1
|
Li X, Yang L, Zhou S, Qian Y, Wu Y, He X, Chen W, Zhang Z, Li T, Wang Q, Zhu C, Kong XY, Wen L. Neuron-Inspired Nanofluidic Biosensors for Highly Sensitive and Selective Imidacloprid Detection. ACS Sens 2023; 8:3428-3434. [PMID: 37552848 DOI: 10.1021/acssensors.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Pesticides have caused concerns about food safety due to their residual effects in vegetables and fruits. Imidacloprid, as the frequently used neonicotinoid pesticide, could harm cardiovascular and respiratory function and cause reproductive toxicity in humans. Therefore, reliable methods for portable, selective, and rapid detection are desirable to develop. Herein, we report a neuron-inspired nanofluidic biosensor based on a tyrosine-modified artificial nanochannel for sensitively detecting imidacloprid. The functional tyrosine is modified on the outer surface of porous anodic aluminum oxide to rapidly capture imidacloprid through π-π interactions and hydrogen bonds. The integrated nanofluidic biosensor has a wide concentration range from 10-8 to 10-4 g/mL with an ultralow detection limit of 6.28 × 10-9 g/mL, which outperforms the state-of-the-art sensors. This work provides a new perspective on detecting imidacloprid residues as well as other hazardous pesticide residues in environmental and food samples.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Linsen Yang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yadong Wu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xiaofeng He
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Tingyang Li
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Qingchen Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Congcong Zhu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
2
|
Ling H, Xin W, Qian Y, He X, Yang L, Chen W, Wu Y, Du H, Liu Y, Kong XY, Jiang L, Wen L. Heterogeneous Electrospinning Nanofiber Membranes with pH-regulated Ion Gating for Tunable Osmotic Power Harvesting. Angew Chem Int Ed Engl 2023; 62:e202212120. [PMID: 36329000 DOI: 10.1002/anie.202212120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Biological ion channels existing in organisms are critical for many biological processes. Inspired by biological ion channels, the heterogeneous electrospinning nanofiber membranes (HENM) with functional ion channels are constructed by electrospinning technology. The HENM successfully realizes ion-gating effects, which can be used for tunable energy conversions. Introduction of pyridine and carboxylic acid groups into the HENM plays an important role in generating unique and stable ion transport behaviors, in which gates become alternative states of open and close, responding to symmetric/asymmetric pH stimulations. Then we used the HENM to convert osmotic energy into electric energy which reach a maximum value up to 12.34 W m-2 and the output power density of HENM-based system could be regulated by ion-gating effects. The properties of the HENM provide widespread potentials in application of smart nanofluidic devices, energy conversion, and water treatment.
Collapse
Affiliation(s)
- Haoyang Ling
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xiaofeng He
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yadong Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huaqing Du
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Abstract
Ion pumps are important membrane-spanning transporters that pump ions against the electrochemical gradient across the cell membrane. In biological systems, ion pumping is essential to maintain intracellular osmotic pressure, to respond to external stimuli, and to regulate physiological activities by consuming adenosine triphosphate. In recent decades, artificial ion pumping systems with diverse geometric structures and functions have been developing rapidly with the progress of advanced materials and nanotechnology. In this Review, bioinspired artificial ion pumps, including four categories: asymmetric structure-driven ion pumps, pH gradient-driven ion pumps, light-driven ion pumps, and electron-driven ion pumps, are summarized. The working mechanisms, functions, and applications of those artificial ion pumping systems are discussed. Finally, a brief conclusion of underpinning challenges and outlook for future research are tentatively discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Hongjie Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| |
Collapse
|
4
|
Yu X, Li C, Chang J, Wang Y, Xia W, Suo J, Guan X, Valtchev V, Yan Y, Qiu S, Fang Q. Gating Effects for Ion Transport in Three-Dimensional Functionalized Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202200820. [PMID: 35072979 DOI: 10.1002/anie.202200820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
The development of bioinspired nano/subnano-sized (<2 nm) ion channels is still considered a great challenge due to the difficulty in precisely controlling pore's internal structure and chemistry. Herein, for the first time, we report that three-dimensional functionalized covalent organic frameworks (COFs) can act as an effective nanofluidic platform for intelligent modulation of the ion transport. By strategic attachment of 12-crown-4 groups to the monomers as ion-driver door locks, we demonstrate that gating effects of functionalized COFs can be activated by lithium ions. The obtained materials exhibit an outstanding selective ion transmission performance with a high gating ratio (up to 23.6 for JUC-590), which is among the highest values in metal ion-activated solid-state nanochannels reported so far. Furthermore, JUC-590 offers high tunability, selectivity, and recyclability of ion transport proved by the experimental and simulated studies.
Collapse
Affiliation(s)
- Xiuqin Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Cuiyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jianhong Chang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Weifeng Xia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Song Ling Rd, Qingdao, Shandong, 266101, China.,Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050, Caen, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716, USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Yu X, Li C, Chang J, Wang Y, Xia W, Suo J, Guan X, Valtchev V, Yan Y, Qiu S, Fang Q. Gating Effects for Ion Transport in Three‐Dimensional Functionalized Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiuqin Yu
- Jilin University College of Chemistry CHINA
| | - Cuiyan Li
- Jilin University College of Chemistry CHINA
| | | | - Yujie Wang
- Jilin University College of Chemistry CHINA
| | | | | | - Xinyu Guan
- Jilin University College of Chemistry CHINA
| | - Valentin Valtchev
- Normandie Université: Normandie Universite Laboratoire Catalyse et Spectrochimie FRANCE
| | - Yushan Yan
- University of Delaware Chemical and Biomolecular Engineering UNITED STATES
| | - Shilun Qiu
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| | - Qianrong Fang
- Jilin University Department of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
6
|
|
7
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
8
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
9
|
Qiao Z, Jiang Z, Luo Q, Zhang H, Zheng J. A label-free ratiometric immunoassay using bioinspired nanochannels and a smart modified electrode. Anal Chim Acta 2021; 1162:338476. [PMID: 33926698 DOI: 10.1016/j.aca.2021.338476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
Labeling with redox reporter is often required in developing electrochemical bioassay for most proteins or nucleic acid biomarkers. Herein, a label-free ratiometric immunosensing platform is firstly developed by integrating the antibody-conjugated nanochannels with a smart modified electrode. The electrode modifier is the composite of C60, tetraoctylammonium bromide (TOA+) and Prussian blue (PB). Cyclic voltammograms of the ultimate C60-TOA+/PB modified electrode exhibited two pairs of peaks at 0.15 V and -0.13 V, ascribing to the redox of PB and C60, respectively. With the addition of K3[Fe(CN)6] in the electrolyte solution, the peaks of PB decreased due to the adsorption of [Fe(CN)6]3- while the peaks of C60 increased because of the formation of the ternary complex (TC) C60-TOA+-[Fe(CN)6]3-. As a result, the peak current ratio IPB/ITC decreased gradually with the increment of the concentration of [Fe(CN)6]3-. For the nanochannels-based immunosensing platform, the steric hindrance of the bioconjugated nanochannels varied with the loading amount of the target CA125, and thus [Fe(CN)6]3- passing through the channels was quantitatively affected. And the higher CA125 level was, the less [Fe(CN)6]3- concentration was. And thus, the ratio IPB/ITC monitored at the C60-TOA+/PB modified electrode increased with the increase of the concentration of CA125. The ratiometric immunoassay featured a linear calibration range from 1.0 U mL-1 to 100 U mL-1 with a low detection limit of 0.86 U mL-1. In addition, the ratiometric immunosensing platform demonstrated good specificity and stability as well as acceptable accuracy in overcoming the effect of electrode passivation which was an inherent problem of electroanalysis.
Collapse
Affiliation(s)
- Zhe Qiao
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Zilian Jiang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Qiufen Luo
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Hongfang Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China.
| | - Jianbin Zheng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
10
|
Xie Z, Yang M, Luo L, Lv Y, Song K, Liu S, Chen D, Wang J. Nanochannel sensor for sensitive and selective adamantanamine detection based on host-guest competition. Talanta 2020; 219:121213. [PMID: 32887115 DOI: 10.1016/j.talanta.2020.121213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023]
Abstract
The abuse of adamantanamine (ADA) and its derivatives as veterinary drugs in the poultry industry could cause severe health problems for humans. It is of great need to develop a rapid, cheap and ultrasensitive method for ADA detection. In this study, a sensitive conical nanochannel sensor was established for the rapid quantitative detection of ADA with the distinctive design of the host-guest competition. The sensor was constructed by functionalizing the nanochannel surface with p-toluidine and was then assembled with Cucurbit [7]uril (CB [7]). When ADA is added, it could occupy the cavity of CB [7] due to the host-guest competition and makes CB [7] to release from the CB [7]-p-toluidine complex, resulting in a distinct change of hydrophobicity of the nanochannel, which could be determined by the ionic current. Under the optimal conditions, the strategy permitted sensitive detection of ADA in a linear range of 10-1000 nM. The nanochannel based ADA sensing platform showed both high sensitivity and excellent reproducibility and the limit of detection was 4.54 nM. For the first time, the rapid and sensitive recognition of an illegal medicine was realized based on the host-guest competition method with the nanochannel system and the principle and feasibility of this method were described at length. This strategy provides a simple, reliable, and effective way to apply host-guest system in the development of nanochannel sensor for small-molecule drug detection.
Collapse
Affiliation(s)
- Zhipeng Xie
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China; The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Mingfeng Yang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Le Luo
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yiping Lv
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kangjin Song
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Daqi Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jiahai Wang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Zhang Z, Huang X, Qian Y, Chen W, Wen L, Jiang L. Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single-Pore to Multichannel Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904351. [PMID: 31793736 DOI: 10.1002/adma.201904351] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid-membrane-based nanopores to robust and scalable solid-state nanopores. A generic strategy of gate location design is proposed. The single-pore-based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single-molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaodong Huang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongchao Qian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weipeng Chen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Pérez-Mitta G, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. Molecular Design of Solid-State Nanopores: Fundamental Concepts and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901483. [PMID: 31267585 DOI: 10.1002/adma.201901483] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Solid-state nanopores are fascinating objects that enable the development of specific and efficient chemical and biological sensors, as well as the investigation of the physicochemical principles ruling the behavior of biological channels. The great variety of biological nanopores that nature provides regulates not only the most critical processes in the human body, including neuronal communication and sensory perception, but also the most important bioenergetic process on earth: photosynthesis. This makes them an exhaustless source of inspiration toward the development of more efficient, selective, and sophisticated nanopore-based nanofluidic devices. The key point responsible for the vibrant and exciting advance of solid nanopore research in the last decade has been the simultaneous combination of advanced fabrication nanotechnologies to tailor the size, geometry, and application of novel and creative approaches to confer the nanopore surface specific functionalities and responsiveness. Here, the state of the art is described in the following critical areas: i) theory, ii) nanofabrication techniques, iii) (bio)chemical functionalization, iv) construction of nanofluidic actuators, v) nanopore (bio)sensors, and vi) commercial aspects. The plethora of potential applications once envisioned for solid-state nanochannels is progressively and quickly materializing into new technologies that hold promise to revolutionize the everyday life.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| |
Collapse
|
13
|
|
14
|
Shi L, Mu C, Gao T, Chai W, Sheng A, Chen T, Yang J, Zhu X, Li G. Rhodopsin-Like Ionic Gate Fabricated with Graphene Oxide and Isomeric DNA Switch for Efficient Photocontrol of Ion Transport. J Am Chem Soc 2019; 141:8239-8243. [DOI: 10.1021/jacs.9b01759] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Chaoli Mu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Wenxin Chai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Anzhi Sheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Tianshu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| |
Collapse
|