1
|
Wang Y, Ren D, Zhang Y, Li J, Meng W, Tong B, Zhang J, Han C, Dai L. In-situ integrated electrodes of FeM-MIL-88/CP for simultaneous ultra-sensitive detection of dopamine and acetaminophen based on crystal engineering strategy. Anal Chim Acta 2023; 1283:341936. [PMID: 37977775 DOI: 10.1016/j.aca.2023.341936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Designing and exploiting integrated electrodes is the current inevitable trend to realize the sustainable development of electrochemical sensors. In this work, a series of integrated electrodes prepared by in situ growing the second metal ion-modulated FeM-MIL-88 (M = Mn, Co and Ni) on carbon paper (CP) (FeM-MIL-88/CP) were constructed as the electrochemical sensing platforms for the simultaneous detection of dopamine (DA) and acetaminophen (AC). Among them, FeMn-MIL-88/CP exhibited the best sensing behaviors and achieved the trace detection for DA and AC owing to synergistic catalysis between Fe3+, Mn2+ and CP. The electrochemical sensor based on FeMn-MIL-88/CP showed ultra-high sensitivities of 2.85 and 7.46 μA μM-1 cm-2 and extremely low detection limits of 0.082 and 0.015 μM for DA and AC, respectively. The FeMn-MIL-88/CP also exhibited outstanding anti-interference ability, repeatability and stability, and satisfactory results were also obtained in the detection of actual samples. The mechanism of Mn2+ modulation on the electrocatalytic activity of FeMn-MIL-88/CP towards DA and AC was revealed for the first time through the density functional theory (DFT) calculations. Good adsorption energy and rapid electron transfer worked synergistically to improve the sensing performances of DA and AC. This work not only provided a high-performance integrated electrode for the sensing field, but also demonstrated the influencing factors of electrochemical sensing at the molecular levels, laying a theoretical foundation for the sustainable development of subsequent electrochemical sensing.
Collapse
Affiliation(s)
- Yue Wang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Dongmei Ren
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Junguo Li
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan, 063009, China
| | - Wei Meng
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China.
| | - Boran Tong
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Jing Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Chao Han
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China.
| | - Lei Dai
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China.
| |
Collapse
|
2
|
Li X, Deng D, He L, Xu Y. A non-enzymatic glucose sensor based on a mesoporous carbon sphere immobilized Co-MOF-74 nanocomposite. Dalton Trans 2023; 52:15447-15455. [PMID: 37455587 DOI: 10.1039/d3dt01544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Exploration of credible non-enzymatic glucose sensors with high selectivity and sensitivity is of great significance for early clinical monitoring of glucose concentration and preventing the threat of diabetes to human health. Here, mesoporous carbon (MC) sphere immobilized Co-MOF-74 nanorods (NRs), denoted as Co-MOF-74 NRs/MC, were successfully prepared, in which the nanostructural porous carbon sphere was obtained using cobalt glycolate as the built-in template followed by a subsequent carbonization and acid treatment, and the MC spheres were then in situ deposited on the surface of Co-MOF-74 NRs via a solvothermal method. Benefiting from the good conductivity of the grafted porous carbon spheres and the abundant active sites, as well as the permeability of microporous MOF-74 nanocrystals, the Co-MOF-74 NRs/MC modified glassy carbon electrode (GCE) exhibited effective non-enzymatic glucose sensing performance with a fast response time (less than 3 s) and a glucose sensitivity of 98.0 μA cm-2 mM-1. Furthermore, the Co-MOF-74 NRs/MC/GCE showed a favourable anti-interference capability in the presence of various interferents and good long-term reusability. The applicability of Co-MOF-74 NRs/MC/GCE for glucose sensing in real serum samples was also investigated, verifying the applicability of the electrode for targeted glucose monitoring in practical applications.
Collapse
Affiliation(s)
- Xianliang Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
| | - Diwei Deng
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
| | - Lufang He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China
| |
Collapse
|
3
|
Zanoni C, Spina S, Magnaghi LR, Guembe-Garcia M, Biesuz R, Alberti G. Potentiometric MIP-Modified Screen-Printed Cell for Phenoxy Herbicides Detection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16488. [PMID: 36554364 PMCID: PMC9779394 DOI: 10.3390/ijerph192416488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
In this study, a molecularly imprinted polymer (MIP)-based screen-printed cell is developed for detecting phenoxy herbicides using 2-methyl-4-chlorophenoxyacetic acid (MCPA) as the template. MCPA is a phenoxy herbicide widely used since 1945 to control broadleaf weeds via growth regulation, primarily in pasture and cereal crops. The potentiometric cell consists of a silver/silver chloride pseudo-reference electrode and a graphite working electrode coated with a MIP film. The polymeric layer is thermally formed after drop-coating of a pre-polymeric mixture composed of the reagents at the following molar ratio: 1 MCPA: 15 MAA (methacrylic acid): 7 EGDMA (ethylene glycol dimethacrylate). After template removal, the recognition cavities function as the ionophore of a classical ion selective electrode (ISE) membrane. The detected ion is the deprotonated MCPA specie, negatively charged, so the measurements were performed in phosphate buffer at pH 5.5. A linear decrease of the potential with MCPA concentration, ranging from 4 × 10-8 to 1 × 10-6 mol L-1, was obtained. The detection limit and the limit of quantification were, respectively, 10 nmol L-1 and 40 nmol L-1. A Nernstian slope of about -59 mV/dec was achieved. The method has precision and LOD required for MCPA determination in contaminated environmental samples.
Collapse
Affiliation(s)
- Camilla Zanoni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Stefano Spina
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Lisa Rita Magnaghi
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Marta Guembe-Garcia
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Raffaela Biesuz
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
4
|
Izhar F, Imran M, Izhar H, Latif S, Hussain N, Iqbal HMN, Bilal M. Recent advances in metal-based nanoporous materials for sensing environmentally-related biomolecules. CHEMOSPHERE 2022; 307:135999. [PMID: 35985388 DOI: 10.1016/j.chemosphere.2022.135999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Highly sensitive, stable, selective, efficient, and short reaction time sensors play a substantial role in daily life/industry and are the need of the day. Due to the rising environmental issues, nanoporous carbon and metal-based materials have attracted significant attention in environmental analysis owing to their intriguing and multifunctional properties and cost-effective and rapid detection of different analytes by sensing applications. Environmental-related issues such as pollution have been a significant threat to the world. Therefore, it is necessary to fabricate highly promising performance-based sensor materials with excellent reliability, selectivity and good sensitivity for monitoring various analytes. In this regard, different methods have been employed to fabricate these sensors comprising metal, metal oxides, metal oxide carbon composites and MOFs leading to the formation of nanoporous metal and carbon composites. These composites have exceptional properties such as large surface area, distinctive porosity, and high conductivity, making them promising candidates for several versatile sensing applications. This review covers recent advances and significant studies in the sensing field of various nanoporous metal and carbon composites. Key challenges and future opportunities in this exciting field are also part of this review.
Collapse
Affiliation(s)
- Fatima Izhar
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan.
| | - Hamyal Izhar
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 53700, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
5
|
Mousazadeh F, Mohammadi SZ, Akbari S, Mofidinasab N, Aflatoonian MR, Shokooh-Saljooghi A. Recent Advantages of Mediator Based Chemically Modified Electrodes;
Powerful Approach in Electroanalytical Chemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017999201224124347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Modified electrodes have advanced from the initial studies aimed at understanding
electron transfer in films to applications in areas such as energy production and analytical
chemistry. This review emphasizes the major classes of modified electrodes with mediators
that are being explored for improving analytical methodology. Chemically modified electrodes
(CMEs) have been widely used to counter the problems of poor sensitivity and selectivity faced in
bare electrodes. We have briefly reviewed the organometallic and organic mediators that have been
extensively employed to engineer adapted electrode surfaces for the detection of different compounds.
Also, the characteristics of the materials that improve the electrocatalytic activity of the
modified surfaces are discussed.
Objective:
Improvement and promotion of pragmatic CMEs have generated a diversity of novel
and probable strong detection prospects for electroanalysis. While the capability of handling the
chemical nature of the electrode/solution interface accurately and creatively increases , it is predictable
that different mediators-based CMEs could be developed with electrocatalytic activity and
completely new applications be advanced.
Collapse
Affiliation(s)
| | | | - Sedighe Akbari
- Islamic Azad University, Shahrbabak Branch, Shahrbabak,Iran
| | | | - Mohammad Reza Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | | |
Collapse
|
6
|
Fu X, Sale M, Ding B, Lewis W, Silvester DS, Ling CD, D'Alessandro DM. Hydrogen-Bonding 2D Coordination Polymer for Enzyme-Free Electrochemical Glucose Sensing. CrystEngComm 2022. [DOI: 10.1039/d2ce00240j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regular detection of blood glucose levels is a critical indicator for effective diabetes management. Owing to the intrinsic highly sensitive nature of enzymes, the performance of enzymatic glucose sensors is...
Collapse
|
7
|
Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 2021; 199:113867. [PMID: 34890884 DOI: 10.1016/j.bios.2021.113867] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/22/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) are remarkably porous materials that have sparked a lot of interest in recent years because of their fascinating architectures and variety of potential applications. This paper systematically summarizes recent breakthroughs in MOFs and their derivatives with different materials such as, carbon nanotubes, graphene oxides, carbon fibers, enzymes, antibodies and aptamers etc. for enhanced electrochemical sensing applications. Furthermore, an overview part is highlighted, which provides some insights into the future prospects and directions of MOFs and their derivatives in electrochemical sensing, with the goal of overcoming present limitations by pursuing more inventive ways. This overview can perhaps provide some creative ideas for future research on MOF-based materials in this rapidly expanding field.
Collapse
|
8
|
Xu X, Zhang Y, Han Y, Wu J, Zhang X, Xu Y. Nanosized CuO encapsulated Ni/Co bimetal Prussian blue with high anti-interference and stability for electrochemical non-enzymatic glucose detection. Dalton Trans 2021; 50:13748-13755. [PMID: 34519736 DOI: 10.1039/d1dt02361f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-enzymatic glucose sensors based on metal oxides are receiving remarkable attention owing to their outstanding characteristics of being easy-to use, low cost, and reusability. However, the disadvantage of weak anti-interference associated with poor selectivity significantly restricts their applicability. Herein, we report a two-step in situ fabrication of nanosized CuO encapsulated Ni/Co bimetal Prussian blue (PB) with a typical core-shell structure, which can be efficiently used for non-enzymatic glucose detection, ascribing to the permeability and abundant active sites of out-shelled crystalline porous Ni/Co PB and the high catalytic activity and conductivity of embedded CuO nanoparticles, afforded by their mutual synergistic interactions. The glassy carbon electrode modified with the hybrid of the CuO-encapsulated Ni/Co PB (simplified as the Ni/Co-PB/CuO/GCE electrode) exhibited a high glucose sensitivity of 600 μA mM-1 cm-2 with a low detection limit of 0.69 μM (S/N = 3), a fast response time (less than 3 s), and excellent long-term stability. In addition, the CuO-encapsulated Ni/Co PB showed favorable anti-interference ability in the presence of ascorbic acid (AA), L-lysine (Lys), dopamine (DA), cysteine (Cys), dopamine (DA), and KCl interferences. The reusability and long-term stability, as well as the practicability of the Ni/Co-PB/CuO/GCE sensing electrode verified by testing real serum samples were also investigated, and the experimental results demonstrated the applicability of the core-shell NiCo-PB/CuO based flexible electrochemical sensor for non-enzymatic glucose sensing in practical applications.
Collapse
Affiliation(s)
- Xuejuan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Yuchi Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Yide Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Junbiao Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Xia Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Gorle DB, Ponnada S, Kiai MS, Nair KK, Nowduri A, Swart HC, Ang EH, Nanda KK. Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors. J Mater Chem B 2021; 9:7927-7954. [PMID: 34612291 DOI: 10.1039/d1tb01403j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes is a type of disease that threatens human health, which can be diagnosed based on the level of glucose in the blood. Recently, various MOF-based materials have been developed as efficient electrochemical glucose sensors because of their tunable pore channels, large specific surface area well dispersed metallic active sites, etc. In this review, the significance of glucose detection and the advantages of MOF-based materials for this application are primarily discussed. Then, the application of MOF-based materials can be categorized into two types of glucose sensors: enzymatic biosensors and non-enzymatic sensors. Finally, insights into the current research challenges and future breakthrough possibilities regarding electrochemical glucose sensors are considered.
Collapse
Affiliation(s)
- Demudu Babu Gorle
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| | - Srikanth Ponnada
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Maryam Sadat Kiai
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul-34469, Turkey
| | - Kishore Kumar Nair
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Annapurna Nowduri
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Hendrik C Swart
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education Singapore, Nanyang Technological University Singapore, Nanyang Walk-637616, Singapore
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
10
|
Chen Q, Chu D, Yan L, Lai H, Chu XQ, Ge D, Chen X. Enhanced non-enzymatic glucose sensing based on porous ZIF-67 hollow nanoprisms. NEW J CHEM 2021. [DOI: 10.1039/d1nj01138c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Porous ZIF-67 hollow nanoprisms based non-enzymatic glucose sensor was successfully prepared using Co5(OH)2(OAc)8·2H2O as a precursor by a diffusion-controlled strategy, which exhibited wide linear range and high sensitivity.
Collapse
Affiliation(s)
- Qiwen Chen
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Dandan Chu
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Li Yan
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Haichen Lai
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Xue-Qiang Chu
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Danhua Ge
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| |
Collapse
|
11
|
Gold nanoparticles decorated bimetallic CuNi-based hollow nanoarchitecture for the enhancement of electrochemical sensing performance of nitrite. Mikrochim Acta 2020; 187:572. [PMID: 32940777 DOI: 10.1007/s00604-020-04545-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/02/2020] [Indexed: 01/24/2023]
Abstract
Gold nanoparticles (AuNPs) decorated bimetallic CuNi-based hollow nanoarchitecture (CNHN) are reported for the first time as a nonenzymatic sensor for the quantification of nitrite in neutral solution . The CNHN was prepared via a convenient calcining routine using the bimetallic CuNi-MOFs as a coprecursor. The unique chemical structure of hollow CNHN with high specific surface area and abundant terminal amino groups effectively avoid the aggregation of AuNPs and facilitate the subsequent adsorption of nitrite. The Au/CNHN exhibited high electrocatalytic activity towards nitrite oxidation due to the synergetic catalytic effect of AuNPs and CNHN. Chronoamperometric detection of nitrite at the Au/CNHN/GCE achieved a lower linear calibration range of 0.05 to 1.15 mM, with an LOD of 0.017 μM compared with previous reports. The proposed method obtained satisfactory recoveries for nitrite determination in practical applications, which was verified by UV-Vis spectrophotometry. The prepared sensor based on Au/CNHN featured favorable selectivity and stability, which provides a promising approach for real sample analysis. Graphical abstract.
Collapse
|
12
|
Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213222] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Yang N, Guo K, Zhang Y, Xu C. Engineering the valence state of ZIF-67 by Cu2O for efficient nonenzymatic glucose detection. J Mater Chem B 2020; 8:2856-2861. [DOI: 10.1039/d0tb00094a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The valence state regulation of Co-based electrocatalysts is extremely important and greatly challenging to enhance the electrochemical performance toward glucose oxidation.
Collapse
Affiliation(s)
- Nian Yang
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Kailu Guo
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yanwen Zhang
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
14
|
Dai Z, Yang A, Bao X, Yang R. Facile Non-Enzymatic Electrochemical Sensing for Glucose Based on Cu 2O-BSA Nanoparticles Modified GCE. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2824. [PMID: 31238594 PMCID: PMC6631518 DOI: 10.3390/s19122824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Transition-metal nanomaterials are very important to non-enzymatic glucose sensing because of their excellent electrocatalytic ability, good selectivity, the fact that they are not easily interfered with by chloride ion (Cl-), and low cost. However, the linear detection range needs to be expanded. In this paper, Cu2O-bovine serum albumin (BSA) core-shell nanoparticles (NPs) were synthesized for the first time in air at room temperature by a facile and green route. The structure and morphology of Cu2O-BSA NPs were characterized. The as-prepared Cu2O-BSA NPs were used to modify the glassy carbon electrode (GCE) in a Nafion matrix. By using cyclic voltammetry (CV), the influence from scanning speed, concentration of NaOH, and load of Cu2O-BSA NPs for the modified electrodes was probed. Cu2O-BSA NPs showed direct electrocatalytic activity for the oxidation of glucose in 50 mM NaOH solution at 0.6 V. The chronoamperometry result showed this constructing sensor in the detection of glucose with a lowest detection limit of 0.4 μM, a linear detection range up to 10 mM, a high sensitivity of 1144.81 μAmM-1cm-2 and reliable anti-interference property to Cl-, uric acid (UA), ascorbic acid (AA), and acetaminophen (AP). Cu2O-BSA NPs are promising nanostructures for the fabrication of non-enzymatic glucose electrochemical sensing devices.
Collapse
Affiliation(s)
- Zhikuang Dai
- Department of Physics, College of Information Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China.
| | - Ailing Yang
- Department of Physics, College of Information Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China.
| | - Xichang Bao
- Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266100, Shandong, China.
| | - Renqiang Yang
- Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266100, Shandong, China.
| |
Collapse
|
15
|
Selective, sensitive, and recyclable sensing of ascorbic acid in water based on a water-stable Zn (II) coordination polymer. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Li N, Li Q, Yuan M, Guo X, Zheng S, Pang H. Synthesis of Co 0.5 Mn 0.1 Ni 0.4 C 2 O 4 ⋅n H 2 O Micropolyhedrons: Multimetal Synergy for High-Performance Glucose Oxidation Catalysis. Chem Asian J 2019; 14:2259-2265. [PMID: 30977269 DOI: 10.1002/asia.201900361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/09/2019] [Indexed: 01/21/2023]
Abstract
Owing to the synergy between metals, trimetal oxalate micropolyhedrons have been synthesized by means of a room-temperature coprecipitation strategy. The effect of their nanoscale size on their electrochemical performance toward glucose oxidation was investigated. In particular, the Co0.5 Mn0.1 Ni0.4 C2 O4 ⋅n H2 O micropolyhedrons illustrated prominent electrocatalytic activity for the glucose oxidation reaction. Additionally, the Co0.5 Mn0.1 Ni0.4 C2 O4 ⋅n H2 O micropolyhedrons, when used as an electrode material, illustrated an excellent lower limit of detection (1.5 μm), a wide detection concentration range (0.5-5065.5 μm), and a high sensitivity (493.5 μA mm-1 cm-2 ). Further analysis indicated that the effectively improved conductivity may have been due to the small size of the materials, and it was easier to form a flat film when Nafion was coated onto the glassy carbon electrode.
Collapse
Affiliation(s)
- Nan Li
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Meijuan Yuan
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Shasha Zheng
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| |
Collapse
|
17
|
Significantly enhanced activity of ZIF-67-supported nickel phosphate for electrocatalytic glucose oxidation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Chen X, Liu D, Cao G, Tang Y, Wu C. In Situ Synthesis of a Sandwich-like Graphene@ZIF-67 Heterostructure for Highly Sensitive Nonenzymatic Glucose Sensing in Human Serums. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9374-9384. [PMID: 30727733 DOI: 10.1021/acsami.8b22478] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-organic frameworks (MOFs) have been extensively studied in recent years due to their tunable porosity, huge specific area, and controllable structure. The rich metal centers and large specific area have endowed MOFs with excellent electrochemical activity due to the multiple valence states, but the poor electronic conductivity of MOFs seriously impedes their electrocatalytic performance. Here, a polyhedral Co-based zeolite imidazole frame [Co(mim)2] n (denoted as ZIF-67, mim = 2-methylimidazole) is in situ loaded on the two sides of physically exfoliated graphene nanosheets (GSs) at room temperature, and sandwich-like GS@ZIF-67 hybrids with an ordered nanostructure are easily obtained. Compared with each individual component, the as-synthesized GS@ZIF-67 hybrids exhibit higher electrochemical activity toward glucose oxidation. Besides, the hierarchical nanocomposites also show better electrocatalytic performance compared with the same ratio of a physical mixture of GSs and ZIF-67, further demonstrating the synergistic effect between ZIF-67 and GSs. Thus, a highly sensitive nonenzymatic glucose electrochemical sensor is proposed with a linear range of 1-805.5 μM, sensitivity of 1521.1 μA Mm-1 cm-2, detection limit of 0.36 μM (S/N = 3), and excellent stability and selectivity. More importantly, the newly fabricated sensor is also successfully applied for glucose determination in human serums with satisfactory results, suggesting its promising potential toward glucose detection in real samples.
Collapse
Affiliation(s)
- Xuerong Chen
- Faculty of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
- School of Laboratory Medicine , Hubei University of Chinese Medicine , Wuhan 430065 , China
| | - Dan Liu
- College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , China
| | - Guojun Cao
- Department of Hepatobiliary Surgery, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Yong Tang
- Department of Hepatobiliary Surgery, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Can Wu
- Faculty of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| |
Collapse
|
19
|
Liu X, Hu M, Wang M, Song Y, Zhou N, He L, Zhang Z. Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens Bioelectron 2018; 123:59-68. [PMID: 30312876 DOI: 10.1016/j.bios.2018.09.089] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022]
Abstract
Owning to the misuse of the antibiotics in animal husbandry and agriculture, it is highly urgent to determine the quantification of antibiotics in biological systems by the simple, sensitive, and fast method. In this work, a novel nanoarchitecture of Co-based metal-organic frameworks (Co-MOF) and terephthalonitrile-based covalent organic framework (TPN-COF) was synthesized (represented by Co-MOF@TPN-COF), followed by the exploitation as the bioplatform of non-label aptasensor for detecting the most frequently used β-lactam antibiotics, ampicillin (AMP). The new porous hybrid material of Co-MOF@TPN-COF was synthesized by adding the as-prepared TPN-COF into the Co-MOF preparation system. The multilayered Co-MOF@TPN-COF nanosheets exhibit a high specific surface area (52.64 m2 g-1), nitrogen-rich groups and excellent electrochemical activity. As a result, large amounts of aptamer strands can be bound over the Co-MOF@TPN-COF nanosheets owning to the strong π-π stacking and hydrogen bonds. When detecting AMP by the electrochemical impedance spectroscopy, the fabricated Co-MOF@TPN-COF-based aptasensor exhibits an ultra-low detection limit of 0.217 fg mL-1 within the AMP concentration from 1.0 fg mL-1 to 2.0 ng mL-1, which was superior to those previously reported in literatures. In addition, this proposed aptasensor also shows high selectivity, good reproducibility and stability, acceptable regenerability, and favorable applicability in human serum, river water and milk. Therefore, the proposed Co-MOF@TPN-COF-based aptasensor has a great promise to be applied as a powerful tool in the fields of food safety.
Collapse
Affiliation(s)
- Xiaokang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Mengyao Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China.
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China.
| |
Collapse
|