1
|
Zhao J, Lv R, Zhao F, Yang D. Post-Assembly Polymerization of Discrete Anion-Coordinated Triple Helicate. Chempluschem 2024; 89:e202400161. [PMID: 38593244 DOI: 10.1002/cplu.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Hierarchical self-assembly has been recently employed in the construction of anion-coordination-driven gel materials. However, the post-assembly modification strategy, which may be a highly efficient strategy to realize the functionalization of discrete 'aniono' supramolecular architectures, has not been employed yet. Herein we report the first example of anion-coordination-driven gel material cross-linked by well-defined 'aniono' triple helicate through post-assembly polymerization. The obtained gel shows self-healing property and excellent compatibility with various surfaces, including glass, rubber, leaf, PP, and metal. The viscoelastic gel constructed through the post-assembly modification strategy enriches the method to construct the anion-coordination-driven smart materials.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055
| | - Ruying Lv
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069
| | - Fen Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069
| |
Collapse
|
2
|
Li J, Liu Z, Liu J, Liu X, Luo Y, Liang J, Zhang Z. Humidity-Induced Self-Oscillating and Self-Healing Hypercrosslinked Metal-Organic Polyhedra Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307376. [PMID: 38468437 PMCID: PMC11132063 DOI: 10.1002/advs.202307376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Indexed: 03/13/2024]
Abstract
Designing autonomously oscillating materials is highly desirable for emerging smart material fields but challenging. Herein, a type of hypercrosslinked metal-organic polyhedra (HCMOPs) membranes formed by covalent crosslinking of boronic acid-modified Zr-based MOPs with polyvinyl alcohol (PVA) are rationally designed. In these membranes, MOPs serve as high-connectivity nodes and provide dynamic borate bonds with PVA in hypercrosslinked networks, which can be broken/formed reversibly upon the stimulus of water vapor. The humidity response characteristic of HCMOPs promotes their self-oscillating and self-healing properties. HCMOP membranes can realize a self-oscillating property above the water surface even after loading a cargo that is 1.5 times the weight of the membrane due to the fast adsorption and desorption kinetics. Finally, the HCMOP actuator can realize energy conversion from mechanical energy into electricity when coupled with a piezoelectric membrane. This work not only paves a new avenue to construct MOP-polymer hybrid materials but also expands the application scopes of MOPs for smart actuation devices.
Collapse
Affiliation(s)
- Jiamin Li
- College of ChemistryNankai UniversityTianjin300071China
| | - Zhaoyi Liu
- College of ChemistryNankai UniversityTianjin300071China
| | - Jinjin Liu
- College of ChemistryNankai UniversityTianjin300071China
| | - Xue Liu
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsNankai UniversityTianjin300350China
| | - Yang Luo
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jiajie Liang
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsNankai UniversityTianjin300350China
| | - Zhenjie Zhang
- College of ChemistryNankai UniversityTianjin300071China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage CenterNankai UniversityTianjin300071China
| |
Collapse
|
3
|
Synthesis, structure, fluorescence and thermochemical properties of the lanthanide complexes of 2-chloro-6-fluorobenzoic acid and 2,2′:6′2″-tripyridine ligands. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Jiao J, He J, Li M, Yang J, Yang H, Wang X, Yang S. A porphyrin-based metallacage for enhanced photodynamic therapy. NANOSCALE 2022; 14:6373-6383. [PMID: 35411893 DOI: 10.1039/d1nr08293k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we designed an effective nanoplatform to improve the photodynamic therapy (PDT) of porphyrins. Combining a porphyrin-based metallacage (PM), hyaluronidase (HAase) and DSPE-mPEG2000 together, the nanoparticle (PM@HAase-mPEG) showed enhanced PDT efficacy. The PM improved the stability of the porphyrin, avoided its aggregation and provided cavities to concentrate oxygen molecules, which was beneficial for enhancing PDT. HAase degraded HA to increase the intracellular accumulation of nanoparticles, normalized blood vessels and relieved hypoxia in tumors. PM@HAase-mPEG inhibited the growth of tumors in a 4T1 mouse model by the generated singlet oxygen with excellent PDT efficacy. This study resolved the problems of the instability of PSs, less cellular accumulation of drugs, and tumor hypoxia that limited the anti-tumor application of PDT.
Collapse
Affiliation(s)
- Jingjing Jiao
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Jing He
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Mengmeng Li
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Jingxia Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaoqing Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
5
|
Liu J, Wang Z, Cheng P, Zaworotko MJ, Chen Y, Zhang Z. Post-synthetic modifications of metal–organic cages. Nat Rev Chem 2022; 6:339-356. [PMID: 37117929 DOI: 10.1038/s41570-022-00380-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Metal-organic cages (MOCs) are discrete, supramolecular entities that consist of metal nodes and organic linkers, which can offer solution processability and high porosity. Thereby, their predesigned structures can undergo post-synthetic modifications (PSMs) to introduce new functional groups and properties by modifying the linker, metal node, pore or surface environment. This Review explores current PSM strategies used for MOCs, including covalent, coordination and noncovalent methods. The effects of newly introduced functional groups or generated complexes upon the PSMs of MOCs are also detailed, such as improving structural stability or endowing desired functionalities. The development of the aforementioned design principles has enabled systematic approaches for the development and characterization of families of MOCs and, thereby, provides insight into structure-function relationships that will guide future developments.
Collapse
|
6
|
Li XZ, Tian CB, Sun QF. Coordination-Directed Self-Assembly of Functional Polynuclear Lanthanide Supramolecular Architectures. Chem Rev 2022; 122:6374-6458. [PMID: 35133796 DOI: 10.1021/acs.chemrev.1c00602] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lanthanide supramolecular chemistry is a fast growing and intriguing research field due to the unique photophysical, magnetic, and coordination properties of lanthanide ions (LnIII). Compared with the intensively investigated mononuclear Ln-complexes, polymetallic lanthanide supramolecular assemblies offer more structural superiority and functional advantages. In recent decades, significant progress has been made in polynuclear lanthanide supramolecules, varying from structural evolution to luminescent and magnetic functional materials. This review summarizes the design principles in ligand-induced coordination-driven self-assembly of polynuclear Ln-structures and intends to offer guidance for the construction of more elegant Ln-based architectures and optimization of their functional performances. Design principles concerning the water solubility and chirality of the lanthanide-organic assemblies that are vital in extending their applications are emphasized. The strategies for improving the luminescent properties and the applications in up-conversion, host-guest chemistry, luminescent sensing, and catalysis have been summarized. Magnetic materials based on supramolecular assembled lanthanide architectures are given in an individual section and are classified based on their structural features. Challenges remaining and perspective directions in this field are also briefly discussed.
Collapse
Affiliation(s)
- Xiao-Zhen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| |
Collapse
|
7
|
O’Neil AT, Zhang N, Harrison JA, Goldup SM, Kitchen JA. Synthesis, photophysical and assembly studies of novel luminescent lanthanide(III) complexes of 1,2,3-triazolyl-pyridine-2,6-dicarboxamide-based ligands. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1955120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alex T. O’Neil
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, NZ, New Zealand
| | - Ningjin Zhang
- School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - John A. Harrison
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, NZ, New Zealand
| | - Stephen M. Goldup
- School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Jonathan A. Kitchen
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, NZ, New Zealand
| |
Collapse
|
8
|
|
9
|
Deng YK, Zhao YR, Xu H, Kong XJ, Long LS, Zheng LS. Preparation of a Lanthanide-Titanium Oxo Cluster-Polymer Composite by Cu I -Catalyzed Click Chemistry. Chemistry 2020; 27:614-617. [PMID: 33200423 DOI: 10.1002/chem.202004457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/08/2020] [Indexed: 11/12/2022]
Abstract
Incorporating metal clusters within the skeleton of the organic polymers through a click reaction cannot only effectively prepare cluster-polymer composites, but also effectively avoid the cluster aggregation. Herein, an azide-containing lanthanide-titanium oxo cluster of Eu8 Ti10 -N3 (Eu8 Ti10 -N3 =[Eu8 Ti10 (μ3 -O)14 (H2 O)4 (OAc)2 (tbba)30 (paza)4 (THF)2 ]⋅4 THF⋅8 H2 O (1), Htbba=4-tert-butylbenzoic acid, Hpaza=4-azidobenzoate, HOAc=acetic acid, THF=tetrahydrofuran) through an in situ solvothermal reaction of 4-azidobenzoic acid and 4-tert-butylbenzoic acid. Reaction of 1 with PEG (PEG=methoxypoly(ethyleneglycol)alkyne, 2000 g mol-1 ) through CuI -catalyzed click chemistry generates a lanthanide-polymer composite of Eu8 Ti10 -N3 @PEG (2). Investigation with IR, 1 H NMR and ICP-OES of 2 indicates that the structural integrity of 1 is maintained in 2. Study of the luminescent properties of 1 and 2 reveals that the quantum yield of 1 itself basically remains unchanged in 2. Significantly, the formation of 2 cannot only effectively prevent the cluster 1 from aggregation, but also greatly enhance its solubility and adhesion to the substrate. Owing to the solubility and adhesion of luminescent materials being the key to their practical application, present work is thus of great significance for the development of metal cluster-polymer composite luminescent materials.
Collapse
Affiliation(s)
- Yong-Kai Deng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Ya-Rui Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Han Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
10
|
Salinas-Uber J, Barrios LA, Roubeau O, Aromí G. Two [Ln 4] molecular rings folded as compact tetrahedra. Dalton Trans 2020; 49:7182-7188. [DOI: 10.1039/d0dt01259a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new highly photo-switchable ligand furnishes supramolecular tetrahedral nanomagnets with Ln(iii) ions (Ln = Dy, Tb). Intramolecular weak interactions define the conformation of the ligand, quenching the photochromic activity.
Collapse
Affiliation(s)
- Jorge Salinas-Uber
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Leoní A. Barrios
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB)
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA)
- CSIC and Universidad de Zaragoza
- Zaragoza
- Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB)
| |
Collapse
|
11
|
Wu SY, Guo XQ, Zhou LP, Sun QF. Fine-Tuned Visible and Near-Infrared Luminescence on Self-Assembled Lanthanide-Organic Tetrahedral Cages with Triazole-Based Chelates. Inorg Chem 2019; 58:7091-7098. [DOI: 10.1021/acs.inorgchem.9b00756] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shi-Yu Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|