1
|
Zhao S, Li M, Hei M, Zhao Y, Li J, Kang Z, Ma H, Xiong G. An Evaluation of the Effects of Pepper ( Zanthoxylum bungeanum Maxim.) Leaf Extract on the Physiochemical Properties and Water Distribution of Chinese Cured Meat (Larou) During Storage. Foods 2024; 13:3972. [PMID: 39683044 DOI: 10.3390/foods13233972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, pepper (Zanthoxylum bungeanum Maxim.) leaf (ZL) extract was added to larou to investigate the improvement in the quality of physicochemical properties, texture, water distribution, and microorganism growth during storage for 20 days. Based on the results, the addition of ZL extract significantly retarded the increase in cooking loss, TBARS value, hardness, and microorganism growth. Moreover, the addition of ZL extract decreased the pH value, lightness, and microorganism counts, and increased the moisture content, total soluble protein content, a* value, b* value, and chewiness. The LF-NMR results showed that the addition of ZL extract shortened the T2 relaxation time and boosted the proportion of immobilized water, facilitating the validation of the improvement in water retention of larou during storage. The FT-IR results indicated that the addition of ZL extract influenced the protein secondary structure by inducing the conversion of α-helices to β-sheet structures. Accordingly, ZL extract has the potential to serve as a natural antioxidant, effectively helping to ameliorate the quality properties of cured meat products during storage.
Collapse
Affiliation(s)
- Shengming Zhao
- School of Food Engineering, Anhui Science and Technology University, No.9 Donghua Road, Fengyang 233100, China
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Mengke Li
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, China
| | - Mengran Hei
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, China
| | - Yanyan Zhao
- School of Food Engineering, Anhui Science and Technology University, No.9 Donghua Road, Fengyang 233100, China
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Jingjun Li
- School of Food Engineering, Anhui Science and Technology University, No.9 Donghua Road, Fengyang 233100, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Hanjun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, China
| | - Guoyuan Xiong
- School of Food Engineering, Anhui Science and Technology University, No.9 Donghua Road, Fengyang 233100, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| |
Collapse
|
2
|
Zhu J, Lu Y, He Q. From detection methods to risk prevention: Control of N-nitrosamines in foods and the role of natural bioactive compounds. Compr Rev Food Sci Food Saf 2024; 23:e70000. [PMID: 39217507 DOI: 10.1111/1541-4337.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Food processing unavoidably introduces various risky ingredients that threaten food safety. N-Nitrosamines (NAs) constitute a class of food contaminants, which are considered carcinogenic to humans. According to the compiled information, pretreatment methods based on solid-phase extraction (SPE) were widely used before the determination of volatile NAs in foods. The innovation of adsorbents and hybridization of other methods have been confirmed as the future trends of SPE-based pretreatment methods. Moreover, technologies based on liquid chromatography and gas chromatography were popularly applied for the detection of NAs. Recently, sensor-based methods have garnered increasing attention due to their efficiency and flexibility. More portable sensor-based technologies are recommended for on-site monitoring of NAs in the future. The application of artificial intelligence can facilitate data processing during high-throughput detection of NAs. Natural bioactive compounds have been confirmed to be effective in mitigating NAs in foods through antioxidation, scavenging precursors, and regulating microbial activities. Meanwhile, they exhibit strong protective activities against hepatic damage, pancreatic cancer, and other NA injuries. Further supplementation of data on the bioavailability of bioactives can be achieved through encapsulation and clinical trials. The utilization of bioinformatics tools rooted in various omics technologies is suggested for investigating novel mechanisms and finally broadening their applications in targeted therapies.
Collapse
Affiliation(s)
- Jinpeng Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Wang Z, Zhou D, Liu D, Zhu B. Food-grade encapsulated polyphenols: recent advances as novel additives in foodstuffs. Crit Rev Food Sci Nutr 2023; 63:11545-11560. [PMID: 35776082 DOI: 10.1080/10408398.2022.2094338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A growing inclination among consumers toward the consumption of natural products has propelled the usage of natural compounds as novel additives. Polyphenols are among the most popular candidates of natural food additives with multiple functionalities and bioactivities but are limited by instability. In this regard, a series of food-grade encapsulated polyphenols has been tailored for incorporating into food formulations as novel additives, which could better satisfy the complicated industry processing. This review seeks to present the most recent discussions regarding their application status in diverse foodstuffs as novel additives, involving functionalities, action mechanisms, and relevant encapsulation technologies. The scientific findings confirm that such novel additives show positive effects on physicochemical, sensory, and nutritional properties as well as the shelf life of diverse food matrices. However, poor heat resistance is still the major defect that restricts their application in thermal processes. Future research should focus on the evaluation of the compatibility and applicability of encapsulated polyphenols in real food processes as well as track and deepen their molecular action mechanisms in the context of complex foodstuffs. Innovation of existing encapsulation technologies should also be concerned in the future to bridge the gap between lab and scale-up production.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Shekhar NR, Nagappan K, Singh MT, Dhanabal SP. Nitrosamine Impurities in Herbal Formulations: A Review of Risks and Mitigation Strategies. Drug Res (Stuttg) 2023; 73:431-440. [PMID: 37487523 DOI: 10.1055/a-2081-4232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Nitrosamines are a class of chemical compounds that have been found to be impurities in a variety of pharmaceutical products. These impurities have raised concerns due to their potential carcinogenic effects. Recent studies have identified nitrosamines as impurities in a number of pharmaceutical products including angiotensin II receptor blockers (ARBs) and proton pump inhibitors (PPIs). The presence of nitrosamines in these products has led to recalls and market withdrawals. In addition to pharmaceuticals, nitrosamines have also been found in some herbal medicines particularly those containing traditional Chinese medicinal ingredients. The presence of nitrosamines in herbal formulations poses a significant risk to public health and highlights the need for quality control and regulations in the herbal drug industry. The present review article aims to discuss nitrosamine impurities (NMI) prominent causes, risks and scientific strategies for preventing NMI in herbal formulations. The primary objective of this study is to examine the origins of nitrosamine contamination in herbal formulations, the risks associated with these contaminants, and the methods for reducing them. The significance of thorough testing and examination before releasing herbal products to the public is also emphasized. In conclusion, the presence of nitrosamines is not limited to pharmaceutical products and poses a significant threat to the safety of herbal drugs as well. Adequate testing and extensive research are crucial for producing and distributing herbal medicines to the general population.
Collapse
Affiliation(s)
- Nunavath Raja Shekhar
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Krishnaveni Nagappan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - S P Dhanabal
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
5
|
Huang L, Teng W, Cao J, Wang J. Liposomes as Delivery System for Applications in Meat Products. Foods 2022; 11:foods11193017. [PMID: 36230093 PMCID: PMC9564315 DOI: 10.3390/foods11193017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
In the meat industry, microbial contamination, and lipid and protein oxidation are important factors for quality deterioration. Although natural preservatives have been widely used in various meat products, their biological activities are often reduced due to their volatility, instability, and easy degradation. Liposomes as an amphiphilic delivery system can be used to encapsulate food active compounds, which can improve their stability, promote antibacterial and antioxidant effects and further extend the shelf life of meat products. In this review, we mainly introduce liposomes and methods of their preparation including conventional and advanced techniques. Meanwhile, the main current applications of liposomes and biopolymer-liposome hybrid systems in meat preservation are presented.
Collapse
Affiliation(s)
- Li Huang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: (J.C.); (J.W.)
| | - Jinpeng Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (J.C.); (J.W.)
| |
Collapse
|
6
|
Liposomal Delivery of Plant Bioactives Enhances Potency in Food Systems: A Review. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5272592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The potency of plant bioactives may decline drastically upon exposure to harsh external environments including gastrointestinal conditions. The protective role played by liposomes contributes to desirable properties including increased stability, slow/controlled release, improved bioactivity, and enhanced bioavailability of the encapsulated bioactives. Also, the incorporation of plant bioactives encapsulated liposomes in food matrices has resulted in augmented sensory attributes and improved quality of the foods further exhibiting the aptness of liposomal applications in food. Excitingly, new opportunities that circumvent the major shortfalls of utilizing liposomal formulations in the food industry have arisen paving the way to yield food products with high quality.
Collapse
|
7
|
Bioactive compounds of parsley (Petroselinum crispum), chives (Allium schoenoprasum L) and their mixture (Brazilian cheiro-verde) as promising antioxidant and anti-cholesterol oxidation agents in a food system. Food Res Int 2022; 151:110864. [PMID: 34980400 DOI: 10.1016/j.foodres.2021.110864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
This study determined the bioactive composition and antioxidant potential of parsley, chives and their mixture (Brazilian cheiro-verde). Additionally, the effect of these herbs against cholesterol oxidation in grilled sardines (Sardinella brasiliensis) was also investigated. Ultra-high Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UHPLC-ESI-MS) analyses revealed the presence of phenolic acids (caffeic, chlorogenic, and ferulic acids) and flavonoids (apigenin, kaempferol, catechin) in the herbs. Higher levels of phenolics (2.10 ± 0.02 mg GAE/g) and carotenoids (205.95 ± 0.17 µg/g) were determined in parsley extracts. Moreover, parsley also presented higher antioxidant capacity by DPPH (59.21 ± 0.07 %) and ORAC (109.94 ± 18.7 µM TE/g) than the other herbs. In vivo analyses demonstrated that the herbs' extracts decreased the damage on Saccharomyces cerevisiae cells exposed to H2O2, except the chives extract at 10 μg/mL. Higher levels of cholesterol oxidation products (COPs) were determined after grilling. The total COPs increased from 61.8 ± 0.7 (raw fish) to 139.7 ± 10.1 µg/g (control). However, the addition of herbs effectively reduced cholesterol oxides formation, this effect was more pronounced in fish containing 4% parsley and 4% cheiro-verde. Promising results were found for cheiro-verde; however, it did not present synergic antioxidant effects.
Collapse
|
8
|
Xu QD, Zhou ZQ, Jing Z, He Q, Sun Q, Zeng WC. Pine needle extract from Cedrus deodara: Potential applications on hazardous chemicals and quality of smoked bacon and its mechanism. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Sengupta P, Bose A, Sen K. Liposomal Encapsulation of Phenolic Compounds for Augmentation of Bio‐Efficacy: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Priti Sengupta
- Department of Chemistry University of Calcutta 92, APC Road Kolkata 700009 India
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Adity Bose
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Kamalika Sen
- Department of Chemistry University of Calcutta 92, APC Road Kolkata 700009 India
| |
Collapse
|
10
|
Sabaghi M, Hoseyni SZ, Tavasoli S, Mozafari MR, Katouzian I. Strategies of confining green tea catechin compounds in nano-biopolymeric matrices: A review. Colloids Surf B Biointerfaces 2021; 204:111781. [PMID: 33930733 DOI: 10.1016/j.colsurfb.2021.111781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023]
Abstract
Catechins are polyphenolic compounds which abundantly occur in the plants, especially tea leaves. They are widely used in nutraceutical and pharmaceutical formulations due to their capability of lowering the risk of developing various diseases. Nevertheless, low stability, loss of antioxidant and antimicrobial activities hinder the direct application of catechins in food formulations. To surmount this pervasive challenge, bioactive ingredients should be entrapped in a biopolymeric matrix. Thus, nanoencapsulation technology would be an appropriate strategy to improve the stability of these bioactive compounds and to protect them against degradation. Among different types of nanocarriers, biopolymer-based nanovehicles has captured a lot of attention in both industry and academia due to their safety and biocompatibility. This revision enlarges upon the various types of biopolymeric nanostructures used for accommodation of catechins, namely nanogels, nanotubes, nanofibers, nanoemulsions and nanoparticles. Last but not least, the applications of the entrapped catechins in the food industry are highlighted.
Collapse
Affiliation(s)
- Moslem Sabaghi
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zahra Hoseyni
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - Sedighe Tavasoli
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, 3168, Australia
| | - Iman Katouzian
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
11
|
Wang S, Guan R, Huang H, Yang K, Cai M, Chen D. Effects of Different Smoking Materials and Methods on the Quality of Chinese Traditional Bacon (Larou). J Food Prot 2021; 84:359-367. [PMID: 33038238 DOI: 10.4315/jfp-20-223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022]
Abstract
ABSTRACT Larou is a traditional smoked meat product in China. In this experiment, larou was processed with different smoking materials and methods to determine whether differences in processing methods would affect the quality of the larou and the concentrations of carcinogens. Pork bellies were marinated, dried, and divided into four groups and then directly smoked with four different smoking materials for 40 min. The smoking material for larou that was most effective was then used with an indirect smoking device with an nano-activated carbon fiber filter and evaluated as a single-factor variable. The surface area of the nano-activated carbon filter was 978.00 m2/g, and this filter effectively adsorbed the ash particles from the smoke. For the group smoked with pomelo skins (PS), the highest concentrations and number of phenols were 4.48% and 11, respectively, which increased the smoke flavor significantly. The moisture was 32.64%, and the Staphylococcus, lactic acid bacteria, and yeast and mold levels were 0.98, 1.10, and 0.59 log CFU/g, indicating inhibition of harmful bacteria and a beneficial microbial environment for larou fermentation. The benzo[a]pyrene (B[a]P) concentration in PS smoke determined with the indirect smoking device was 1.82 μg/kg, whereas that determined with the direct smoking device was 36.1 μg/kg, a significant difference (P < 0.01). These findings suggested that indirect smoking with PS could effectively maintain microbial quality and reduce the B[a]P[mc] concentrations in larou. This processing method can be used for the production of this meat product. HIGHLIGHTS
Collapse
Affiliation(s)
- Sijia Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Rongfa Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China.,College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,(ORCID: https://orcid.org/0000-0002-2717-0996 [R.G.])
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Dandan Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|