changes at the zinc porphyrin sites. The structural changes are accompanied by a huge spatial contraction/expansion of the zinc porphyrin–zinc porphyrin distances that change from 31.2/38.8 Å to 6.6 Å and back. The supramolecular interconversion was used for the highly selective detection of DABCO in a mixture of other similar compounds.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Debabrata Samanta
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Sudhakar Gaikwad
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|