1
|
Katheras AS, Karalis K, Krack M, Scheinost AC, Churakov SV. Stability and Speciation of Hydrated Magnetite {111} Surfaces from Ab Initio Simulations with Relevance for Geochemical Redox Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:935-946. [PMID: 38133817 DOI: 10.1021/acs.est.3c07202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Magnetite is a common mixed Fe(II,III) iron oxide in mineral deposits and the product of (anaerobic) iron corrosion. In various Earth systems, magnetite surfaces participate in surface-mediated redox reactions. The reactivity and redox properties of the magnetite surface depend on the surface speciation, which varies with environmental conditions. In this study, Kohn-Sham density functional theory (DFT + U method) was used to examine the stability and speciation of the prevalent magnetite crystal face {111} in a wide range of pH and Eh conditions. The simulations reveal that the oxidation state and speciation of the surface depend strongly on imposed redox conditions and, in general, may differ from those of the bulk state. Corresponding predominant phase diagrams for the surface speciation and structure were calculated from first principles. Furthermore, classical molecular dynamics simulations were conducted investigating the mobility of water near the magnetite surface. The obtained knowledge of the surface structure and oxidation state of iron is essential for modeling retention of redox-sensitive nuclides.
Collapse
Affiliation(s)
- Anita S Katheras
- Institute of Geological Sciences, University of Bern, CH-3012 Bern, Switzerland
| | | | - Matthias Krack
- Laboratory for Materials Simulations (LMS), Paul Scherrer Institute (PSI), CH-5232 Villigen PSI, Switzerland
| | - Andreas C Scheinost
- The Rossendorf Beamline (BM20), European Synchrotron Radiation Lab, FR-38043 Grenoble, France
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, DE-01328 Dresden-Rossendorf, Germany
| | - Sergey V Churakov
- Institute of Geological Sciences, University of Bern, CH-3012 Bern, Switzerland
- Laboratory for Waste Management (LES), Paul Scherrer Institute (PSI), CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
2
|
Einkauf JD, Williams NJ, Seipp CA, Custelcean R. Near Quantitative Removal of Selenate and Sulfate Anions from Wastewaters by Cocrystallization with Chelating Hydrogen-Bonding Guanidinium Ligands. JACS AU 2023; 3:879-888. [PMID: 37006778 PMCID: PMC10052226 DOI: 10.1021/jacsau.2c00673] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 05/14/2023]
Abstract
Selenium (Se) has become an environmental contaminant of aquatic ecosystems as a result of human activities, particularly mining, fossil fuel combustion, and agricultural activities. By leveraging the high sulfate concentrations relative to Se oxyanions (i.e., SeO n 2-, n = 3, 4) present in some wastewaters, we have developed an efficient approach to Se-oxyanion removal by cocrystallization with bisiminoguanidinium (BIG) ligands that form crystalline sulfate/selenate solid solutions. The crystallization of the sulfate, selenate and selenite, oxyanions and of sulfate/selenate mixtures with five candidate BIG ligands are reported along with the thermodynamics of crystallization and aqueous solubilities. Oxyanion removal experiments with the top two performing candidate ligands show a near quantitative removal (>99%) of sulfate or selenate from solution. When both sulfate and selenate are present, there is near quantitative removal (>99%) of selenate, down to sub-ppb Se levels, with no discrimination between the two oxyanions during cocrystallization. Reducing the selenate concentrations by 3 orders of magnitude or more relative to sulfate, as found in many wastewaters, led to no measurable loss in Se removal efficiencies. This work offers a simple and effective alternative to selective separation of trace amounts of highly toxic selenate oxyanions from wastewaters, to meet stringent regulatory discharge limits.
Collapse
|
3
|
Matulová M, Duborská E, Matúš P, Urík M. Solid-Water Interface Interaction of Selenium with Fe(II)-Bearing Minerals and Aqueous Fe(II) and S(-II) Ions in the Near-Field of the Radioactive Waste Disposal System. Int J Mol Sci 2022; 24:315. [PMID: 36613759 PMCID: PMC9820544 DOI: 10.3390/ijms24010315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Selenium can be highly toxic in excess for both animals and humans. However, since its mobile forms can be easily adsorbed with ferric minerals, its mobility in the natural oxic environment is generally not an issue. Still, the removal and immobilization of the long-lived radioactive isotope 79Se from the contaminated anoxic waters is currently a significant concern. 79Se can be accessible in the case of radionuclides' leaching from radioactive waste disposals, where anoxic conditions prevail and where ferrous ions and Fe(II)-bearing minerals predominate after corrosion processes (e.g., magnetite). Therefore, reductive and adsorptive immobilizations by Fe(II)-bearing minerals are the primary mechanisms for removing redox-sensitive selenium. Even though the information on the sorptive interactions of selenium and Fe(II)-bearing minerals seems to be well documented, this review focuses specifically on the state of the available information on the effects of the redox properties of Fe(II)-bearing solid phases (e.g., ferrous oxides, hydroxides, sulfides, and carbonates) on selenium speciation via redox transformation and co-occurring coprecipitation.
Collapse
Affiliation(s)
- Michaela Matulová
- Radioactive Waste Repository Authority (SÚRAO), Dlážděná 6, 11000 Prague 1, Czech Republic
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
4
|
The interaction of selenite and ferrous ions in presence or absence of granite. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Wang K, Martinez AF, Simonelli L, Madé B, Hénocq P, Ma B, Charlet L. Redox Interaction between Selenite and Mackinawite in Cement Pore Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5602-5610. [PMID: 35417136 DOI: 10.1021/acs.est.2c00901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In cement-rich radioactive waste repositories, mackinawite (FeS) forms at the steel corrosion interface within reinforced concrete and potentially retards the transport of redox-sensitive radionuclides (e.g., 79Se) in porous cement media. Redox interactions between selenite and mackinawite under hyperalkaline conditions remain unclear and require further investigations. Here, using comprehensive characterization on both aqueous and solid speciation, we successfully monitored the whole interaction process between selenite and mackinawite under hyperalkaline conditions. The results show similar chemical environments for SeO32- and S2-/Sn2- at the mackinawite-water interface, verifying an immediate reduction. After 192 h of reaction, SeO32- was reduced to solid Se0 and SeS2 species, accompanied by the oxidation of S2-/Sn2- to S2O32- and Fe(II) to Fe(III) in mackinawite. Aqueous speciation results showed that ∼99% of aqueous selenium was present as Se4S nanoparticles due to the dissolution of Se from the solid. In parallel, ∼62% of S2-/Sn2- was released into the solution, with mackinawite transforming into magnetite, Fe(OH)3 and FeS2O3+ complexed to Cl- or OH- species, and magnetite subsequently dispersed in the solution. This study provides valuable data about the retardation mechanisms of redox-sensitive radionuclides by soluble iron sulfides, which is critical to advance our understanding of reactive concrete barriers used in nuclear waste disposal systems.
Collapse
Affiliation(s)
- Kaifeng Wang
- University of Grenoble Alpes and CNRS, ISTerre, BP 53, 38041 Grenoble Cedex 9, France
- Engineering Technology Center of Decommissioning and Remediation, China Institute of Atomic Energy, 102413 Beijing, China
| | | | - Laura Simonelli
- BL22 - CLAESS, ALBA Synchrotron Light Source, 08290 Barcelona, Spain
| | - Benoit Madé
- ANDRA, 1/7 rue Jean Monnet, Parc de la Croix Blanche, 92298 Chatenay-Malabry Cedex, France
| | - Pierre Hénocq
- ANDRA, 1/7 rue Jean Monnet, Parc de la Croix Blanche, 92298 Chatenay-Malabry Cedex, France
| | - Bin Ma
- University of Grenoble Alpes and CNRS, ISTerre, BP 53, 38041 Grenoble Cedex 9, France
- Laboratory for Waste Management, Paul Scherrer Institut (PSI), Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Laurent Charlet
- University of Grenoble Alpes and CNRS, ISTerre, BP 53, 38041 Grenoble Cedex 9, France
| |
Collapse
|
6
|
Wang Z, Wang Y, Gomes RL, Gomes HI. Selenium (Se) recovery for technological applications from environmental matrices based on biotic and abiotic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128122. [PMID: 34979385 DOI: 10.1016/j.jhazmat.2021.128122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is an essential element with application in manufacturing from food to medical industries. Water contamination by Se is of concern due to anthropogenic activities. Recently, Se remediation has received increasing attention. Hence, different types of remediation techniques are listed in this work, and their potential for Se recovery is evaluated. Sorption, co-precipitation, coagulation and precipitation are effective for low-cost Se removal. In photocatalytic, zero-valent iron and electrochemical systems, the above mechanisms occur with reduction as an immobilization and detoxification process. In combination with magnetic separation, the above techniques are promising for Se recovery. Biological Se oxyanions reduction has been widely recognized as a cost-effective method for Se remediation, simultaneously generating biosynthetic Se nanoparticles (BioSeNPs). Increasing the extracellular production of BioSeNPs and controlling their morphology will benefit its recovery. However, the mechanism of the microbial production of BioSeNPs is not well understood. Se containing products from both microbial reduction and abiotic methods need to be refined to obtain pure Se. Eco-friendly and cost-effective Se refinery methods need to be developed. Overall, this review offers insight into the necessity of shifting attention from Se remediation to Se recovery.
Collapse
Affiliation(s)
- Zhongli Wang
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Yanming Wang
- Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Helena I Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
7
|
Francisco PCM, Matsumura D, Kikuchi R, Ishidera T, Tachi Y. Selenide [Se(-II)] Immobilization in Anoxic, Fe(II)-Rich Environments: Coprecipitation and Behavior during Phase Transformations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3011-3020. [PMID: 35133799 DOI: 10.1021/acs.est.1c04216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The radionuclide selenium-79 (Se-79) is predicted to be a key contributor to the long-term radiologic hazards associated with geological high-level waste (HLW) repositories; hence its release is of pertinent concern in the safety assessment of repositories. However, interactions of reduced Se species with aqueous Fe(II) species and solid phases arising from the corrosion of a steel overpack could play a role in mitigating its migration to the surrounding environment. In this study, we examined the immobilization mechanisms of Se(-II) during its interaction with aqueous Fe(II) and freshly precipitated Fe(OH)2 at circumneutral and alkaline conditions, respectively, its response to changes in pH, and its behavior during aging at 90 °C. Using microscopic and spectroscopic techniques, we observed β-FeSe precipitation, regardless of whether Se(-II) reacts with aqueous species or solid phases, and that modifying the pH following initial immobilization did not remobilize Se(-II). These observations indicate that Se(-II) migration beyond the overpack can be effectively and rapidly retarded via interactions with Fe(II) species arising from overpack corrosion. Thermodynamic calculations, however, showed that iron selenides became metastable at alkaline conditions and will dissolve in the long term. Aging experiments at 90 °C showed that Se(-II) can be completely retained via the crystallization of ferroselite at circumneutral conditions, while it will be largely remobilized at alkaline conditions. Our results show that Se(-II) mobility can be significantly influenced by its interactions with the corrosion products of the steel overpack and that these behaviors will have to be considered in repository safety assessments.
Collapse
Affiliation(s)
- Paul Clarence M Francisco
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai, Ibaraki 319-1194, Japan
| | - Daiju Matsumura
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1 Koto, Sayo, Hyogo 679-5148, Japan
| | - Ryosuke Kikuchi
- Environmental Geology Laboratory, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Sapporo, Hokkaido 060-8628, Japan
| | - Takamitsu Ishidera
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai, Ibaraki 319-1194, Japan
| | - Yukio Tachi
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai, Ibaraki 319-1194, Japan
| |
Collapse
|
8
|
Wang X, Zhang Y, Wang Z, Xu C, Tratnyek PG. Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms. CHEMOSPHERE 2021; 280:130766. [PMID: 34162087 DOI: 10.1016/j.chemosphere.2021.130766] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/13/2023]
Abstract
Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhiwei Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Perfileva AI, Nozhkina OA, Ganenko TV, Graskova IA, Sukhov BG, Artem’ev AV, Trofimov BA, Krutovsky KV. Selenium Nanocomposites in Natural Matrices as Potato Recovery Agent. Int J Mol Sci 2021; 22:4576. [PMID: 33925499 PMCID: PMC8123876 DOI: 10.3390/ijms22094576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
The paper presents a study of the effect of chemically synthesized selenium nanocomposites (Se NCs) in natural polymer matrices arabinogalactan (AG) and starch (ST) on the viability of the potato ring rot pathogen Clavibacter sepedonicus (Cms), potato plants in vitro, and the soil bacterium Rhodococcus erythropolis. It was found that the studied Se NCs have an antibacterial effect against the phytopathogenic Cms, reducing its growth rate and ability to form biofilms. It was revealed that Se NC based on AG (Se/AG NC) stimulated the growth and development of potato plants in vitro as well as their root formation. At the same time, Se did not accumulate in potato tissues after the treatment of plants with Se NCs. The safety of the Se NCs was also confirmed by the absence of a negative effect on the growth and biofilm formation of the soil bacterium R. erythropolis. The obtained results indicate that Se NCs are promising environmentally safe agents for the protection and recovery of cultivated plants from phytopathogenic bacteria.
Collapse
Affiliation(s)
- Alla I. Perfileva
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.I.P.); (O.A.N.); (I.A.G.)
| | - Olga A. Nozhkina
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.I.P.); (O.A.N.); (I.A.G.)
| | - Tatjana V. Ganenko
- Laboratory of Functional Nanomaterials, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia;
| | - Irina A. Graskova
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.I.P.); (O.A.N.); (I.A.G.)
| | - Boris G. Sukhov
- Laboratory of Nanoparticles, V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Alexander V. Artem’ev
- A. V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Boris A. Trofimov
- Laboratory of Unsaturated Heteroatomic Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia;
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, Albrecht-Thaer-Weg 3, D-37075 Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX 77843-2138, USA
| |
Collapse
|
10
|
Huang T, Zhang SW, Liu LF, Zhou L. Green rust functionalized geopolymer of composite cementitious materials and its application on treating chromate in a holistic system. CHEMOSPHERE 2021; 263:128319. [PMID: 33297252 DOI: 10.1016/j.chemosphere.2020.128319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Green rust functionalized geopolymer of composite cementitious materials (GR-CCM) was synthesized to improve the adsorption and subsequent stabilization/solidification of chromate in a holistic operating system. The initial pH in solution exhibited the most significant effect on the chromate removal by GR-CCM among three adsorption factors. The maximum monolayer adsorption capacity and theoretical saturation capacity of GR-CCM for Cr(VI) in the acidic condition were 55.01 mg/g and 41.70 mg/g, respectively. Amorphousness brought by loading GR weakened the crystallinity of composite cementitious materials (CCM), which enhanced the adsorption capacity of CCM and boosted the solidification process. The mixed-valent iron species in the GR-CCM not only directly engaged in the adsorption and reduction of chromate also positively strengthened the solidification of Cr species during the whole treatment. This study facilitates the application of GRs on the geopolymer materials and demonstrates the combination of adsorption and immobilization for the treatment of other potential heavy metal contamination.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Shu-Wen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| | - Long-Fei Liu
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Lulu Zhou
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| |
Collapse
|
11
|
Digiacomo F, Tobler DJ, Held T, Neumann T. Immobilization of Cr(VI) by sulphate green rust and sulphidized nanoscale zerovalent iron in sand media: batch and column studies. GEOCHEMICAL TRANSACTIONS 2020; 21:8. [PMID: 32803495 PMCID: PMC7429723 DOI: 10.1186/s12932-020-00073-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/08/2020] [Indexed: 05/31/2023]
Abstract
Chromate, Cr(VI), contamination in soil and groundwater poses serious threat to living organisms and environmental health worldwide. Sulphate green rust (GRSO4), a naturally occurring mixed-valent iron layered double hydroxide has shown to be highly effective in the reduction of Cr(VI) to poorly soluble Cr(III), giving promise for its use as reactant for in situ remedial applications. However, little is known about its immobilization efficiency inside porous geological media, such as soils and sediments, where this reactant would ultimately be applied. In this study, we tested the removal of Cr(VI) by GRSO4 in quartz sand fixed-bed column systems (diameter × length = 1.4 cm × 11 cm), under anoxic conditions. Cr(VI) removal efficiency (relative to the available reducing equivalents in the added GRSO4) was determined by evaluating breakthrough curves performed at different inlet Cr(VI) concentrations (0.125-1 mM) which are representative of Cr(VI) concentrations found at contaminated sites, different flow rates (0.25-3 ml/min) and solution pH (4.5, 7 and 9.5). Results showed that (i) increasing Cr(VI) inlet concentration substantially decreased Cr(VI) removal efficiency of GRSO4, (ii) flow rates had a lower impact on removal efficiencies, although values tended to be lower at higher flow rates, and (iii) Cr(VI) removal was enhanced at acidic pH conditions compared to neutral and alkaline conditions. For comparison, Cr(VI) removal by sulphidized nanoscale zerovalent iron (S-nZVI) in identical column experiments was substantially lower, indicating that S-nZVI reactivity with Cr(VI) is much slower compared to GRSO4. Overall, GRSO4 performed reasonably well, even at the highest tested flow rate, showing its versatility and suitability for Cr(VI) remediation applications in high flow environments.
Collapse
Affiliation(s)
- Flavia Digiacomo
- ARCADIS Germany GmbH, Griesbachstraße 10, 76185, Karlsruhe, Germany.
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, Adenauerring 20b, Building 50.40, 76131, Karlsruhe, Germany.
| | - Dominique J Tobler
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Thomas Held
- ARCADIS Germany GmbH, Europaplatz 3, 64293, Darmstadt, Germany
| | - Thomas Neumann
- Department of Applied Geosciences, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| |
Collapse
|
12
|
Tian Q, Guo B, Chuaicham C, Sasaki K. Mechanism analysis of selenium (VI) immobilization using alkaline-earth metal oxides and ferrous salt. CHEMOSPHERE 2020; 248:126123. [PMID: 32059334 DOI: 10.1016/j.chemosphere.2020.126123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/16/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The immobilization of selenate (SeO42-) using metal oxides (CaO and MgO) and ferrous salt as the immobilization reagents were examined by the leaching test and solid-phase analysis via XRD, XAFS, TGA, and XPS. The results indicated that nearly all of SeO42- was reduced to SeO32- in the CaO-based reaction within 7 days. Then, the generated SeO32- was mainly sorbed onto the iron-based minerals (Fe2O3 and FeOOH) through the formation of both bidentate mononuclear edge-sharing (1E) and monodentate mononuclear corner-sharing (1V) inner-sphere surface complexes, suggested by PHREEQC simulation and EXAFS analysis. Differently, less amount of SeO42- (approximately 45.50%) was reduced to SeO32- for the MgO-based reaction. However, if the curing time increases to a longer time (more than 7 days), the further reduction could occur because there are still Fe(II) species in the matrix. As for the associations of Se in the solid residue, most of the selenium (SeO32- and SeO42-) was preferentially distributed onto the Mg(OH)2 through outer-sphere adsorption. Definitely, this research can provide a deep understanding of the immobilization of selenium using alkaline-earth metal oxide related materials and ferrous substances.
Collapse
Affiliation(s)
- Quanzhi Tian
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Binglin Guo
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
13
|
Products of Hexavalent Chromium Reduction by Green Rust Sodium Sulfate and Associated Reaction Mechanisms. SOIL SYSTEMS 2018. [DOI: 10.3390/soilsystems2040058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The efficacy of in vitro Cr(VI) reduction by green rust sulfate suggests that this mineral is potentially useful for remediation of Cr-contaminated groundwater. Previous investigations studied this reaction but did not sufficiently characterize the intermediates and end products at chromate (CrO42−) concentrations typical of contaminant plumes, hindering identification of the dominant reaction mechanisms under these conditions. In this study, batch reactions at varying chromate concentrations and suspension densities were performed and the intermediate and final products of this reaction were analyzed using X-ray absorption spectroscopy and electron microscopy. This reaction produces particles that maintain the initial hexagonal morphology of green rust but have been topotactically transformed into a poorly crystalline Fe(III) oxyhydroxysulfate and are coated by a Cr (oxy) hydroxide layer that results from chromate reduction at the surface. Recent studies of the behavior of Cr(III) (oxy) hydroxides in soils have revealed that reductive transformation of CrO42− is reversible in the presence of Mn(IV) oxides, limiting the applicability of green rust for Cr remediation in some soils. The linkage of Cr redox speciation to existing Fe and Mn biogeochemical cycles in soils implies that modification of green rust particles to produce an insoluble, Cr(III)-bearing Fe oxide product may increase the efficacy of this technique.
Collapse
|