1
|
Jin A, Kan Z, Tan Q, Shao J, Han Q, Chang Y, An N, Yi M. Supplementation with food-derived oligopeptides promotes lipid metabolism in young male cyclists: a randomized controlled crossover trial. J Int Soc Sports Nutr 2023; 20:2254741. [PMID: 37674290 PMCID: PMC10486287 DOI: 10.1080/15502783.2023.2254741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Accumulation of body fat and dyslipidemia are associated with the development of obesity and cardiometabolic diseases. Moreover, the degree to which lipids can be metabolized has been cited as a determinant of cardiometabolic health and prolonged endurance capacity. In the backdrop of increasing obesity and cardiometabolic diseases, lipid metabolism and its modulation by physical activity, dietary adjustments, and supplementation play a significant role in maintaining health and endurance. Food-derived oligopeptides, such as rice and soybean peptides, have been shown to directly regulate abnormal lipid metabolism or promote hypolipidemia and fat oxidation in cell culture models, animal models, and human studies. However, whether supplementation with oligopeptides derived from multiple food sources can promote lipid degradation and fat oxidation in athletes remains unclear. Therefore, in a randomized controlled crossover trial, we investigated the impact of food-derived oligopeptide supplementation before and during exercise on lipid metabolism in young male cyclists. METHODS Sixteen young male cyclists (age: 17.0 ± 1.0 years; height: 178.4 ± 6.9 cm; body mass: 68.7 ± 12.7 kg, body mass index: 21.5 ± 3.4 kg/m2; maximum oxygen uptake: 56.3 ± 5.8 mL/min/kg) participated in this randomized controlled crossover trial. Each participant drank two beverages, one containing a blend of three food-derived oligopeptides (treatment, 0.5 g/kg body weight in total) and the other without (control), with a 2-week washout period between two experiments. The cyclists completed a one-day pattern protocol that consisted of intraday fasting, 30 min of sitting still, 85 min of prolonged exercise plus a 5-min sprint (PE), a short recovery period of 60 min, a 20-min time trial (TT), and recovery till next morning. Blood samples were collected for biochemical analyses of serum lipids and other biomarkers. We analyzed plasma triglyceride species (TGs), free amino acids (FAAs), and tricarboxylic acid (TCA) cycle intermediates using omics methods. In addition, exhaled gas was collected to assess the fat oxidation rate. RESULTS Five of 20 plasma FAAs were elevated pre-exercise (pre-Ex) only 20 min after oligopeptide ingestion, and most FAAs were markedly increased post PE and TT. Serum levels of TG and non-esterified fatty acids were lower in the experimental condition than in the control condition at the post PE and TT assessments, respectively. Further, the omics analysis of plasma TGs for the experimental condition demonstrated that most TGs were lower post PE and at the next fasting when compared with control levels. Simultaneously, the fat oxidation rate began to increase only 20 min after ingestion and during the preceding 85 min of PE. Levels of TCA cycle intermediates did not differ between the conditions. CONCLUSIONS The study noted that continuous ingestion of food-derived oligopeptides accelerated total body triglyceride breakdown, non-esterified fatty acid uptake, and fat oxidation during both sedentary and exercise states. Elevated circulating and intracellular FAA flux may modulate the selection of substrates for metabolic pathways in conjunction with the release of neuroendocrinological factors that slow down carbohydrate metabolism via acetyl coenzyme A feedback inhibition. This may increase the availability of fatty acids for energy production, with FAAs supplying more substrates for the TCA cycle. The findings of this study provide novel insight into strategies for promoting lipid metabolism in populations with dyslipidemia-related metabolic disorders such as obesity and for improving physiological functioning during endurance training. However, the absence of a non-exercising control group and verification of long-term supplementation effects was a limitation. Future studies will emphasize the impacts of whole protein supplementation as a control and of combined food-derived peptides or oligopeptides with probiotics and healthy food components on lipid metabolism in individuals who exercise.
Collapse
Affiliation(s)
- Aina Jin
- Beijing Sport University, Exercise Biochemistry, Beijing, China
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Zhaobo Kan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qiushi Tan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Jing Shao
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qi Han
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Yashan Chang
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Nan An
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Muqing Yi
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| |
Collapse
|
2
|
Rehman SU, Ali R, Zhang H, Zafar MH, Wang M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front Physiol 2023; 14:1252089. [PMID: 38046946 PMCID: PMC10691278 DOI: 10.3389/fphys.2023.1252089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Leucine, a branched-chain amino acid, is essential in regulating animal growth and development. Recent research has uncovered the mechanisms underlying Leucine's anabolic effects on muscle and other tissues, including its ability to stimulate protein synthesis by activating the mTORC1 signaling pathway. The co-ingestion of carbohydrates and essential amino acids enhances Leucine's anabolic effects. Moreover, Leucine has been shown to benefit lipid metabolism, and insulin sensitivity, making it a promising strategy for preventing and treating metabolic diseases, including type 2 diabetes and obesity. While emerging evidence indicates that epigenetic mechanisms may mediate Leucine's effects on growth and development, more research is needed to elucidate its mechanisms of action fully. Specific studies have demonstrated that Leucine promotes muscle growth and metabolic health in animals and humans, making it a promising therapeutic agent. However, it is essential to note that Leucine supplementation may cause digestive issues or interact with certain medications, and More study is required to determine definitively optimal dosages. Therefore, it is important to understand how Leucine interacts with other nutrients, dietary factors, and lifestyle habits to maximize its benefits. Overall, Leucine's importance in human nutrition is far-reaching, and its potential to prevent muscle loss and enhance athletic performance warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Dajnowska A, Tomaszewska E, Świątkiewicz S, Arczewska-Włosek A, Dobrowolski P, Domaradzki P, Rudyk H, Brezvyn O, Muzyka V, Kotsyumbas I, Arciszewski MB, Muszyński S. Yolk Fatty Acid Profile and Amino Acid Composition in Eggs from Hens Supplemented with ß-Hydroxy-ß-Methylbutyrate. Foods 2023; 12:3733. [PMID: 37893625 PMCID: PMC10606627 DOI: 10.3390/foods12203733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, a supplementation of livestock animals, including poultry, with β-Hydroxy-β-methylbutyrate (HMB) has gained attention for its effects on protein and fat metabolism. This study investigates the effects of HMB in the laying hen diet on egg quality, focusing on amino acid and fatty acid composition. Laying hens were supplemented with 0.02% HMB, with performance parameters and egg components analyzed. HMB supplementation led to increased albumen weight, influencing egg weight while also reducing feed intake per egg without affecting laying rate, yolk indices, fat, or cholesterol content. Notably, the study revealed significant changes in egg amino acid and fatty acid profiles due to HMB supplementation. Various amino acids, including glycine, serine, and isoleucine, were altered in the yolk, impacting nutritional value and potential health benefits. Regarding fatty acids, the study observed changes in both saturated as well as n-6 and n-3 fatty acids, affecting the overall lipid profile of egg yolks. However, the shifts in fatty acid composition could have implications for cardiovascular health due to altered ratios of n-6/n-3 fatty acids. Further research is required to comprehensively understand the implications of these findings for consumer-oriented egg quality and health benefits.
Collapse
Affiliation(s)
- Aleksandra Dajnowska
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (A.D.); (M.B.A.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland; (S.Ś.); (A.A.-W.)
| | - Anna Arczewska-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland; (S.Ś.); (A.A.-W.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Piotr Domaradzki
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Halyna Rudyk
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, 79000 Lviv, Ukraine; (H.R.); (O.B.); (V.M.); (I.K.)
| | - Oksana Brezvyn
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, 79000 Lviv, Ukraine; (H.R.); (O.B.); (V.M.); (I.K.)
| | - Viktor Muzyka
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, 79000 Lviv, Ukraine; (H.R.); (O.B.); (V.M.); (I.K.)
| | - Ihor Kotsyumbas
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, 79000 Lviv, Ukraine; (H.R.); (O.B.); (V.M.); (I.K.)
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (A.D.); (M.B.A.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
4
|
Duan G, Zheng C, Yu J, Zhang P, Wan M, Zheng J, Duan Y. β-Hydroxy-β-methyl Butyrate Regulates the Lipid Metabolism, Mitochondrial Function, and Fat Browning of Adipocytes. Nutrients 2023; 15:nu15112550. [PMID: 37299513 DOI: 10.3390/nu15112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A growing number of in vivo studies demonstrated that β-hydroxy-β-methyl butyrate (HMB) can serve as a lipid-lowering nutrient. Despite this interesting observation, the use of adipocytes as a model for research is yet to be explored. To ascertain the effects of HMB on the lipid metabolism of adipocytes and elucidate the underlying mechanisms, the 3T3-L1 cell line was employed. Firstly, serial doses of HMB were added to 3T3-L1 preadipocytes to evaluate the effects of HMB on cell proliferation. HMB (50 µM) significantly promoted the proliferation of preadipocytes. Next, we investigated whether HMB could attenuate fat accumulation in adipocytes. The results show that HMB treatment (50 µM) reduced the triglyceride (TG) content. Furthermore, HMB was found to inhibit lipid accumulation by suppressing the expression of lipogenic proteins (C/EBPα and PPARγ) and increasing the expression of lipolysis-related proteins (p-AMPK, p-Sirt1, HSL, and UCP3). We also determined the concentrations of several lipid metabolism-related enzymes and fatty acid composition in adipocytes. The HMB-treated cells showed reduced G6PD, LPL, and ATGL concentrations. Moreover, HMB improved the fatty acid composition in adipocytes, manifested by increases in the contents of n6 and n3 PUFAs. The enhancement of the mitochondrial respiratory function of 3T3-L1 adipocytes was confirmed via Seahorse metabolic assay, which showed that HMB treatment elevated basal mitochondrial respiration, ATP production, H+ leak, maximal respiration, and non-mitochondrial respiration. In addition, HMB enhanced fat browning of adipocytes, and this effect might be associated with the activation of the PRDM16/PGC-1α/UCP1 pathway. Taken together, HMB-induced changes in the lipid metabolism and mitochondrial function may contribute to preventing fat deposition and improving insulin sensitivity.
Collapse
Affiliation(s)
- Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zheng J, Duan Y, Zheng C, Yu J, Li F, Guo Q, Yin Y. Long-Term Protein Restriction Modulates Lipid Metabolism in White Adipose Tissues and Alters Colonic Microbiota of Shaziling Pigs. Animals (Basel) 2022; 12:ani12212944. [PMID: 36359067 PMCID: PMC9654241 DOI: 10.3390/ani12212944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a matter of concern to the public. Abundant evidence has been accumulated that nutritional intervention is a promising strategy to address this health issue. The objective of this study is to investigate alterations in the lipid metabolism in white adipose tissues and the gut microbiota of Shaziling pigs challenged by long-term protein restriction. Results showed that compared with the control group, reducing the protein level by 20% (−20%) increased the mRNA abundance of FABP4 in white adipose tissues (p < 0.05). This occurred in conjunction with increases in PPARγ protein expression. Conversely, the protein expression of C/EBPα was reduced in the −20% group (p < 0.05). Moreover, the −20% group had increased/decreased phosphorylation of AMPKα/mTOR, respectively (p < 0.05). As for the colonic gut microbiota, a 20% reduction in the protein level led to increased Lachnospiraceae XPB1014 group abundance at the genus level (p < 0.01). Collectively, these results indicated that a 20% protein reduction could modulate lipid metabolism and alter the colonic microbiota of Shaziling pigs, an approach which might be translated into a treatment for obesity.
Collapse
Affiliation(s)
- Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Correspondence: (Y.D.); (Y.Y.)
| | - Changbing Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Correspondence: (Y.D.); (Y.Y.)
| |
Collapse
|
6
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Yang Y, Yin Y, Gong S, Han M, Yin Y. Balanced branched-chain amino acids modulate meat quality by adjusting muscle fiber type conversion and intramuscular fat deposition in finishing pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3796-3807. [PMID: 34921408 DOI: 10.1002/jsfa.11728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pork is an important food for humans and improving the quality of pork is closely related to human health. This study was designed to investigate the effects of balanced branched-chain amino acid (BCAA)-supplemented protein-restricted diets on meat quality, muscle fiber types, and intramuscular fat (IMF) in finishing pigs. RESULTS The results showed that, compared with the normal protein diet (160 g kg-1 crude protein), the reduced-protein diet (120 g kg-1 crude protein) supplemented with BCAAs to the ratio of 2:1:2 not only had higher average daily gain (P < 0.05) and carcass weight (P < 0.05) but also improved meat tenderness and juiciness by decreasing shear force (P < 0.05) and increasing water-holding capacity (P < 0.05). In particular, this treatment showed higher (P < 0.05) levels of phospho-acetyl-CoA carboxylase (P-ACC) and peroxisome proliferation-activated receptor-γ (PPARγ), and lower (P < 0.05) levels of P-adenosine 5'-monophosphate (AMP)-activated protein kinase (P-AMPK), increasing the composition of IMF and MyHC I (P < 0.05) in the longissimus dorsi muscle (LDM). In terms of health, this group increased eicosapentaenoic acid (EPA) (P < 0.01) and desirable hypocholesterolemic fatty acids (DHFA) (P < 0.05), and decreased atherogenicity (AI) (P < 0.01) and hypercholesterolemic saturated fatty acids (HSFA) (P < 0.05). CONCLUSION Our findings suggest a novel role for a balanced BCAA-supplemented restricted protein (RP) diet in the epigenetic regulation of more tender and healthier pork by increasing IMF deposition and fiber type conversion, providing a cross-regulatory molecular basis for revealing the nutritional regulation network of meat quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| |
Collapse
|
7
|
Cui C, Wu C, Wang J, Zheng X, Ma Z, Zhu P, Guan W, Zhang S, Chen F. Leucine supplementation during late gestation globally alters placental metabolism and nutrient transport via modulation of the PI3K/AKT/mTOR signaling pathway in sows. Food Funct 2022; 13:2083-2097. [PMID: 35107470 DOI: 10.1039/d1fo04082k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a previously published study we reported that sow dietary leucine supplementation during late pregnancy significantly improved newborn piglet birth weight by stimulating protein synthesis in the longissimus dorsi muscle. However, there is still limited knowledge as to whether leucine can exert its effects on the placenta, one of the most important temporal organs during pregnancy, to promote maternal-fetal nutrient supply and thus contribute to fetal intrauterine development. Therefore, we tested this hypothesis in the present study. In total, 150 sows at day 90 of gestation were divided into three groups and fed with either a control diet (CON), CON + 0.4% Leu or CON + 0.8% Leu, respectively, until parturition. Placental metabolomics, full spectrum amino acids and nutrient transporters were systematically analyzed after sample collection. The results indicated that Leu supplementation led to an altered placental metabolism with an increased number of metabolites related to glycolysis and the oxidation of fatty acids, as well as elevated levels of amino acid accumulation in the placenta. In addition, nutrient transporters of amino acids, glucose and fatty acids in the placenta were globally up-regulated and several enzymes related to energy metabolism, including hexokinase, succinate dehydrogenase, lactated hydrogenase, glycogen phosphorylase and hydroxyacyl-CoA-dehydrogenase, were also significantly increased with no change observed in the antioxidative status of those groups with Leu supplementation. Furthermore, the phosphorylation of PI3K, Akt, and mTOR was enhanced in the placenta of sows undergoing Leu treatment. Collectively, we concluded that supplementing the diets of sows with Leu during late gestation globally altered placental metabolism and promoted maternal-fetus nutrient transport (amino acids, glucose, and fatty acids) via modulation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Pengwei Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Zhang S, Tang Z, Zheng C, Zhong Y, Zheng J, Duan G, Yin Y, Duan Y, Song Z. Dietary Beta-Hydroxy-Beta-Methyl Butyrate Supplementation Inhibits Hepatic Fat Deposition via Regulating Gut Microbiota in Broiler Chickens. Microorganisms 2022; 10:microorganisms10010169. [PMID: 35056618 PMCID: PMC8781658 DOI: 10.3390/microorganisms10010169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/25/2022] Open
Abstract
The present study is aimed to explore the effects of different dietary beta-hydroxy-beta-methyl butyrate (HMB) levels (0, 0.05%, 0.10%, or 0.15%) on liver lipid metabolism on Wenshi broiler chickens. Results showed that HMB reduced the liver weight as well as liver concentrations of triacylglycerol (TG) and total cholesterol (TC) (quadratically, p < 0.05), and the lowest values were observed in the 0.10% HMB group. Meanwhile, HMB supplementation significantly altered the expression levels of key genes related to lipid metabolism in the liver of broiler chickens (p < 0.05). Furthermore, 16S rRNA gene sequencing revealed that HMB supplementation could greatly change the richness, diversity, and composition of the broiler gut microbiota, and the Bacteroidetes relative abundance at the phylum level and the Alistipes relative abundance at the genus level were affected (p < 0.05). Correlation analysis further suggested a strong association between Bacteroidetes relative abundance and lipid metabolism-related parameters (p < 0.05). Together, these data suggest that 0.10% HMB supplementation could inhibit hepatic fat deposition via regulating gut microbiota in broilers.
Collapse
Affiliation(s)
- Shiyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhiyi Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Changbing Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
- Correspondence: (Y.D.); (Z.S.)
| | - Zehe Song
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
- Correspondence: (Y.D.); (Z.S.)
| |
Collapse
|
9
|
Dietary beta-hydroxy-beta-methyl butyrate supplementation improves meat quality of Bama Xiang mini-pigs through manipulation of muscle fiber characteristics. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
10
|
Busse NI, Gonzalez ML, Krason ML, Johnson SE. β-Hydroxy β-methylbutyrate supplementation to adult Thoroughbred geldings increases type IIA fiber content in the gluteus medius. J Anim Sci 2021; 99:6369571. [PMID: 34516615 DOI: 10.1093/jas/skab264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
Consumption of β-hydroxy β-methylbutyrate (HMB) alters muscle composition and metabolism leading to strength and agility improvements in human athletes. To determine if HMB affects athletic performance and muscle function in horses, Thoroughbred geldings were fed a control (CON; n = 5) or HMB (n = 6) supplement for 6 wk prior to completing a standardized exercise test (SET). Gluteus medius (GM) muscle biopsies were obtained before the SET for fiber typing. Heart rate, biceps femoris (BF) and semitendinosus (ST) surface electromyograms (EMG), and fore and hind limbs metacarpophalangeal joint angles were captured at the gallop of the SET. Results demonstrate that HMB supplementation increased (P < 0.05) the percentage of type IIA and IIA/X muscle fibers in the GM with a corresponding decrease (P < 0.05) in type IIX fibers. The percentage of type I fibers was unaffected by diet. Supplementation with HMB did not result in any measurable effects on performance or biomechanical properties by comparison to CON. Supplementation with HMB resulted in an increase (P < 0.05) in ST median frequency at speeds of 10 m/s and greater. Increasing treadmill speed resulted in an increase (P < 0.05) in stride length and the maximal proximal forelimb fetlock angle, and a decrease (P < 0.05) in stance phase time of the gait cycle. Integrated EMG (iEMG) increased (P < 0.05) with increasing treadmill speeds for both the BF and ST with the BF exhibiting greater (P < 0.05) iEMG values than the ST. In summary, HMB increased the percentage of type IIA GM fibers, which did not translate into improved performance.
Collapse
Affiliation(s)
- Nicolas I Busse
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mackenzie L Krason
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Zheng J, Zheng C, Song B, Guo Q, Zhong Y, Zhang S, Zhang L, Duan G, Li F, Duan Y. HMB Improves Lipid Metabolism of Bama Xiang Mini-Pigs via Modulating the Bacteroidetes-Acetic Acid-AMPKα Axis. Front Microbiol 2021; 12:736997. [PMID: 34484171 PMCID: PMC8415715 DOI: 10.3389/fmicb.2021.736997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Here, we used Bama Xiang mini-pigs to explore the effects of different dietary β-hydroxy-β-methylbutyrate (HMB) levels (0, 0.13, 0.64 or 1.28%) on lipid metabolism of adipose tissue. Results showed that HMB decreased the fat percentage of pigs (linearly, P < 0.05), and the lowest value was observed in the 0.13% HMB group. Moreover, the colonic acetic acid concentration and the relative Bacteroidetes abundance were increased in response to HMB supplementation (P < 0.05). Correlation analysis identified a positive correlation between the relative Bacteroidetes abundance and acetic acid production, and a negative correlation between fat percentage and the relative Bacteroidetes abundance or acetic acid production. HMB also upregulated the phosphorylation (p) of AMPKα, Sirt1, and FoxO1, and downregulated the p-mTOR expression. Collectively, these findings indicate that reduced fat percentage in Bama Xiang mini-pigs could be induced by HMB supplementation and the mechanism might be associated with the Bacteroidetes-acetic acid-AMPKα axis.
Collapse
Affiliation(s)
- Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Changbing Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bo Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shiyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lingyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
12
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Yang Y, Yin Y, Gong S, Han M, Yin Y. Different Proportions of Branched-Chain Amino Acids Modulate Lipid Metabolism in a Finishing Pig Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7037-7048. [PMID: 34110799 DOI: 10.1021/acs.jafc.1c02001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the effect of the supplementation of branched-chain amino acids (BCAAs) at different ratios in protein restriction diets on lipid metabolism in a finishing pig model. The BCAA supplementation (leucine/isoleucine/valine = 2:1:1 and 2:1:2) ameliorated the poor growth performance and carcass characteristics, particularly high fat mass caused by a protein-restricted diet. Serum adiponectin increased while leptin decreased in BCAA diets in comparison to the 12% CP group. BCAA supplementation also increased the low-protein expression of AMPK and SIRT1 caused by protein restriction. The mRNA and protein levels of peroxisome proliferation-activated receptor-γ (PPARγ) and acetyl-CoA carboxylase (ACC) were highest in the protein-restricted group and lowered in the 2:1:1 or 2:1:2 group. In conclusion, BCAAs supplemented in an adequate ratio range of 2:1:1 to 2:1:2 (2:1:2 is recommended) in reduced protein diets could modulate lipid metabolism by accelerating the secretion of adipokines and fatty acid oxidation.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha 410018, Hunan, China
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| |
Collapse
|
13
|
Davis H, Jagger S, Toplis P, Miller H. Feeding β-hydroxy β-methyl butyrate to sows in late gestation improves litter and piglet performance to weaning and colostrum immunoglobulin concentrations. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Zheng C, Song B, Guo Q, Zheng J, Li F, Duan Y, Peng C. Alterations of the Muscular Fatty Acid Composition and Serum Metabolome in Bama Xiang Mini-Pigs Exposed to Dietary Beta-Hydroxy Beta-Methyl Butyrate. Animals (Basel) 2021; 11:ani11051190. [PMID: 33919223 PMCID: PMC8143165 DOI: 10.3390/ani11051190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pork is the most consumed meat source for humans, and the utilization of nutritional approaches to produce pork with an appropriate content of intramuscular fat (IMF) and a balanced ratio of different kinds of fatty acid is an important objective pursuit of swine production. We speculated that dietary supplementation of beta-hydroxy beta-methyl butyrate (HMB) may provide benefits in lipid metabolism of skeletal muscle. In this study, we try to investigate the effects of dietary HMB supplementation on muscular lipid metabolism in Bama Xiang mini-pigs. We found that HMB supplementation could decrease the IMF content and increase n3 polyunsaturated fatty acids as well as regulate the related metabolites (N-Methyl-l-glutamate and nummularine A) in the serum of Bama Xiang mini-pigs, thus improving their meat quality. Abstract This study aimed to investigate the effects of dietary beta-hydroxy beta-methyl butyrate (HMB) supplementation on muscular lipid metabolism in Bama Xiang mini-pigs. Thirty-two piglets (8.58 ± 0.40 kg, barrow) were selected and fed a basal diet supplemented either with 0 (control), 0.13%, 0.64%, or 1.28% HMB for 60 days. Throughout the experiments, they had free access to clean drinking water and diets. Data of this study were analyzed by one-way ANOVA using the SAS 8.2 software package, followed by a Tukey’s studentized range test to explore treatment effects. The results showed that compared to the control, 0.13% HMB decreased the intramuscular fat (IMF) content and increased polyunsaturated fatty acids (PUFAs) in Longissimus thoracis muscle (LTM), and increased the n3 PUFAs in soleus muscles (SM, p < 0.05). Moreover, HMB supplementation led to alterations in the mRNA expression of genes related to lipid metabolism. Serum metabolome profiling showed that in both LTM and SM of Bama Xiang mini-pigs, N-Methyl-l-glutamate was positively correlated with SFA and nummularine A was negatively correlated with C18:3n3 PUFA (p < 0.05). Therefore, N-Methyl-l-glutamate and nummularine A might be potential biomarkers of the HMB-supplemented group. These results suggested that dietary HMB supplementation could decrease the IMF content and increase n3 PUFAs as well as regulate the related metabolites (N-Methyl-l-glutamate and nummularine A) in the serum of pigs.
Collapse
Affiliation(s)
- Changbing Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China
| | - Bo Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
- Correspondence: (Y.D.); (C.P.); Tel.: +86-731-84619750 (Y.D. & C.P.)
| | - Can Peng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
- Correspondence: (Y.D.); (C.P.); Tel.: +86-731-84619750 (Y.D. & C.P.)
| |
Collapse
|
15
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Zhong Y, Yang Y, Yin Y. Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. Nutrients 2020; 12:E1299. [PMID: 32370170 PMCID: PMC7282259 DOI: 10.3390/nu12051299] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Lipid metabolism is an important and complex biochemical process involved in the storage of energy and maintenance of normal biological functions. Leucine, a branched amino acid, has anti-obesity effects on glucose tolerance, lipid metabolism, and insulin sensitivity. Leucine also modulates mitochondrial dysfunction, representing a new strategy to target aging, neurodegenerative disease, obesity, diabetes, and cardiovascular disease. Although various studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between leucine and lipid metabolism. This review offers an up-to-date report on leucine, as key roles in both lipid metabolism and energy homeostasis in vivo and in vitro by acceleration of fatty acid oxidation, lipolysis, activation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)-silent information regulator of transcription 1 (SIRT1)-proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, synthesis, and/or secretion of adipokines and stability of the gut microbiota.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha 410018, China
| | - Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China;
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| |
Collapse
|
16
|
Stahn AC, Maggioni MA, Gunga HC, Terblanche E. Combined protein and calcium β-hydroxy-β-methylbutyrate induced gains in leg fat free mass: a double-blinded, placebo-controlled study. J Int Soc Sports Nutr 2020; 17:16. [PMID: 32164702 PMCID: PMC7069016 DOI: 10.1186/s12970-020-0336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background The leucine metabolite β-hydroxy-β-methylbutyrate (HMB) is widely used as an ergogenic supplement to increase resistance-training induced gains in fat free mass (FFM) and strength in healthy adults. Recent studies have questioned the effectiveness of HMB, particularly when a high protein diet is habitually consumed. To investigate the additive resistance-training induced effects of HMB and protein in untrained individuals, we conducted a randomized double-blind, placebo-controlled study that compared the effects of combined protein and HMB supplementation to protein supplementation alone on FFM and muscle strength after 12-week resistance training. Methods Sixteen healthy men (22 ± 2 yrs) performed a periodized resistance-training program for twelve weeks (four sessions per week). The program comprised two mesocycles, characterized by a linear periodization and non-linear periodization, respectively, and separated by a 1-week tapering period. All participants received 60 g of whey protein on training days and 30 g of whey protein (WP) on non-training days. Participants were randomly assigned to additionally receive 3 g of calcium HMB (WP + HMB) or a placebo (WP + PLA). Body composition and physical fitness were tested before and after the 12-week training program. Whole-body and arm and leg fat free mass (FFM) were assessed by bioimpedance spectroscopy; upper arm and leg fat free cross sectional areas were also quantified using magnetic resonance imaging (MRI); upper and lower body strength were measured by One-repetition maximum (1-RM) bench press and leg press. Results Whole-body and segmental FFM increased in both groups (P < 0.001). However, gains in leg FFM were higher in WP + HMB vs. WP + PLA (arm FFM: + 6.1% vs. + 9.2%, P = 0.2; leg FFM: + 14.2% vs. + 7.0%, P < 0.01). No change in fat mass was observed (P = 0.59). 1-RM increased in both groups (P < 0.001). Conclusions Combined protein and HMB supplementation resulted in segmental, but not whole-body increases in FFM compared to protein supplementation alone. These findings could explain some of the controversial effects of HMB reported in previous studies and have practical implications for maximizing training-induced gains in FFM and clinical conditions associated with skeletal muscle deconditioning such as aging, sedentary lifestyles, bed rest and spaceflight.
Collapse
Affiliation(s)
- Alexander C Stahn
- Research Section for Behavioral Regulation and Health, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 1016 Blockley Hall, 423 Guardian Drive, 19104, Philadelphia, USA. .,Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, 10117, Germany.
| | - Martina Anna Maggioni
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, 10117, Germany.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Hanns-Christian Gunga
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, 10117, Germany
| | - Elmarie Terblanche
- Department of Sport Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
17
|
Duan Y, Zhong Y, Xiao H, Zheng C, Song B, Wang W, Guo Q, Li Y, Han H, Gao J, Xu K, Li T, Yin Y, Li F, Yin J, Kong X. Gut microbiota mediates the protective effects of dietary β‐hydroxy‐β‐methylbutyrate (HMB) against obesity induced by high‐fat diets. FASEB J 2019; 33:10019-10033. [DOI: 10.1096/fj.201900665rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yinzhao Zhong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Hao Xiao
- Guangdong Academy of Agricultural SciencesKey Laboratory of Animal Nutrition and Feed Science in South ChinaInstitute of Animal ScienceMinistry of Agriculture Guangzhou China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Bo Song
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yuying Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Hui Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Jing Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional IngredientsHunan Co‐Innovation Center of Animal Production Safety (CICAPS) Changsha China
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| |
Collapse
|
18
|
Zhong Y, Zeng L, Deng J, Duan Y, Li F. β-hydroxy-β-methylbutyrate (HMB) improves mitochondrial function in myocytes through pathways involving PPARβ/δ and CDK4. Nutrition 2019; 60:217-226. [DOI: 10.1016/j.nut.2018.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/08/2018] [Accepted: 09/30/2018] [Indexed: 12/11/2022]
|
19
|
Leroux M, Lemery T, Boulet N, Briot A, Zakaroff A, Bouloumié A, Andrade F, Pérez-Matute P, Arbones-Mainar JM, Carpéné C. Effects of the amino acid derivatives, β-hydroxy-β-methylbutyrate, taurine, and N-methyltyramine, on triacylglycerol breakdown in fat cells. J Physiol Biochem 2019; 75:263-273. [PMID: 30919256 DOI: 10.1007/s13105-019-00677-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 01/28/2023]
Abstract
Various amino acid (AA) metabolites are used as supplements to facilitate metabolic control and enhance responsiveness of insulin-sensitive tissues. β-hydroxy-β-methylbutyrate (HMB) is a leucine metabolite proposed to prevent muscle wasting and to mitigate insulin resistance. Taurine, commonly added to energizing drinks, is a metabolite of methionine and cysteine present in bile juice, and proposed to be involved in lipid digestion and to be pro-lipolytic in adipocytes. N-methyltyramine (NMT) is a phenylalanine metabolite found in orange juices at 0.1-3 ppm while its effects on lipid mobilization remain controversial. Here, the putative lipolytic effects of these AA metabolites were studied and it was tested whether they could enhance insulin antilipolytic response in adipocytes. Release of glycerol and non-esterified fatty acids (NEFAs) was measured after a 2-h incubation of adipocytes obtained from control and diet-induced obese mice or from obese patients. In mouse, none of the tested AA derivatives was lipolytic from 1 μM to 1 mM. These compounds did not improve insulin antilipolytic effect or isoprenaline lipolytic action, except for 1 mM NMT that impaired triacylglycerol breakdown in obese mice. In human adipocytes, HMB and taurine were not lipolytic, while NMT weakly activated glycerol and NEFA release at 1 mM. However, 100 μM NMT impaired isoprenaline-stimulated lipolysis in a manner that was hardly added to insulin antilipolytic effect. Since none of these AA derivatives acutely helped or replaced insulin antilipolytic effect in adipocytes, the present in vitro observations do not support their proposed insulin-sensitizing properties. Moreover, NMT, HMB, and taurine were not notably lipolytic.
Collapse
Affiliation(s)
- Mélanie Leroux
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Tristan Lemery
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Nathalie Boulet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Anaïs Briot
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Alexia Zakaroff
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Anne Bouloumié
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Fernando Andrade
- Metabolomics Platform, BioCruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Patricia Pérez-Matute
- Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragón. Zaragoza, Spain. CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France. .,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France.
| |
Collapse
|