1
|
Xue ZF, Cheng WC, Wang L, Xie YX, Qin P, Shi C. Immobilizing lead in aqueous solution and loess soil using microbially induced carbonate/phosphate precipitation (MICP/MIPP) under harsh pH environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135884. [PMID: 39298970 DOI: 10.1016/j.jhazmat.2024.135884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The bioaccumulation of heavy metals due to metallurgical and smelting activities threatens human health. Although microbial-induced carbonate/phosphate precipitation (MICP/MIPP) technology has been applied to heavy metal remediation, the relative merits of MICP and MIPP, especially under extreme pH environments, have not yet been documented. In this study, Sporosarcina pasteurii (SP)-based MICP and Bacillus megaterium (BM)-based MIPP were applied to immobilize lead (Pb) in aqueous solution and loess soil. The results showed that the BM retained a strong phosphorolysis ability when under strongly acidic conditions, while the ureolysis ability of SP approached zero. Furthermore, the bioprecipitates obtained under BM-based MIPP had a denser appearance, presumably due to the enrichment of calcite and apatite crystals. The results also showed that Pb immobilization was achieved through bacterial adsorption, the chelate function of sodium glycerophosphate (SGP), large organic matter complexation, and biomineralization through the MICP/MIPP mechanism. Under SP-based MICP, SP and large organic matter immobilized Pb2+ at rates of 17.6 % and 31.7 %, respectively, while under BM-based MIPP, BM, organic matter, and SGP immobilized Pb2+ at rates of 21.5 %, 23.4 %, and 48.5 % respectively. The MICP and MIPP mechanisms dominated Pb immobilization at rates of 78.6 % and 99.6 %, respectively.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Peng Qin
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Cong Shi
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| |
Collapse
|
2
|
Sun C, Huang J, Guo X, Zhang C, Wei L, Wong KI, Yang Z, Zhao G, Lu M, Yao W. An all-in-one therapeutic platform for the treatment of resistant Helicobacter pylori infection. Biomaterials 2024; 308:122540. [PMID: 38537343 DOI: 10.1016/j.biomaterials.2024.122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
Helicobacter pylori (H. pylori) infection is a major cause of gastric diseases. Currently, bismuth-based quadruple therapy is widely adopted for eradicating H. pylori infection. However, this first-line strategy faces several challenges such as drug resistance, intestinal dysbacteriosis, and patients' poor compliance. To overcome these problems, an all-in-one therapeutic platform (CLA-Bi-ZnO2@Lipo) that composed of liposomes loading clarithromycin (CLA), Bi, and ZnO2 hybrid nanoparticles was developed for eradicating multidrug-resistant (MDR) H. pylori. The in vitro and in vivo results showed that CLA-Bi-ZnO2@Lipo could target the infection-induced inflammatory mucosa through liposome mediated nanoparticle-tissue surface charge interaction and quickly respond to the gastric acid environment to release CLA, Bi3+, Zn2+, and H2O2. By oral administration per day, the acid triggered decomposition of CLA-Bi-ZnO2@Lipo could significantly increase intragastric pH to 6 within 30 min; The released CLA, Zn2+, and H2O2 further exerted synergistical anti-bacterial effects in which a ∼2 order higher efficacy in reducing MDR H. pylori burden was achieved in comparison with standard quadruple therapy (p < 0.05); The released Zn2+ and Bi3+ could also alleviate mucosal inflammation. Most importantly, the CLA-Bi-ZnO2@Lipo exhibited superior biosafety and nearly no side effects on intestinal flora. Overall, this study developed a highly integrated and safe anti-MDR H. pylori agent which had great potential to be used as an alternative treatment for MDR H. pylori eradication.
Collapse
Affiliation(s)
- Chao Sun
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jia Huang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xiaoqian Guo
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Chenli Zhang
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Ka Ioi Wong
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Ziyun Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Weiyan Yao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
3
|
Contini L, Paul A, Mazzei L, Ciurli S, Roncarati D, Braga D, Grepioni F. Is bismuth(III) able to inhibit the activity of urease? Puzzling results in the quest for soluble urease complexes for agrochemical and medicinal applications. Dalton Trans 2024; 53:10553-10562. [PMID: 38847020 DOI: 10.1039/d4dt00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Bismuth(III) complexes have been reported to act as inhibitors of the enzyme urease, ubiquitously present in soils and implicated in the pathogenesis of several microorganisms. The general insolubility of Bi(III) complexes in water at neutral pH, however, is an obstacle to their utilization. In our quest to improve the solubility of Bi(III) complexes, we selected a compound reported to inhibit urease, namely [Bi(HEDTA)]·2H2O, and co-crystallized it with (i) racemic DL-histidine to obtain the conglomerate [Bi2(HEDTA)2(μ-D-His)2]·6H2O + [Bi2(HEDTA)2(μ-L-His)2]·6H2O, (ii) enantiopure L-histidine to yield [Bi2(HEDTA)2(μ-L-His)2]·6H2O, and (iii) cytosine to obtain [Bi(HEDTA)]·Cyt·2H2O. All compounds, synthesised by mechanochemical methods and by slurry, were characterized in the solid state by calorimetric (DSC and TGA) and spectroscopic (IR) methods, and their structures were determined using powder X-ray diffraction (PXRD) data. All compounds show an appreciable solubility in water, with values ranging from 6.8 mg mL-1 for the starting compound [Bi(HEDTA)]·2H2O to 36 mg mL-1 for [Bi2(HEDTA)2(μ-L-His)2]·6H2O. The three synthesized compounds as well as [Bi(HEDTA)]·2H2O were then tested for inhibition activity against urease. Surprisingly, no enzymatic inhibition was observed during in vitro assays using Canavalia ensiformis urease and in vivo assays using cultures of Helicobacter pylori, raising questions on the efficacy of Bi(III) compounds to counteract the negative effects of urease activity in the agro-environment and in human health.
Collapse
Affiliation(s)
- Laura Contini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Arundhati Paul
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Dario Braga
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Fabrizia Grepioni
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
4
|
Liu J, Li X, Zhu Q, Zhou J, Shi L, Lu W, Bao L, Meng L, Wu L, Zhang N, Christie P. Differences in the activities of six soil enzymes in response to cadmium contamination of paddy soils in high geological background areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123704. [PMID: 38442823 DOI: 10.1016/j.envpol.2024.123704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
East Yunnan province in southwest China is a region with elevated natural abundance (high geological background levels) of Cd due to high metal (loid) contents in the soils. Enzyme activities are useful indicators of metal (loid) toxicity in contaminated soils and whether Cd inhibits enzyme activities in paddy soils in high geological background areas is of considerable public concern. A pot experiment combined with field investigation was conducted to assess the effects of Cd on six soil enzymes that are essential to the cycling of C, N, and P in soils. Inhibitory effects of Cd fractions on enzyme activities were assessed using ecological dose-response models. The impact of soil properties on the inhibition of sensitive soil enzymes by Cd were assessed using linear and structural equation models. Cadmium was enriched in the paddy soils with 72.2 % of soil samples from high geological background areas exceeding the Chinese threshold values (GB 15618-2018) of Cd. Enzyme responses to Cd contamination varied markedly with a negative response by catalase but a positive response by invertase. Urease, β-glucosidase, and alkaline phosphatase activities were stimulated at low Cd concentrations and inhibited at high concentrations. The average inhibition ratios of β-glucosidase, urease, and catalase in high Cd levels were 19.9, 38.9, and 51.9%, respectively. Ecological dose-response models indicate that catalase and urease were the most Cd-sensitive of the enzymes studied and were suitable indicators of soil quality in high geological background areas. Structural equation modeling (SEM) indicates that soil properties influenced sensitive enzymes through various pathways, indicating that soil properties were factors determining Cd inhibition of enzyme activities. This suggests that Cd concentrations and soil physicochemical properties under a range of environmental conditions should be considered in addressing soil Cd pollution.
Collapse
Affiliation(s)
- Juan Liu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xinyang Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qilin Zhu
- College of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Jiawen Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Lingfeng Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Weihong Lu
- Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming 650201, China; School of Environment and Surveying Engineering, Suzhou University, Suzhou 234099, China.
| | - Li Bao
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming 650201, China.
| | - Lei Meng
- College of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Longhua Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Naiming Zhang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming 650201, China.
| | - Peter Christie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Mazzei L, Paul A, Cianci M, Devodier M, Mandelli D, Carloni P, Ciurli S. Kinetic and structural details of urease inactivation by thiuram disulphides. J Inorg Biochem 2024; 250:112398. [PMID: 37879152 DOI: 10.1016/j.jinorgbio.2023.112398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
This paper reports on the molecular details of the reactivity of urease, a nickel-dependent enzyme that catalyses the last step of organic nitrogen mineralization, with thiuram disulphides, a class of molecules known to inactivate the enzyme with high efficacy but for which the mechanism of action had not been yet established. IC50 values of tetramethylthiuram disulphide (TMTD or Thiram) and tetraethylthiuram disulphide (TETD or Disulfiram) in the low micromolar range were determined for plant and bacterial ureases. The X-ray crystal structure of Sporosarcina pasteurii urease inactivated by Thiram, determined at 1.68 Å resolution, revealed the presence of a covalent modification of the catalytically essential cysteine residue. This is located on the flexible flap that modulates the size of the active site channel and cavity. Formation of a Cys-S-S-C(S)-N(CH3)2 functionality responsible for enzyme inactivation was observed. Quantum-mechanical calculations carried out to rationalise the large reactivity of the active site cysteine support the view that a conserved histidine residue, adjacent to the cysteine in the active site flap, modulates the charge and electron density along the thiol SH bond by shifting electrons towards the sulphur atom and rendering the thiol proton more reactive. We speculate that this proton could be transferred to the nickel-coordinated urea amide group to yield a molecule of ammonia from the generated Curea-NH3+ functionality during catalysis.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Arundhati Paul
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, Ancona I-60131, Italy
| | - Marta Devodier
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany; Università degli Studi di Parma, Via Università 12, Parma I-43121, Italy
| | - Davide Mandelli
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany; Department of Physics and Universitätsklinikum, RWTH Aachen University, Aachen D-52074, Germany
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy
| |
Collapse
|
6
|
Yang W, Peng Z, Wang G. An overview: metal-based inhibitors of urease. J Enzyme Inhib Med Chem 2023; 38:361-375. [PMID: 36446640 PMCID: PMC11003495 DOI: 10.1080/14756366.2022.2150182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Urease is a kind of nickel-dependent metalloenzyme, which exists in the biological world widely, and can catalyse the hydrolysis of urea into ammonia and carbon dioxide to provide a nitrogen source for organisms. Urease has important uses in agriculture and medicine because it can catalyse the production of ammonia. Therefore, in this review, metal-based inhibitors of urease will be summarised according to different transition metal ions. Including the urease inhibition, structure-activity relationship, and molecular docking. Importantly, among these reviewed effective urease inhibitors, most of copper metal complexes exhibited stronger urease inhibition with IC50 values ranging from 0.46 μM to 41.1 μM. Significantly, the collected comprehensive information looks forward to providing rational guidance and effective strategies for the development of novel, potent, and safe metal-based urease inhibitors, which are better for practical applications in the future.
Collapse
Affiliation(s)
- Wei Yang
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Huang M, Cui P, Zhou J, Liu C, Wang Y. Theoretical study on the inhibition mechanisms of heavy metal ions on urease activity. CHEMOSPHERE 2023; 345:140416. [PMID: 37827462 DOI: 10.1016/j.chemosphere.2023.140416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Soil urease is highly sensitive to soil heavy metal pollution, and thus its activity can be used as bio-indicator of soil health. However, little is known about the inhibition mechanisms of heavy metals on urease. The effects of dimetallic substitution (i.e., Cd, Co, Cu, Hg, and Zn) on the binding of urea in the urease and its subsequent decomposition were studied using quantum chemical methodologies with a urease mimic (phthalazine-dinickel complex). The dimetallic substitution altered the structural features of the dimetal complexes and the M-O bond length between the dimetals and the carbonyl-O of coordinated urea molecules, weakening the binding energies of urea in dimetal complexes, which further affected the transformation of urea. In the urea decomposition via intra-molecular proton transfer, all dimetal complexes have a high activation barrier due to the weak binding of urea in complexes and hydrogen bonding within urea molecules, which are therefore difficult to occur spontaneously. In the urea decomposition via water-assisted inter-molecular proton transfer, the addition of water molecules decreased the energy barrier of urea decomposition. Regardless of the urea decomposition pathway, the dimetallic substitution altered the M-O bond length and hydrogen bond pattern of intermediates and transition states, and also affected the leave of the resulting NH3 from the dimetal complexes by regulating the C-N bond length within the decomposed urea molecule. Overall, the theoretical study provided insight into the molecular mechanisms of the inhibitory effects of heavy metals on urease activity.
Collapse
Affiliation(s)
- Meiying Huang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peixin Cui
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Cun Liu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Yujun Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Pormohammad A, Firrincieli A, Salazar-Alemán DA, Mohammadi M, Hansen D, Cappelletti M, Zannoni D, Zarei M, Turner RJ. Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0062823. [PMID: 37409940 PMCID: PMC10433965 DOI: 10.1128/spectrum.00628-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
The constant, ever-increasing antibiotic resistance crisis leads to the announcement of "urgent, novel antibiotics needed" by the World Health Organization. Our previous works showed a promising synergistic antibacterial activity of silver nitrate with potassium tellurite out of thousands of other metal/metalloid-based antibacterial combinations. The silver-tellurite combined treatment not only is more effective than common antibiotics but also prevents bacterial recovery, decreases the risk of future resistance chance, and decreases the effective concentrations. We demonstrate that the silver-tellurite combination is effective against clinical isolates. Further, this study was conducted to address knowledge gaps in the available data on the antibacterial mechanism of both silver and tellurite, as well as to give insight into how the mixture provides synergism as a combination. Here, we defined the differentially expressed gene profile of Pseudomonas aeruginosa under silver, tellurite, and silver-tellurite combination stress using an RNA sequencing approach to examine the global transcriptional changes in the challenged cultures grown in simulated wound fluid. The study was complemented with metabolomics and biochemistry assays. Both metal ions mainly affected four cellular processes, including sulfur homeostasis, reactive oxygen species response, energy pathways, and the bacterial cell membrane (for silver). Using a Caenorhabditis elegans animal model we showed silver-tellurite has reduced toxicity over individual metal/metalloid salts and provides increased antioxidant properties to the host. This work demonstrates that the addition of tellurite would improve the efficacy of silver in biomedical applications. IMPORTANCE Metals and/or metalloids could represent antimicrobial alternatives for industrial and clinical applications (e.g., surface coatings, livestock, and topical infection control) because of their great properties, such as good stability and long half-life. Silver is the most common antimicrobial metal, but resistance prevalence is high, and it can be toxic to the host above a certain concentration. We found that a silver-tellurite composition has antibacterial synergistic effect and that the combination is beneficial to the host. So, the efficacy and application of silver could increase by adding tellurite in the recommended concentration(s). We used different methods to evaluate the mechanism for how this combination can be so incredibly synergistic, leading to efficacy against antibiotic- and silver-resistant isolates. Our two main findings are that (i) both silver and tellurite mostly target the same pathways and (ii) the coapplication of silver with tellurite tends not to target new pathways but targets the same pathways with an amplified change.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- CCrest Laboratories, Inc., Montreal, Quebec, Canada
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo, Italy
| | - Daniel A. Salazar-Alemán
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mohammadi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Sai J, Zhou L, Jiang L, Xue D, Pei R, Liu A, Xu L. Dual Signal Amplification by Urease Catalysis and Silver Nanoparticles for Ultrasensitive Colorimetric Detection of Nucleic Acids. Anal Chem 2023. [PMID: 37464726 DOI: 10.1021/acs.analchem.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Signal amplification techniques are highly desirable for the analysis of low-level targets that are closely related with diseases and the monitoring of important biological processes. However, it is still challenging to achieve this goal in a facile and economical way. Herein, we developed a novel dual signal amplification strategy by combining urease catalysis with the release of Ag+ from silver nanoparticles (AgNPs). This strategy was used for quantifying a DNA sequence (HIV-1) related with human immunodeficiency virus (HIV). DNA target HIV-1 hybridizes with the capture DNA probe on magnetic beads and the reporter DNA probe on AgNPs, forming a sandwich complex. The captured AgNPs are then transformed into numerous Ag+ ions that inactivate numerous ureases. Without catalytic production of ammonia from urea, the substrate solution shows a low pH 5.8 that will increase otherwise. The pH change is monitored by a pH indicator (phenol red), which allows for colorimetric detection. The proposed approach is sensitive, easy to use, economic, and universal, exhibiting a low detection limit of 9.7 fM (i.e., 1.94 attomoles) and a dynamic linear range of 4 orders for HIV-1 sequence detection.
Collapse
Affiliation(s)
- Jialin Sai
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Lu Zhou
- Department of Neurology, Affiliated Taizhou Hospital of Wenzhou Medical University, Linhai 317000, China
| | - Lin Jiang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Dongguo Xue
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Lijun Xu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
10
|
Ronga L, Varcamonti M, Tesauro D. Structure-Activity Relationships in NHC-Silver Complexes as Antimicrobial Agents. Molecules 2023; 28:molecules28114435. [PMID: 37298911 DOI: 10.3390/molecules28114435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Silver has a long history of antimicrobial activity and received an increasing interest in last decades owing to the rise in antimicrobial resistance. The major drawback is the limited duration of its antimicrobial activity. The broad-spectrum silver containing antimicrobial agents are well represented by N-heterocyclic carbenes (NHCs) silver complexes. Due to their stability, this class of complexes can release the active Ag+ cations in prolonged time. Moreover, the properties of NHC can be tuned introducing alkyl moieties on N-heterocycle to provide a range of versatile structures with different stability and lipophilicity. This review presents designed Ag complexes and their biological activity against Gram-positive, Gram-negative bacteria and fungal strains. In particular, the structure-activity relationships underlining the major requirements to increase the capability to induce microorganism death are highlighted here. Moreover, some examples of encapsulation of silver-NHC complexes in polymer-based supramolecular aggregates are reported. The targeted delivery of silver complexes to the infected sites will be the most promising goal for the future.
Collapse
Affiliation(s)
- Luisa Ronga
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Mario Varcamonti
- Department of Biology, University of Naples "Federico II", Via Cynthia, 80143 Naples, Italy
| | - Diego Tesauro
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Montesano, 49, 80131 Naples, Italy
| |
Collapse
|
11
|
Kerber O, Tran J, Misiaszek A, Chorążewska A, Bal W, Krężel A. Zn(II) to Ag(I) Swap in Rad50 Zinc Hook Domain Leads to Interprotein Complex Disruption through the Formation of Highly Stable Ag x(Cys) y Cores. Inorg Chem 2023; 62:4076-4087. [PMID: 36863010 PMCID: PMC10015552 DOI: 10.1021/acs.inorgchem.2c03767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The widespread application of silver nanoparticles in medicinal and daily life products increases the exposure to Ag(I) of thiol-rich biological environments, which help control the cellular metallome. A displacement of native metal cofactors from their cognate protein sites is a known phenomenon for carcinogenic and otherwise toxic metal ions. Here, we examined the interaction of Ag(I) with the peptide model of the interprotein zinc hook (Hk) domain of Rad50 protein from Pyrococcus furiosus, a key player in DNA double-strand break (DSB) repair. The binding of Ag(I) to 14 and 45 amino acid long peptide models of apo- and Zn(Hk)2 was experimentally investigated by UV-vis spectroscopy, circular dichroism, isothermal titration calorimetry, and mass spectrometry. The Ag(I) binding to the Hk domain was found to disrupt its structure via the replacement of the structural Zn(II) ion by multinuclear Agx(Cys)y complexes. The ITC analysis indicated that the formed Ag(I)-Hk species are at least 5 orders of magnitude stronger than the otherwise extremely stable native Zn(Hk)2 domain. These results show that Ag(I) ions may easily disrupt the interprotein zinc binding sites as an element of silver toxicity at the cellular level.
Collapse
Affiliation(s)
- Olga Kerber
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Józef Tran
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Alicja Misiaszek
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Aleksandra Chorążewska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
12
|
Memantine derived compounds as potent in vitro inhibitors of urease: Repurposing of memantine, sonication assisted derivatization and in vitro enzyme inhibition, kinetics and molecular docking studies. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
14
|
Macegoniuk K, Tabor W, Mazzei L, Cianci M, Giurg M, Olech K, Burda-Grabowska M, Kaleta R, Grabowiecka A, Mucha A, Ciurli S, Berlicki Ł. Optimized Ebselen-Based Inhibitors of Bacterial Ureases with Nontypical Mode of Action. J Med Chem 2023; 66:2054-2063. [PMID: 36661843 PMCID: PMC9923736 DOI: 10.1021/acs.jmedchem.2c01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Screening of 25 analogs of Ebselen, diversified at the N-aromatic residue, led to the identification of the most potent inhibitors of Sporosarcina pasteurii urease reported to date. The presence of a dihalogenated phenyl ring caused exceptional activity of these 1,2-benzisoselenazol-3(2H)-ones, with Ki value in a low picomolar range (<20 pM). The affinity was attributed to the increased π-π and π-cation interactions of the dihalogenated phenyl ring with αHis323 and αArg339 during the initial step of binding. Complementary biological studies with selected compounds on the inhibition of ureolysis in whole Proteus mirabilis cells showed a very good potency (IC50 < 25 nM in phosphate-buffered saline (PBS) buffer and IC90 < 50 nM in a urine model) for monosubstituted N-phenyl derivatives. The crystal structure of S. pasteurii urease inhibited by one of the most active analogs revealed the recurrent selenation of the Cys322 thiolate, yielding an unprecedented Cys322-S-Se-Se chemical moiety.
Collapse
Affiliation(s)
- Katarzyna Macegoniuk
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Luca Mazzei
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology
(FaBiT), University of Bologna, Viale Giuseppe Fanin 40, 40138 Bologna, Italy
| | - Michele Cianci
- Department
of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Mirosław Giurg
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kamila Olech
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Małgorzata Burda-Grabowska
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Kaleta
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stefano Ciurli
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology
(FaBiT), University of Bologna, Viale Giuseppe Fanin 40, 40138 Bologna, Italy
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland,. Phone: +48 71 320
3344. Fax: +48 71 320 2427
| |
Collapse
|
15
|
Borah G, Deka H. Crude oil associated heavy metals (HMs) contamination in agricultural land: Understanding risk factors and changes in soil biological properties. CHEMOSPHERE 2023; 310:136890. [PMID: 36257389 DOI: 10.1016/j.chemosphere.2022.136890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Ecological and human risks of crude oil associated heavy metals (HMs) in the contaminated agricultural lands were evaluated employing different indices. The indices that were employed includes enrichment factor (EF), contamination factor (Cf),pollution load index (PLI), geo-accumulation index (Igeo), ecological risk index (ERI), contamination degree (Cd), Nemerow's pollution index (PN), exposure factor (ExF), hazard quotient (HQ) and hazard index (HI). Besides, the adverse effects of crude oil associated HMs on the soil biological properties were also analyzed. The results of Cf and EF were found consistent with each other showing the HMs in the decreasing order of contamination as Mn > Zn > Cr > Ni > Cu. The Igeo and ERI fall in the grade (Igeo>5) and (ERI ≥40) respectively. The results of PLI, Cd, PN and ExF values clearly indicate a high environmental risk of crude oil-associated HMs. The results of the human health risks assessment revealed the maximum level of HMs enters the body via ingestion. There were significant(p < 0.05) decreases (5.7-15.5 folds) in the activities of cellulase (0.194 ± 0.02-0.998 ± 0.1), phosphatase (0.173 ± 0.3-0.612 ± 1.5), catalase (0.328 ± 0.3-2.036 ± 1.5), urease (0.44 ± 0.3-1.80 ± 1.2), dehydrogenase (0.321 ± 0.2-0.776 ± 0.7),polyphenol oxidase (0.21 ± 0.5-0.89 ± 2.5)and peroxidase (0.13 ± 0.4-0.53 ± 1.03)in crude oil-contaminated soil. The Pearson's correlation confirmed the significant negative impact of HMs on the soil's biological properties.
Collapse
Affiliation(s)
- Glory Borah
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati, 781014, Assam, India
| | - Hemen Deka
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati, 781014, Assam, India.
| |
Collapse
|
16
|
How Theoretical Evaluations Can Generate Guidelines for Designing/Engineering Metalloproteins with Desired Metal Affinity and Selectivity. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010249. [PMID: 36615442 PMCID: PMC9822464 DOI: 10.3390/molecules28010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Almost half of all known proteins contain metal co-factors. Crucial for the flawless performance of a metalloprotein is the selection with high fidelity of the cognate metal cation from the surrounding biological fluids. Therefore, elucidating the factors controlling the metal binding and selectivity in metalloproteins is of particular significance. The knowledge thus acquired not only contributes to better understanding of the intimate mechanism of these events but, also, significantly enriches the researcher's toolbox that could be used in designing/engineering novel metalloprotein structures with pre-programmed properties. A powerful tool in aid of deciphering the physical principles behind the processes of metal recognition and selectivity is theoretical modeling of metal-containing biological structures. This review summarizes recent findings in the field with an emphasis on elucidating the major factors governing these processes. The results from theoretical evaluations are discussed. It is the hope that the physical principles evaluated can serve as guidelines in designing/engineering of novel metalloproteins of interest to both science and industry.
Collapse
|
17
|
Mazzei L, Cianci M, Ciurli S. Inhibition of Urease by Hydroquinones: A Structural and Kinetic Study. Chemistry 2022; 28:e202201770. [PMID: 35994380 PMCID: PMC9826003 DOI: 10.1002/chem.202201770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/11/2023]
Abstract
Hydroquinones are a class of organic compounds abundant in nature that result from the full reduction of the corresponding quinones. Quinones are known to efficiently inhibit urease, a NiII -containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbonate and acts as a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Here, we report the molecular characterization of the inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by 1,4-hydroquinone (HQ) and its methyl and tert-butyl derivatives. The 1.63-Å resolution X-ray crystal structure of the SPU-HQ complex discloses that HQ covalently binds to the thiol group of αCys322, a key residue located on a mobile protein flap directly involved in the catalytic mechanism. Inhibition kinetic data obtained for the three compounds on JBU reveals the occurrence of an irreversible inactivation process that involves a radical-based autocatalytic mechanism.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT)University of BolognaViale Giuseppe Fanin 4040127BolognaItaly
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheVia Brecce Bianche 1060131AnconaItaly
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT)University of BolognaViale Giuseppe Fanin 4040127BolognaItaly
| |
Collapse
|
18
|
Competition between Ag+ and Ni2+ in nickel enzymes: Implications for the Ag+ antibacterial activity. Comput Biol Chem 2022; 101:107785. [DOI: 10.1016/j.compbiolchem.2022.107785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
19
|
Lekhan A, Fiore C, Shemchuk O, Grepioni F, Braga D, Turner RJ. Comparison of Antimicrobial and Antibiofilm Activity of Proflavine Co-crystallized with Silver, Copper, Zinc, and Gallium Salts. ACS APPLIED BIO MATERIALS 2022; 5:4203-4212. [PMID: 35970511 PMCID: PMC9491326 DOI: 10.1021/acsabm.2c00404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
Here, we exploit our mechanochemical synthesis for co-crystallization of an organic antiseptic, proflavine, with metal-based antimicrobials (silver, copper, zinc, and gallium). Our previous studies have looked for general antimicrobial activity for the co-crystals: proflavine·AgNO3, proflavine·CuCl, ZnCl3[Proflavinium], [Proflavinium]2[ZnCl4]·H2O, and [Proflavinium]3[Ga(oxalate)3]·4H2O. Here, we explore and compare more precisely the bacteriostatic (minimal inhibitory concentrations) and antibiofilm (prevention of cell attachment and propagation) activities of the co-crystals. For this, we choose three prominent "ESKAPE" bacterial pathogens of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. The antimicrobial behavior of the co-crystals was compared to that of the separate components of the polycrystalline samples to ascertain whether the proflavine-metal complex association in the solid state provided effective antimicrobial performance. We were particularly interested to see if the co-crystals were effective in preventing bacteria from initiating and propagating the biofilm mode of growth, as this growth form provides high antimicrobial resistance properties. We found that for the planktonic lifestyle of growth of the three bacterial strains, different co-crystal formulations gave selectivity for best performance. For the biofilm state of growth, we see that the silver proflavine co-crystal has the best overall antibiofilm activity against all three organisms. However, other proflavine-metal co-crystals also show practical antimicrobial efficacy against E. coli and S. aureus. While not all proflavine-metal co-crystals demonstrated enhanced antimicrobial efficacy over their constituents alone, all possessed acceptable antimicrobial properties while trapped in the co-crystal form. We also demonstrate that the metal-proflavine crystals retain antimicrobial activity in storage. This work defines that co-crystallization of metal compounds and organic antimicrobials has a potential role in the quest for antimicrobials/antiseptics in the defense against bacteria in our antimicrobial resistance era.
Collapse
Affiliation(s)
- Andrii Lekhan
- Department
of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Cecilia Fiore
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Oleksii Shemchuk
- Institute
of Condensed Matter and Nanosciences, Université
Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Fabrizia Grepioni
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Dario Braga
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Raymond J. Turner
- Department
of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
20
|
Lu Q, Tan D, Xu Y, Liu M, He Y, Li C. Inactivation of Jack Bean Urease by Nitidine Chloride from Zanthoxylum nitidum: Elucidation of Inhibitory Efficacy, Kinetics and Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13772-13779. [PMID: 34767340 DOI: 10.1021/acs.jafc.1c04801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Urease is a metalloenzyme that catalyzes the hydrolysis of urea into ammonia and carbon dioxide, which has a negative impact on human health and agriculture. In this study, the inactivation of jack bean urease by nitidine chloride (NC) was investigated to elucidate the inhibitory effect, kinetics, and underlying mechanism of action. The results showed that NC acted as a concentration- and time-dependent inhibitor with an IC50 value of 33.2 ± 4.8 μM and exhibited a similar inhibitory effect to acetohydroxamic acid (IC50 = 31.7 ± 5.8 μM). Further kinetic analysis demonstrated that NC was a slow-binding and non-competitive inhibitor for urease. Thiol-blocking reagents (dithiothreitol, glutathione, and l-cysteine) significantly retarded urease inactivation, while Ni2+ competitive inhibitors (boric acid and sodium fluoride) synergetically suppressed urease with NC, suggesting that the active site sulfhydryl groups were possibly obligatory for NC blocking urease. Molecular docking simulation further argued its inhibition mechanism. Additionally, NC-induced deactivation of urease was verified to be reversible since the inactivated enzyme could be reactivated by glutathione. Taking together, NC was a non-competitive inhibitor targeting the thiol group at the active site of urease with characteristics of concentration dependence, reversibility, and slow binding, serving as a promising novel urease suppressant.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Daopeng Tan
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518005, PR China
| | - Meigui Liu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Yuqi He
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| |
Collapse
|
21
|
Mazzei L, Massai L, Cianci M, Messori L, Ciurli S. Medicinal Au(I) compounds targeting urease as prospective antimicrobial agents: unveiling the structural basis for enzyme inhibition. Dalton Trans 2021; 50:14444-14452. [PMID: 34585201 DOI: 10.1039/d1dt02488d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A few gold compounds were recently found to show antimicrobial properties in vitro, holding great promise for the discovery of new drugs to overcome antibiotic resistance. Here, the inhibition of the bacterial virulence factor urease by four Au(I)-compounds, namely Au(PEt3)Cl, Au(PEt3)Br, Au(PEt3)I and [Au(PEt3)2]Cl, obtained from the antiarthritic Au(I)-drug Auranofin and earlier reported to act as antimicrobials, is investigated. The three monophosphino Au(I) complexes showed IC50 values in the 30-100 nM range, while the diphosphino Au(I) complex, though being less active, still showed a IC50 value of 7 μM. The structural basis for this inhibition was provided by solving the crystal structures of urease co-crystallized with Au(PEt3)I and [Au(PEt3)2]Cl: at least two Au(I) ions bind the enzyme in a flap domain involved in the catalysis, thus obliterating enzyme activity. Peculiar changes observed in the two structures reveal implications for the mechanism of soft metal binding and enzyme inactivation.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy.
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy.
| |
Collapse
|
22
|
Liang J, Sun D, Yang Y, Li M, Li H, Chen L. Discovery of metal-based complexes as promising antimicrobial agents. Eur J Med Chem 2021; 224:113696. [PMID: 34274828 DOI: 10.1016/j.ejmech.2021.113696] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
The antimicrobial resistance (AMR) is an intractable problem for the world. Metal ions are essential for the cell process and biological function in microorganisms. Many metal-based complexes with the potential for releasing ions are more likely to be absorbed for their higher lipid solubility. Hence, this review highlights the clinical potential of organometallic compounds for the treatment of infections caused by bacteria or fungi in recent five years. The common scaffolds, including antimicrobial peptides, N-heterocyclic carbenes, Schiff bases, photosensitive-grand-cycle skeleton structures, aliphatic amines-based ligands, and special metal-based complexes are summarized here. We also discuss their therapeutic targets and the risks that should be paid attention to in the future studies, aiming to provide information for researchers on metal-based complexes as antimicrobial agents and inspire the design and synthesis of new antimicrobial drugs.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingxue Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
23
|
Mazzei L, Contaldo U, Musiani F, Cianci M, Bagnolini G, Roberti M, Ciurli S. Inhibition of Urease, a Ni-Enzyme: The Reactivity of a Key Thiol With Mono- and Di-Substituted Catechols Elucidated by Kinetic, Structural, and Theoretical Studies. Angew Chem Int Ed Engl 2021; 60:6029-6035. [PMID: 33245574 DOI: 10.1002/anie.202014706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/30/2022]
Abstract
The inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by a class of six aromatic poly-hydroxylated molecules, namely mono- and dimethyl-substituted catechols, was investigated on the basis of the inhibitory efficiency of the catechol scaffold. The aim was to probe the key step of a mechanism proposed for the inhibition of SPU by catechol, namely the sulfanyl radical attack on the aromatic ring, as well as to obtain critical information on the effect of substituents of the catechol aromatic ring on the inhibition efficacy of its derivatives. The crystal structures of all six SPU-inhibitors complexes, determined at high resolution, as well as kinetic data obtained on JBU and theoretical studies of the reaction mechanism using quantum mechanical calculations, revealed the occurrence of an irreversible inactivation of urease by means of a radical-based autocatalytic multistep mechanism, and indicate that, among all tested catechols, the mono-substituted 3-methyl-catechol is the most efficient inhibitor for urease.
Collapse
Affiliation(s)
- Luca Mazzei
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Umberto Contaldo
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| |
Collapse
|
24
|
Mazzei L, Contaldo U, Musiani F, Cianci M, Bagnolini G, Roberti M, Ciurli S. Inhibition of Urease, a Ni‐Enzyme: The Reactivity of a Key Thiol With Mono‐ and Di‐Substituted Catechols Elucidated by Kinetic, Structural, and Theoretical Studies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Luca Mazzei
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| | - Umberto Contaldo
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Chemistry and Biology of Metals Université Grenoble Alpes, CEA CNRS 17 Avenue des Martyrs 38000 Grenoble France
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences Polytechnic University of Marche Via Brecce Bianche 60131 Ancona Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| |
Collapse
|
25
|
Mazzei L, Cirri D, Cianci M, Messori L, Ciurli S. Kinetic and structural analysis of the inactivation of urease by mixed-ligand phosphine halide Ag(I) complexes. J Inorg Biochem 2021; 218:111375. [PMID: 33711632 DOI: 10.1016/j.jinorgbio.2021.111375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/22/2023]
Abstract
Soft metal ions can inactivate urease, a Ni(II)-dependent enzyme whose hydrolytic activity has significant implications in agro-environmental science and human health. Kinetic and structural studies of the reaction of Canavalia ensiformis urease (JBU) and Sporosarcina pasteurii urease (SPU) with Ag(I) compounds of general formula [Ag(PEt3)X]4 (X = Cl, Br, I), and with the ionic species [Ag(PEt3)2]NO3, revealed the role of the Ag(I) ion and its ligands in modulating the metal-enzyme interaction. The activity of JBU is obliterated by the [Ag(PEt3)X]4 complexes, with IC50 values in the nanomolar range; the efficiency of the inhibition increases in the Cl- < Br- < I- order. The activity of JBU upon [Ag(PEt3)2]NO3 addition decreases to a plateau corresponding to ca. 60% of the original activity and decreases with time at a reduced rate. Synchrotron X-ray crystallography on single crystals obtained after the incubation of SPU with the Ag(I) complexes yielded high-resolution (1.63-1.97 Å) structures. The metal-protein adducts entail a dinuclear Ag(I) cluster bound to the conserved residues αCys322, αHis323, and αMet367, with a bridging cysteine thiolate atom, a weak Ag…Ag bond, and a quasi-linear Ag(I) coordination geometry. These observations suggest a mechanism that involves the initial substitution of the phosphine ligand, followed by a structural rearrangement to yield the dinuclear Ag(I) cluster. These findings indicate that urease, in addition to the active site dinuclear Ni(II) cluster, possesses a secondary metal binding site, located on the mobile flap domain, capable of recognizing pairs of soft metal ions and controlling catalysis.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy.
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Moruzzi 13, I-56124 Pisa, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy.
| |
Collapse
|
26
|
A pH-responsive bioassay for sensitive colorimetric detection of adenosine triphosphate based on switchable DNA aptamer and metal ion-urease interactions. Anal Bioanal Chem 2021; 413:1533-1540. [PMID: 33462658 DOI: 10.1007/s00216-020-03136-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
A facile and economic colorimetric strategy was designed for ATP detection by rationally using urease, a pH-responsive molecule, and a metal-mediated switchable DNA probe. By utilizing metal ions as a modulator of urease activity, the concentration of ATP is translated into pH change, which can be readily visualized by naked eye. An unmodified single-stranded DNA probe was designed, which consists of a target binding sequence and two flanked cytosine (C)-rich sequences. This C-rich single-stranded DNA can form a hairpin structure triggered by Ag+ ions via C-Ag+-C base mismatch. Upon introduction of ATP, Ag+-coordinated hairpin DNA structure will be broken and release the included Ag+, thus inhibiting the activity of urease. Conversely, urease can hydrolyze urea and raise pH value of the solution, resulting in the color change of the sensing solution. The proposed assay allows determination of ATP as low as 1.6 nM and shows a satisfactory result in human serum. Because of simple operation and low cost of this method, we believe it has a potential in point-of-care (POC) testing in resource-limited areas. Schematic illustration of pH-responsive colorimetric sensor for ATP detection based on switchable DNA aptamer and metal ion-urease interactions.
Collapse
|
27
|
Betts HD, Whitehead C, Harris HH. Silver in biology and medicine: opportunities for metallomics researchers. Metallomics 2020; 13:6029133. [PMID: 33570135 DOI: 10.1093/mtomcs/mfaa001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
The antibacterial properties of silver have been known for centuries and the threat of antibiotic-resistant bacteria has led to renewed focus on the noble metal. Silver is now commonly included in a range of household and medical items to imbue them with bactericidal properties. Despite this, the chemical fate of the metal in biological systems is poorly understood. Silver(I) is a soft metal with high affinity for soft donor atoms and displays much similarity to the chemistry of Cu(I). In bacteria, interaction of silver with the cell wall/membrane, DNA, and proteins and enzymes can lead to cell death. Additionally, the intracellular generation of reactive oxygen species by silver is posited to be a significant antimicrobial action. While the antibacterial action of silver is well known, bacteria found in silver mines display resistance against it through use of a protein ensemble thought to have been specifically developed for the metal, highlighting the need for judicious use. In mammals, ∼10-20% of ingested silver is retained by the body and thought to predominantly localize in the liver or kidneys. Chronic exposure can result in argyria, a condition characterized by blue staining of the skin, resulting from subdermal deposition of silver [as Ag(0)/sulfides], but more insidious side effects, such as inclusions in the brain, seizures, liver/kidney damage, and immunosuppression, have also been reported. Here, we hope to highlight the current understanding of the biological chemistry of silver and the necessity for continued study of these systems to fill existing gaps in knowledge.
Collapse
Affiliation(s)
- Harley D Betts
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| | - Carole Whitehead
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| |
Collapse
|
28
|
Aponte H, Meli P, Butler B, Paolini J, Matus F, Merino C, Cornejo P, Kuzyakov Y. Meta-analysis of heavy metal effects on soil enzyme activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139744. [PMID: 32512304 DOI: 10.1016/j.scitotenv.2020.139744] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 05/28/2023]
Abstract
Enzyme activities (EAs) respond to contamination in several ways depending on the chemical form and content of heavy metals and metalloids (HMs) and their interactions with various soil properties. A systematic and mechanistic understanding of EA responses to HM contamination in soil is necessary for predicting the consequences for nutrient availability and the cycling of carbon (C), nitrogen (N), phosphorus (P) and sulphur (S). In this study, a meta-analysis based on 671 observations found the activities of seven enzymes to decrease in response to soil contamination with Pb, Zn, Cd, Cu and As. HM contamination linearly reduced the activities of all enzymes in the following order: arylsulfatase > dehydrogenase > β-glucosidase > urease > acid phosphatase > alkaline phosphatase > catalase. The activities of two endoenzymes: arylsulfatase (partly as exoenzyme) and dehydrogenase were reduced by 72% and 64%, respectively. These reductions were two times greater than of exoenzymes: β-glucosidase, urease, acid phosphatase, alkaline phosphatase and catalase (partly endoenzyme). This reflects the much stronger impact of HMs on living microorganisms and their endoenzymes than on extracellular enzymes stabilized on clay minerals and organic matter. Increasing clay content weakened the negative effects of HM contamination on EAs. All negative effects of HMs on EAs decreased with soil depth because HMs remain mainly in the topsoil. EAs involved in the cycling of C and S were more affected by HMs than the enzymes associated with the cycling of N and P. Consequently, HM contamination may alter the stoichiometry of C, N, P and S released by enzymatic decomposition of organic compounds that consequently affect microbial community structure and activity.
Collapse
Affiliation(s)
- Humberto Aponte
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco, Chile; Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, Universidad de La Frontera, Temuco, Chile
| | - Paula Meli
- Landscape Ecology and Conservation Laboratory, Departamento de Ciencias Forestales, Universidad de La Frontera, Temuco, Chile
| | - Benjamin Butler
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Jorge Paolini
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas (IVIC), Venezuela
| | - Francisco Matus
- Laboratory of Conservation and Dynamic of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environmental Research, Universidad de la Frontera, Temuco, Chile
| | - Carolina Merino
- Laboratory of Conservation and Dynamic of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environmental Research, Universidad de la Frontera, Temuco, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, Universidad de La Frontera, Temuco, Chile.
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077 Goettingen, Germany; Agro-Technological Institute, RUDN University, 117198 Moscow, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| |
Collapse
|
29
|
Wang H, Yang X, Wang M, Hu M, Xu X, Yan A, Hao Q, Li H, Sun H. Atomic differentiation of silver binding preference in protein targets: Escherichia coli malate dehydrogenase as a paradigm. Chem Sci 2020; 11:11714-11719. [PMID: 34123202 PMCID: PMC8162793 DOI: 10.1039/d0sc04151c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding how metallodrugs interact with their protein targets is of vital importance for uncovering their molecular mode of actions as well as overall pharmacological/toxicological profiles, which in turn facilitates the development of novel metallodrugs. Silver has been used as an antimicrobial agent since antiquity, yet there is limited knowledge about silver-binding proteins. Given the multiple dispersed cysteine residues and histidine-methionine pairs, Escherichia coli malate dehydrogenase (EcMDH) represents an excellent model to investigate silver coordination chemistry as well as its targeting sites in enzymes. We show by systematic biochemical characterizations that silver ions (Ag+) bind EcMDH at multiple sites including three cysteine-containing sites. By X-ray crystallography, we unravel the binding preference of Ag+ to multiple binding sites in EcMDH, i.e., Cys113 > Cys251 > Cys109 > Met227. Silver exhibits preferences to the donor atoms and residues in the order of S > N > O and Cys > Met > His > Lys > Val, respectively, in EcMDH. For the first time, we report the coordination of silver to a lysine in proteins. Besides, we also observed argentophilic interactions (Ag⋯Ag, 2.7 to 3.3 Å) between two silver ions coordinating to one thiolate. Combined with site-directed mutagenesis and an enzymatic activity test, we unveil that the binding of Ag+ to the site IV (His177-Ag-Met227 site) plays a vital role in Ag+-mediated MDH inactivation. This work stands as the first unusual and explicit study of silver binding preference to multiple binding sites in its authentic protein target at the atomic resolution. These findings enrich our knowledge on the biocoordination chemistry of silver(i), which in turn facilitates the prediction of the unknown silver-binding proteins and extends the pharmaceutical potentials of metal-based drugs.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Xinming Yang
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Minji Wang
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- School of Chemistry and Molecular Engineering, East China Normal University No. 3663 Zhongshan Road North Shanghai 200062 P. R. China
| | - Menglong Hu
- School of Biomedical Sciences, The University of Hong Kong, Laboratory Block 21 Sassoon Road, Pokfulam Hong Kong P. R. China
| | - Xiaohan Xu
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Laboratory Block 21 Sassoon Road, Pokfulam Hong Kong P. R. China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
30
|
Wei S, Li J, He J, Zhao W, Wang F, Song X, Xu K, Wang J, Zhao C. Paper chip-based colorimetric assay for detection of Salmonella typhimurium by combining aptamer-modified Fe 3O 4@Ag nanoprobes and urease activity inhibition. Mikrochim Acta 2020; 187:554. [PMID: 32902716 DOI: 10.1007/s00604-020-04537-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022]
Abstract
A rapid and sensitive colorimetric assay is described for Salmonella typhimurium (S. typhimurium) detection using urea/phenol red impregnated test paper. Aptamer-modified Fe3O4@Ag multifunctional hybrid nanoprobes (apt-Fe3O4@Ag NPs) were used to specifically captured S. typhimurium; the nanoprobes were quickly etched by H2O2 to form Ag+. The generated Ag+ can inhibit the urease-catalyzed hydrolysis reaction of urea to produce NH4+. Consequently, the as-prepared test paper displayed a yellow color. In the presence of S. typhimurium, the target bacteria can cause aggregation of apt-Fe3O4@Ag NPs, and the deposited Ag on the nanoprobe's surface is shielded against H2O2-induced oxidative decomposition leading to reduced Ag+ production. The catalytic activity of urease cannot be inhibited completely by inadequate amount of Ag+. An obvious color change from yellow to pink can be monitored directly using our test paper as a result of increased NH4+. The entire assay procedure could be completed within 1 h. A limit of detection of 48 cfu/mL is achieved with a linear range of 1 × 102 to 1 × 106 cfu/mL. The recoveries of S. typhimurium spiked in pure milk samples were 92.48-94.05%. Graphical abstract Schematic diagram of the proposed colorimetric assay for S. typhimurium detection based on etching of bifunctional apt-Fe3O4@Ag NPs and inhibiting catalytic activity of urease by Ag+. A color change from yellow to pink can be observed and correlated to the concentration of S. typhimurium.
Collapse
Affiliation(s)
- Shengnan Wei
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Jingya He
- School of Stomatology, Jilin University, Changchun, 130021, China
| | - Wei Zhao
- Jilin Provincial Center for Disease Control and Prevention, Changchun, 130062, China
| | - Feng Wang
- School of Stomatology, Jilin University, Changchun, 130021, China
| | - Xiuling Song
- School of Public Health, Jilin University, Changchun, 130021, China.,Public Health Detection Engineering Research Center of Jilin Province, Changchun, 130021, China
| | - Kun Xu
- School of Public Health, Jilin University, Changchun, 130021, China.,Public Health Detection Engineering Research Center of Jilin Province, Changchun, 130021, China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
31
|
Amouzadeh Tabrizi M, Ferre-Borrull J, Marsal LF. Advances in Optical Biosensors and Sensors Using Nanoporous Anodic Alumina. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5068. [PMID: 32906635 PMCID: PMC7570681 DOI: 10.3390/s20185068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
This review paper focuses on recent progress in optical biosensors using self-ordered nanoporous anodic alumina. We present the fabrication of self-ordered nanoporous anodic alumina, surface functionalization, and optical sensor applications. We show that self-ordered nanoporous anodic alumina has good potential for use in the fabrication of antibody-based (immunosensor), aptamer-based (aptasensor), gene-based (genosensor), peptide-based, and enzyme-based optical biosensors. The fabricated optical biosensors presented high sensitivity and selectivity. In addition, we also showed that the performance of the biosensors and the self-ordered nanoporous anodic alumina can be used for assessing biomolecules, heavy ions, and gas molecules.
Collapse
Affiliation(s)
| | | | - Lluis F. Marsal
- Departamento de Ingeniería Electrónica, Eléctrica y Automática, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; (M.A.T.); (J.F.-B.)
| |
Collapse
|
32
|
The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. J Biol Inorg Chem 2020; 25:829-845. [PMID: 32809087 PMCID: PMC7433671 DOI: 10.1007/s00775-020-01808-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023]
Abstract
This review is an attempt to retrace the chronicle that starts from the discovery of the role of nickel as the essential metal ion in urease for the enzymatic catalysis of urea, a key step in the biogeochemical cycle of nitrogen on Earth, to the most recent progress in understanding the chemistry of this historical enzyme. Data and facts are presented through the magnifying lenses of the authors, using their best judgment to filter and elaborate on the many facets of the research carried out on this metalloenzyme over the years. The tale is divided in chapters that discuss and describe the results obtained in the subsequent leaps in the knowledge that led from the discovery of a biological role for Ni to the most recent advancements in the comprehension of the relationship between the structure and function of urease. This review is intended not only to focus on the bioinorganic chemistry of this beautiful metal-based catalysis, but also, and maybe primarily, to evoke inspiration and motivation to further explore the realm of bio-based coordination chemistry.
Collapse
|
33
|
Targeting the Protein Tunnels of the Urease Accessory Complex: A Theoretical Investigation. Molecules 2020; 25:molecules25122911. [PMID: 32599898 PMCID: PMC7355429 DOI: 10.3390/molecules25122911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Urease is a nickel-containing enzyme that is essential for the survival of several and often deadly pathogenic bacterial strains, including Helicobacter pylori. Notwithstanding several attempts, the development of direct urease inhibitors without side effects for the human host remains, to date, elusive. The recently solved X-ray structure of the HpUreDFG accessory complex involved in the activation of urease opens new perspectives for structure-based drug discovery. In particular, the quaternary assembly and the presence of internal tunnels for nickel translocation offer an intriguing possibility to target the HpUreDFG complex in the search of indirect urease inhibitors. In this work, we adopted a theoretical framework to investigate such a hypothesis. Specifically, we searched for putative binding sites located at the protein–protein interfaces on the HpUreDFG complex, and we challenged their druggability through structure-based virtual screening. We show that, by virtue of the presence of tunnels, some protein–protein interfaces on the HpUreDFG complex are intrinsically well suited for hosting small molecules, and, as such, they possess good potential for future drug design endeavors.
Collapse
|
34
|
Structures, kinetic and synergistic mechanisms studies of urease inhibition of copper(II) complex based on MOSs. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
A visual detection of human immunodeficiency virus gene using ratiometric method enabled by phenol red and target-induced catalytic hairpin assembly. Talanta 2020; 219:121202. [PMID: 32887109 DOI: 10.1016/j.talanta.2020.121202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/12/2023]
Abstract
Relying on the specific coordination of Ag+ and mismatched cytosine-cytosine (C-C), the high-efficiency inhibition of urease by Ag+ ion, and the rapid and sensitive response of phenol red to pH, a sensitive ratiometric sensor has been designed for visual detection of human immunodeficiency virus gene (HIV DNA). This sensor utilizes the HIV DNA to initiate catalytic hairpin assembly (CHA) process, releasing Ag+ to inhibit subsequent urease-catalyzed urea hydrolysis and prevent the pH of the solution from rising. The CHA process and the absorbance ratio of phenol red at different wavelengths (A559/A432) amplify the signal, allowing the sensor to detect HIV DNA from 10 to 130 nM in a sensitive and highly selective manner with a low detection limit of 7.8 nM. In addition, this sensor can visually distinguish different concentrations of HIV DNA within a certain range and possesses a good recovery in 1% of serum samples, which will provide new ideas for biosensor design, dipstick test, blood test, and other clinical disease prevention.
Collapse
|
36
|
Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci Rep 2020; 10:8503. [PMID: 32444844 PMCID: PMC7244745 DOI: 10.1038/s41598-020-65107-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/28/2020] [Indexed: 01/29/2023] Open
Abstract
The nickel-dependent urease enzyme is responsible for the hydrolysis of urea to ammonia and carbon dioxide. A number of bacteria produce urease (ureolytic bacteria) and are associated with various infectious diseases and ammonia emissions from agriculture. We report the first comprehensive comparison of the inhibition of urease activity by compounds analysed under the same conditions. Thus, 71 commercially available compounds were screened for their anti-ureolytic properties against both the ureolytic bacterium Klebsiella pneumoniae and purified jack bean urease. Of the tested compounds, 30 showed more than 25% inhibition of the ureolytic activity of Klebsiella pneumoniae or jack bean urease, and among these, carbon disulfide, N-phenylmaleimide, diethylenetriaminepentaacetic acid, sodium pyrrolidinedithiocarbamate, 1,2,4-butanetricarboxylic acid, tannic acid, and gallic acid have not previously been reported to possess anti-ureolytic properties. The diverse effects of metal ion chelators on ureolysis were investigated using a cellular nickel uptake assay. Ethylenediaminetetraacetic acid (EDTA) and dimethylglyoxime (DMG) clearly reduced the nickel import and ureolytic activity of cells, oxalic acid stimulated nickel import but reduced the ureolytic activity of cells, 1,2,4-butanetricarboxylic acid strongly stimulated nickel import and slightly increased the ureolytic activity of cells, while L-cysteine had no effect on nickel import but efficiently reduced the ureolytic activity of cells.
Collapse
|
37
|
Frank R, Prönnecke C, Azendorf R, Jahnke HG, Beck-Sickinger AG, Robitzki AA. Advanced 96-microtiter plate based bioelectrochemical platform reveals molecular short cut of electron flow in cytochrome P450 enzyme. LAB ON A CHIP 2020; 20:1449-1460. [PMID: 32219236 DOI: 10.1039/c9lc01220f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In bioelectrocatalysis, immobilised redox enzymes are activated in a bioelectronic interface without redox equivalents such as NADPH, thus enabling heterogeneous flow chemistry. The functional contact between enzyme and electrode requires a high degree of optimisation regarding choice of electrode material, electrode pre-treatment, enzyme immobilisation and reaction conditions. So far, however, there are no systems that can easily enable an optimisation procedure at a higher throughput. Here, we present an advanced platform with a vertical divided cell architecture in conjunction with a developed 96-multipotentiostat to be able to drive redox enzymes in 96 well microtiter plate based multielectrode arrays. This platform controls 96 independent three-electrode setups with arbitrary working electrode materials. We demonstrate its applicability in a mutation study of cytochrome P450 BM3 using indium tin oxide as electrode material and the 7-ethoxycoumarin product quantification assay. We show that the bioelectrocatalytic activity of P450 BM3 can be amplified when the cofactor FAD is erased from the enzyme by a single point mutation, so that FMN becomes the first electron entry point. Bioelectrocatalysis thus offers an approach to enzyme simplification as a remedy for the inherent instability of self-sufficient cytochrome P450 enzymes. In addition, we examined native and artificial enzyme activation with respect to ionic strength and buffer composition. The optimal conditions of the activation types differ substantially from each other and exhibit a new molecular facet in enzyme characteristics. In a proof-of-principle we demonstrate that the platform is also compatible with raw cell extracts, thus opening the door for random mutagenesis screenings.
Collapse
Affiliation(s)
- Ronny Frank
- Centre for Biotechnology and Biomedicine, Molecular biological-biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | - Christoph Prönnecke
- Centre for Biotechnology and Biomedicine, Molecular biological-biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | - Ronny Azendorf
- Centre for Biotechnology and Biomedicine, Molecular biological-biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular biological-biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | | | - Andrea A Robitzki
- Centre for Biotechnology and Biomedicine, Molecular biological-biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany.
| |
Collapse
|
38
|
Aponte H, Herrera W, Cameron C, Black H, Meier S, Paolini J, Tapia Y, Cornejo P. Alteration of enzyme activities and functional diversity of a soil contaminated with copper and arsenic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110264. [PMID: 32035397 DOI: 10.1016/j.ecoenv.2020.110264] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 05/27/2023]
Abstract
Copper (Cu) mining has to address a critical environmental issue related to the disposal of heavy metals and metalloids (HMs). Due to their deleterious effects on living organisms, Cu and arsenic (As) have gained global attention, and thus their monitoring in the environment is an important task. The aims of this study were: 1) to evaluate the alteration of soil enzyme activities (EAs) and soil microbial functional diversity with Cu/As contamination, and 2) to select the most reliable biochemical indicators of Cu/As contamination. A twelve-week soil experiment was performed with four increasing levels of Cu, As, and Cu/As from 150/15 to 1000/100 mg Cu/As kg-1. Soil enzyme activities and soil community-level physiological profile (CLPP) using MicroResp™ were measured during the experiment. Results showed reduced EAs over time with increasing Cu and Cu/As levels. The most Cu-sensitive EAs were dehydrogenase, acid phosphatase, and arylsulfatase, while arginine ammonification might be related to the resilience of soil microbial communities due to its increased activity in the last experimental times. There was no consistent response to As contamination with reduced individual EAs at specific sampling times, being urease the only EA negatively affected by As. MicroResp™ showed reduced carbon (C) substrate utilization with increasing Cu levels indicating a community shift in C acquisition. These results support the use of specific EAs to assess the environmental impact of specific HMs, being also the first assessment of EAs and the use of CLPP (MicroResp™) to study the environmental impact in Cu/As contaminated soils.
Collapse
Affiliation(s)
- Humberto Aponte
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile; Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - Wence Herrera
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - Clare Cameron
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Helaina Black
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Sebastian Meier
- Instituto de Investigaciones Agropecuarias (INIA), Centro de Investigación Regional de Investigación Carillanca, P.O. Box 58-D, Temuco, Chile
| | - Jorge Paolini
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Ecología, Altos de Pipe, Apdo. 21827, Caracas 1020-A, Venezuela
| | - Yasna Tapia
- Departamento de Ingeniería y Suelos, Universidad de Chile, La Pintana, Santiago, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
39
|
Zambelli B, Mazzei L, Ciurli S. Intrinsic disorder in the nickel-dependent urease network. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:307-330. [DOI: 10.1016/bs.pmbts.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Kazmi M, Khan I, Khan A, Halim SA, Saeed A, Mehsud S, Al-Harrasi A, Ibrar A. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorg Med Chem 2019; 27:115123. [DOI: 10.1016/j.bmc.2019.115123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022]
|
41
|
Mazzei L, Cianci M, Benini S, Ciurli S. The Impact of pH on Catalytically Critical Protein Conformational Changes: The Case of the Urease, a Nickel Enzyme. Chemistry 2019; 25:12145-12158. [DOI: 10.1002/chem.201902320] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/01/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic ChemistryDepartment of Pharmacy and BiotechnologyUniversity of Bologna Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marche Ancona Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography LaboratoryFaculty of Science and TechnologyFree University of Bolzano Bolzano Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic ChemistryDepartment of Pharmacy and BiotechnologyUniversity of Bologna Bologna Italy
| |
Collapse
|
42
|
Wang H, Wang M, Yang X, Xu X, Hao Q, Yan A, Hu M, Lobinski R, Li H, Sun H. Antimicrobial silver targets glyceraldehyde-3-phosphate dehydrogenase in glycolysis of E. coli. Chem Sci 2019; 10:7193-7199. [PMID: 31588287 PMCID: PMC6685357 DOI: 10.1039/c9sc02032b] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/14/2019] [Indexed: 01/13/2023] Open
Abstract
Silver has long been used as an antibacterial agent, yet its molecular targets remain largely unknown. Using a custom-designed coupling of gel electrophoresis with inductively coupled plasma mass spectrometry (GE-ICP-MS), we identified six silver-binding proteins in E. coli. The majority of the identified proteins are associated with the central carbon metabolism of E. coli. Among them, we unveil that GAPDH, an essential enzyme in glycolysis, serves as a vital target of Ag+ in E. coli for the first time. We demonstrate that silver inhibits the enzymatic function of GAPDH through targeting Cys149 in its catalytic site. The X-ray structure reveals that Ag+ coordinates to Cys149 and His176 with a quasi-linear geometry (S-Ag-N angle of 157°). And unexpectedly, two Ag+ ions coordinate to Cys288 in the non-catalytic site with weak argentophilic interaction (Ag···Ag distance of 2.9 Å). This is the first report on antimicrobial Ag+ targeting a key enzyme in the glycolytic pathway of E. coli. The findings expand our knowledge on the mode of action and bio-coordination chemistry of silver, particularly silver-targeting residues in proteins at the atomic level.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Minji Wang
- School of Biological Sciences , The University of Hong Kong , Hong Kong , P. R. China
| | - Xinming Yang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Xiaohan Xu
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Quan Hao
- School of Biomedical Sciences , The University of Hong Kong , Laboratory Block, 21 Sassoon Road, Pokfulam , Hong Kong , China
| | - Aixin Yan
- School of Biological Sciences , The University of Hong Kong , Hong Kong , P. R. China
| | - Menglong Hu
- School of Biomedical Sciences , The University of Hong Kong , Laboratory Block, 21 Sassoon Road, Pokfulam , Hong Kong , China
| | - Ryszard Lobinski
- CNRS/University of Pau , Institute of Analytical and Physical Chemistry for the Environment and Materials , IPREM-UMR5254 , Hélioparc, 2, Avenue Angot , 64053 Pau , France
| | - Hongyan Li
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Hongzhe Sun
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| |
Collapse
|
43
|
Mazzei L, Cianci M, Benini S, Ciurli S. The Structure of the Elusive Urease–Urea Complex Unveils the Mechanism of a Paradigmatic Nickel‐Dependent Enzyme. Angew Chem Int Ed Engl 2019; 58:7415-7419. [DOI: 10.1002/anie.201903565] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marche Ancona Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl)Faculty of Science and TechnologyFree University of Bolzano Bolzano Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| |
Collapse
|
44
|
Catechol-based inhibitors of bacterial urease. Bioorg Med Chem Lett 2019; 29:1085-1089. [DOI: 10.1016/j.bmcl.2019.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
|
45
|
Mazzei L, Cianci M, Benini S, Ciurli S. The Structure of the Elusive Urease–Urea Complex Unveils the Mechanism of a Paradigmatic Nickel‐Dependent Enzyme. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marche Ancona Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl)Faculty of Science and TechnologyFree University of Bolzano Bolzano Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| |
Collapse
|
46
|
Mazzei L, Wenzel MN, Cianci M, Palombo M, Casini A, Ciurli S. Inhibition Mechanism of Urease by Au(III) Compounds Unveiled by X-ray Diffraction Analysis. ACS Med Chem Lett 2019; 10:564-570. [PMID: 30996797 DOI: 10.1021/acsmedchemlett.8b00585] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 11/29/2022] Open
Abstract
The nickel-dependent enzyme urease is a virulence factor for a large number of critical human pathogens, making this enzyme a potential target of therapeutics for the treatment of resistant bacterial infections. In the search for novel urease inhibitors, five selected coordination and organometallic Au(III) compounds containing N∧N or C∧N and C∧N∧N ligands were tested for their inhibitory effects against Canavalia ensiformis (jack bean) urease. The results showed potent inhibition effects with IC50 values in the nanomolar range. The 2.14 Å resolution crystal structure of Sporosarcina pasteurii urease inhibited by the most effective Au(III) compound [Au(PbImMe)Cl2]PF6 (PbImMe = 1-methyl-2-(pyridin-2-yl)-benzimidazole) reveals the presence of two Au ions bound to the conserved triad αCys322/αHis323/αMet367. The binding of the Au ions to these residues blocks the movement of a flap, located at the edge of the active site channel and essential for enzyme catalysis, completely obliterating the catalytic activity of urease. Overall, the obtained results constitute the basis for the design of new gold complexes as selective urease inhibitors with future antibacterial applications.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, I-40127 Bologna, Italy
| | - Margot N. Wenzel
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Marta Palombo
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, I-40127 Bologna, Italy
| | - Angela Casini
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, I-40127 Bologna, Italy
| |
Collapse
|
47
|
Wolfe MG, Ali MM, Brennan JD. Enzymatic Litmus Test for Selective Colorimetric Detection of C-C Single Nucleotide Polymorphisms. Anal Chem 2019; 91:4735-4740. [PMID: 30869875 DOI: 10.1021/acs.analchem.9b00235] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A paper based litmus test has been developed using modulation of urease enzyme activity for detection of C-C mismatch single nucleotide polymorphisms (SNPs) by the naked eye. Urease is first inactivated with silver ions and printed onto paper microzones. Addition of DNA containing C-C mismatches reactivates urease via binding of Ag(I), allowing restoration of urease activity, hydrolysis of urea to produce ammonia, and an increase in pH, which is monitored colorimetrically using a pH indicator with a limit of detection of 11 nM DNA in 40 min. The assay system is easy to use, portable, and stable for at least 30 days at ambient temperature. To assess the versatility and practical application of the paper sensor, we used it to identify a G > C transversion present in human genomic DNA from a ductal carcinoma cell line, a mutation commonly found in breast cancer. We believe this new assay system has the potential to be a low-cost method for rapidly identifying DNA with the C-C mismatch SNP as a means of cancer screening in resource-limited areas.
Collapse
Affiliation(s)
- Michael G Wolfe
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| | - M Monsur Ali
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| | - John D Brennan
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| |
Collapse
|
48
|
Ntatsopoulos V, Macegoniuk K, Mucha A, Vassiliou S, Berlicki Ł. Structural exploration of cinnamate-based phosphonic acids as inhibitors of bacterial ureases. Eur J Med Chem 2018; 159:307-316. [DOI: 10.1016/j.ejmech.2018.09.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/25/2022]
|