1
|
Horst B, van Duijnen N, Janssen E, Hansen T, Ruijter E. Modular Divergent Synthesis of Indole Alkaloid Derivatives by an Atypical Ugi Multicomponent Reaction. Chemistry 2024; 30:e202400477. [PMID: 38498145 DOI: 10.1002/chem.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
We present an Ugi multicomponent approach to explore the chemical space around Aspidosperma-type monoterpene indole alkaloids. By variation of the isocyanide and carboxylic acid inputs we demonstrate the rapid generation of molecular diversity and the possibility to introduce handles for further modification. The key Ugi three-component reaction showed full diastereoselectivity towards the cis-fused ring system, which can be rationalized by DFT calculations that moreover indicate that the reaction proceeds via a Passerini-type hydrogen bonding mechanism. Several post-Ugi modifications were also performed, including Pictet-Spengler cyclization to highly complex nonacyclic natural product hybrid scaffolds.
Collapse
Affiliation(s)
- Brendan Horst
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Niels van Duijnen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Elwin Janssen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Thomas Hansen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Wang Z, Shaabani S, Gao X, Ng YLD, Sapozhnikova V, Mertins P, Krönke J, Dömling A. Direct-to-biology, automated, nano-scale synthesis, and phenotypic screening-enabled E3 ligase modulator discovery. Nat Commun 2023; 14:8437. [PMID: 38114468 PMCID: PMC10730884 DOI: 10.1038/s41467-023-43614-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Thalidomide and its analogs are molecular glues (MGs) that lead to targeted ubiquitination and degradation of key cancer proteins via the cereblon (CRBN) E3 ligase. Here, we develop a direct-to-biology (D2B) approach for accelerated discovery of MGs. In this platform, automated, high throughput, and nano scale synthesis of hundreds of pomalidomide-based MGs was combined with rapid phenotypic screening, enabling an unprecedented fast identification of potent CRBN-acting MGs. The small molecules were further validated by degradation profiling and anti-cancer activity. This revealed E14 as a potent MG degrader targeting IKZF1/3, GSPT1 and 2 with profound effects on a panel of cancer cells. In a more generalized view, integration of automated, nanoscale synthesis with phenotypic assays has the potential to accelerate MGs discovery.
Collapse
Affiliation(s)
- Zefeng Wang
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Shabnam Shaabani
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Xiang Gao
- Department of Internal Medicine III, University Hospital Ulm, 89081, Ulm, Germany
| | - Yuen Lam Dora Ng
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Valeriia Sapozhnikova
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Alexander Dömling
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palackӯ University in Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Zhao W, Lu Y, Qiao Y, Yin X, Liu C, Fang Z, Zhu J, Guo K. Electrosynthesis of Spiro-indolenines via Dearomative Arylation of Indoles in Batch and Continuous Flow. Org Lett 2023; 25:7451-7456. [PMID: 37791903 DOI: 10.1021/acs.orglett.3c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
An electrosynthesis of spiro-indolenines in batch and continuous flow was achieved through dearomative arylation of indoles with good functional group compatibility. User-friendly undivided cells were used under catalyst- and oxidant-free conditions. Moreover, the use of a flow electrolysis cell gave high daily productivity and excellent scale-up potential under less supporting electrolyte and higher substrate concentration conditions.
Collapse
Affiliation(s)
- Wei Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaqi Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xing Yin
- Intervention Therapy Department, General Hospital of Eastern Theater Command, Nanjing 222042, China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jianliang Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Ning J, Lei Y, Hu H, Gai C. A Comprehensive Review of Surface Acoustic Wave-Enabled Acoustic Droplet Ejection Technology and Its Applications. MICROMACHINES 2023; 14:1543. [PMID: 37630082 PMCID: PMC10456473 DOI: 10.3390/mi14081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
This review focuses on the development of surface acoustic wave-enabled acoustic drop ejection (SAW-ADE) technology, which utilizes surface acoustic waves to eject droplets from liquids without touching the sample. The technology offers advantages such as high throughput, high precision, non-contact, and integration with automated systems while saving samples and reagents. The article first provides an overview of the SAW-ADE technology, including its basic theory, simulation verification, and comparison with other types of acoustic drop ejection technology. The influencing factors of SAW-ADE technology are classified into four categories: fluid properties, device configuration, presence of channels or chambers, and driving signals. The influencing factors discussed in detail from various aspects, such as the volume, viscosity, and surface tension of the liquid; the type of substrate material, interdigital transducers, and the driving waveform; sessile droplets and fluid in channels/chambers; and the power, frequency, and modulation of the input signal. The ejection performance of droplets is influenced by various factors, and their optimization can be achieved by taking into account all of the above factors and designing appropriate configurations. Additionally, the article briefly introduces the application scenarios of SAW-ADE technology in bioprinters and chemical analyses and provides prospects for future development. The article contributes to the field of microfluidics and lab-on-a-chip technology and may help researchers to design and optimize SAW-ADE systems for specific applications.
Collapse
Affiliation(s)
| | | | - Hong Hu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (J.N.)
| | | |
Collapse
|
5
|
Taylor CJ, Pomberger A, Felton KC, Grainger R, Barecka M, Chamberlain TW, Bourne RA, Johnson CN, Lapkin AA. A Brief Introduction to Chemical Reaction Optimization. Chem Rev 2023; 123:3089-3126. [PMID: 36820880 PMCID: PMC10037254 DOI: 10.1021/acs.chemrev.2c00798] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 02/24/2023]
Abstract
From the start of a synthetic chemist's training, experiments are conducted based on recipes from textbooks and manuscripts that achieve clean reaction outcomes, allowing the scientist to develop practical skills and some chemical intuition. This procedure is often kept long into a researcher's career, as new recipes are developed based on similar reaction protocols, and intuition-guided deviations are conducted through learning from failed experiments. However, when attempting to understand chemical systems of interest, it has been shown that model-based, algorithm-based, and miniaturized high-throughput techniques outperform human chemical intuition and achieve reaction optimization in a much more time- and material-efficient manner; this is covered in detail in this paper. As many synthetic chemists are not exposed to these techniques in undergraduate teaching, this leads to a disproportionate number of scientists that wish to optimize their reactions but are unable to use these methodologies or are simply unaware of their existence. This review highlights the basics, and the cutting-edge, of modern chemical reaction optimization as well as its relation to process scale-up and can thereby serve as a reference for inspired scientists for each of these techniques, detailing several of their respective applications.
Collapse
Affiliation(s)
- Connor J. Taylor
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K.
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Alexander Pomberger
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kobi C. Felton
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Rachel Grainger
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K.
| | - Magda Barecka
- Chemical
Engineering Department, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Chemistry
and Chemical Biology Department, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Cambridge
Centre for Advanced Research and Education in Singapore, 1 Create Way, 138602 Singapore
| | - Thomas W. Chamberlain
- Institute
of Process Research and Development, School of Chemistry and School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Richard A. Bourne
- Institute
of Process Research and Development, School of Chemistry and School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Alexei A. Lapkin
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
6
|
Gao L, Shaabani S, Reyes Romero A, Xu R, Ahmadianmoghaddam M, Dömling A. 'Chemistry at the speed of sound': automated 1536-well nanoscale synthesis of 16 scaffolds in parallel. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:1380-1394. [PMID: 36824604 PMCID: PMC9940305 DOI: 10.1039/d2gc04312b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/13/2023] [Indexed: 05/24/2023]
Abstract
Screening of large and diverse libraries is the 'bread and butter' in the first phase of the discovery of novel drugs. However, maintenance and periodic renewal of high-quality large compound collections pose considerable logistic, environmental and monetary problems. Here, we exercise an alternative, the 'on-the-fly' synthesis of large and diverse libraries on a nanoscale in a highly automated fashion. For the first time, we show the feasibility of the synthesis of a large library based on 16 different chemistries in parallel on several 384-well plates using the acoustic dispensing ejection (ADE) technology platform. In contrast to combinatorial chemistry, we produced 16 scaffolds at the same time and in a sparse matrix fashion, and each compound was produced by a random combination of diverse large building blocks. The synthesis, analytics, resynthesis of selected compounds, and chemoinformatic analysis of the library are described. The advantages of the herein described automated nanoscale synthesis approach include great library diversity, absence of library storage logistics, superior economics, speed of synthesis by automation, increased safety, and hence sustainable chemistry.
Collapse
Affiliation(s)
- Li Gao
- Department of Drug Design, University of Groningen Groningen The Netherlands
| | - Shabnam Shaabani
- Department of Drug Design, University of Groningen Groningen The Netherlands
| | - Atilio Reyes Romero
- Department of Drug Design, University of Groningen Groningen The Netherlands
| | - Ruixue Xu
- Department of Drug Design, University of Groningen Groningen The Netherlands
| | | | - Alexander Dömling
- CATRIN, Department of Innovative Chemistry, Palacký University Olomouc Olomouc Czech Republic
| |
Collapse
|
7
|
Ginsburg-Moraff C, Grob J, Chin K, Eastman G, Wildhaber S, Bayliss M, Mues HM, Palmieri M, Poirier J, Reck M, Luneau A, Rodde S, Reilly J, Wagner T, Brocklehurst CE, Wyler R, Dunstan D, Marziale AN. Integrated and automated high-throughput purification of libraries on microscale. SLAS Technol 2022; 27:350-360. [PMID: 36028206 DOI: 10.1016/j.slast.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/04/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022]
Abstract
We herein report the development of an automation platform for rapid purification and quantification of chemical libraries including reformatting of chemical matter to 10 mM DMSO stock solutions. This fully integrated workflow features tailored conditions for preparative reversed-phase (RP) HPLC-MS on microscale based on analytical data, online fraction QC and CAD-based quantification as well as automated reformatting to enable rapid purification of chemical libraries. This automated workflow is entirely solution-based, eliminating the need to weigh or handle solids. This increases process efficiency and creates a link between high-throughput synthesis and profiling of novel chemical matter with respect to biological and physicochemical properties in relevant assays.
Collapse
Affiliation(s)
- Carol Ginsburg-Moraff
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA.
| | - Jonathan Grob
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA
| | - Karl Chin
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA
| | - Grant Eastman
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA
| | - Sandra Wildhaber
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | | | - Heinrich M Mues
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Marco Palmieri
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Jennifer Poirier
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA
| | - Marcel Reck
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Alexandre Luneau
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Stephane Rodde
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - John Reilly
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Trixie Wagner
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Cara E Brocklehurst
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - René Wyler
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - David Dunstan
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA.
| | - Alexander N Marziale
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland.
| |
Collapse
|
8
|
Nasiriani T, Javanbakht S, Nazeri MT, Farhid H, Khodkari V, Shaabani A. Isocyanide-Based Multicomponent Reactions in Water: Advanced Green Tools for the Synthesis of Heterocyclic Compounds. Top Curr Chem (Cham) 2022; 380:50. [PMID: 36136281 DOI: 10.1007/s41061-022-00403-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/12/2022] [Indexed: 12/01/2022]
Abstract
Reaction rate acceleration using green methods is an intriguing area of research for chemists. In this regard, water as a "green solvent" plays a crucial role in the acceleration of some organic transformations and reveals exclusive selectivity and reactivity in comparison with conventional organic solvents. In particular, multicomponent reactions (MCRs) as sustainable tools lead to the rapid generation of small-molecule libraries in water and aqueous media due to the prominent role of the hydrophobic effect. MCRs, as diversity-oriented synthesis (DOS) methods, have great efficiency with simple operations, atom, pot, and step economy synthesis, and mechanistic beauty. Among diverse classes of MCRs, isocyanide-based multicomponent reactions (I-MCRs), as sustainable and versatile reactions, have gained considerable attention in the synthesis of diverse heterocycle rings, especially in drug design because of the peculiar nature of isocyanide as a particular active reactant. I-MCRs that are performed in water are mild, environmentally friendly, and easily controlled, and have a reduced number of workup, purification, and extraction steps, which fit well with the advantages of "green" chemistry. Performing these powerful organic transformations in water and aqueous media is accompanied by acceleration owing to negative activation volumes, which originate from connecting several reactants together to generate a single product. It should be noted that the combination of MCR strategy and aqueous phase reaction is of growing interest for the development of sustainable synthetic techniques in organic conversions. However, an exclusive account focusing on the recent progress in eco-friendly I-MCRs for the construction of heterocycles in water and aqueous media is particularly lacking. This review highlights the progress of various kinds of I-MCRs in water and aqueous media as benign methods for the efficient construction of vital heterocyclic scaffolds, with a critical discussion of the subject in the period 2000-2021. We hope that this themed collection will be of interest and beneficial for organic and pharmaceutical chemists and will inspire more reaction development in this fascinating field.
Collapse
Affiliation(s)
- Tahereh Nasiriani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Siamak Javanbakht
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Mohammad Taghi Nazeri
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Hassan Farhid
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Vida Khodkari
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Ahmad Shaabani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran. .,Peoples' Friendship University of Russia, RUDN University, 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| |
Collapse
|
9
|
Habeshian S, Merz ML, Sangouard G, Mothukuri GK, Schüttel M, Bognár Z, Díaz-Perlas C, Vesin J, Bortoli Chapalay J, Turcatti G, Cendron L, Angelini A, Heinis C. Synthesis and direct assay of large macrocycle diversities by combinatorial late-stage modification at picomole scale. Nat Commun 2022; 13:3823. [PMID: 35780129 PMCID: PMC9250534 DOI: 10.1038/s41467-022-31428-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Macrocycles have excellent potential as therapeutics due to their ability to bind challenging targets. However, generating macrocycles against new targets is hindered by a lack of large macrocycle libraries for high-throughput screening. To overcome this, we herein established a combinatorial approach by tethering a myriad of chemical fragments to peripheral groups of structurally diverse macrocyclic scaffolds in a combinatorial fashion, all at a picomole scale in nanoliter volumes using acoustic droplet ejection technology. In a proof-of-concept, we generate a target-tailored library of 19,968 macrocycles by conjugating 104 carboxylic-acid fragments to 192 macrocyclic scaffolds. The high reaction efficiency and small number of side products of the acylation reactions allowed direct assay without purification and thus a large throughput. In screens, we identify nanomolar inhibitors against thrombin (Ki = 44 ± 1 nM) and the MDM2:p53 protein-protein interaction (Kd MDM2 = 43 ± 18 nM). The increased efficiency of macrocycle synthesis and screening and general applicability of this approach unlocks possibilities for generating leads against any protein target. Macrocycles have potential as therapeutics, but their libraries are currently not large enough for high-throughput screening. Here, the authors show a combinatorial approach to generate a library of almost 20’000 macrocycles by conjugating carboxylic-acid fragments to macrocyclic scaffolds, identifying nanomolar inhibitors against thrombin and binders of MDM2.
Collapse
Affiliation(s)
- Sevan Habeshian
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Manuel Leonardo Merz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Gontran Sangouard
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ganesh Kumar Mothukuri
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Zsolt Bognár
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Cristina Díaz-Perlas
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Jonathan Vesin
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura Cendron
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Venice, 30172, Italy.,European Centre for Living Technologies (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, Venice, 30124, Italy
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
10
|
Alfano AI, Lange H, Brindisi M. Amide Bonds Meet Flow Chemistry: A Journey into Methodologies and Sustainable Evolution. CHEMSUSCHEM 2022; 15:e202102708. [PMID: 35015338 PMCID: PMC9304223 DOI: 10.1002/cssc.202102708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Indexed: 06/03/2023]
Abstract
Formation of amide bonds is of immanent importance in organic and synthetic medicinal chemistry. Its presence in "traditional" small-molecule active pharmaceutical ingredients, in linear or cyclic oligo- and polypeptidic actives, including pseudopeptides, has led to the development of dedicated synthetic approaches for the formation of amide bonds starting from, if necessary, suitably protected amino acids. While the use of solid supported reagents is common in traditional peptide synthesis, similar approaches targeting amide bond formation in continuous-flow mode took off more significantly, after a first publication in 2006, only a couple of years ago. Most efforts rely upon the transition of traditional approaches in flow mode, or the combination of solid-phase peptide synthesis principles with flow chemistry, and advantages are mainly seen in improving space-time yields. This Review summarizes and compares the various approaches in terms of basic amide formation, peptide synthesis, and pseudopeptide generation, describing the technological approaches and the advantages that were generated by the specific flow approaches. A final discussion highlights potential future needs and perspectives in terms of greener and more sustainable syntheses.
Collapse
Affiliation(s)
- Antonella Ilenia Alfano
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| | - Heiko Lange
- University of Milano-Bicocca Department of Earth and Environmental SciencesPiazza della Scienza 120126MilanItaly
| | - Margherita Brindisi
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| |
Collapse
|
11
|
Bayat M, Saeni V, Masoumi M, Hosseini FS. One-Pot Synthesis of Dihydroxyindeno[1,2-d]Imidazoles and Naphthoquinone Substituted Indandione and Oxindole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2033801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Vosough Saeni
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Milad Masoumi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
12
|
Batchu SP, Hernandez Blazquez B, Malhotra A, Fang H, Ierapetritou M, Vlachos D. Accelerating Manufacturing for Biomass Conversion via Integrated Process and Bench Digitalization: A Perspective. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00560j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a perspective for accelerating biomass manufacturing via digitalization. We summarize the challenges for manufacturing and identify areas where digitalization can help. A profound potential in using lignocellulosic biomass...
Collapse
|
13
|
Alfano AI, Buommino E, Ferraro MG, Irace C, Zampella A, Lange H, Brindisi M. Coupling Interrupted Fischer and Multicomponent Joullié-Ugi to Chase Chemical Diversity: from Batch to Sustainable Flow Synthesis of Peptidomimetics. ChemMedChem 2021; 16:3795-3809. [PMID: 34585536 PMCID: PMC9297956 DOI: 10.1002/cmdc.202100474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Indexed: 12/28/2022]
Abstract
The generation of peptidomimetic substructures for medicinal chemistry purposes requires effective and divergent synthetic methods. We present in this work an efficient flow process that allows quick modulation of reagents for Joullié-Ugi multicomponent reaction, using spiroindolenines as core motifs. This sterically hindered imine equivalent could successfully be diversified using various isocyanides and amino acids in generally good space-time yields. A telescoped flow process combining interrupted Fischer reaction for spiroindolenine synthesis and subsequent Joullié-Ugi-type modification resulted in product formation in very good overall yield in less than 2 hours compared to 48 hours required in batch mode. The developed protocol can be seen as a general tool for rapid and facile generation of peptidomimetic compounds. We also showcase preliminary biological assessments for the prepared compounds.
Collapse
Affiliation(s)
- Antonella Ilenia Alfano
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryDepartment of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Elisabetta Buommino
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Maria Grazia Ferraro
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Carlo Irace
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Angela Zampella
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Heiko Lange
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryDepartment of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
- Current affiliation: Department of Environmental and Earth ScienceUniversity of Milano-BicoccaPiazza della Scienza 120126MilanItaly
| | - Margherita Brindisi
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryDepartment of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| |
Collapse
|
14
|
Sangouard G, Zorzi A, Wu Y, Ehret E, Schüttel M, Kale S, Díaz-Perlas C, Vesin J, Bortoli Chapalay J, Turcatti G, Heinis C. Picomole-Scale Synthesis and Screening of Macrocyclic Compound Libraries by Acoustic Liquid Transfer. Angew Chem Int Ed Engl 2021; 60:21702-21707. [PMID: 34268864 DOI: 10.1002/anie.202107815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/07/2022]
Abstract
Macrocyclic compounds are an attractive class of therapeutic ligands against challenging targets, such as protein-protein interactions. However, the development of macrocycles as drugs is hindered by the lack of large combinatorial macrocyclic libraries, which are cumbersome, expensive, and time consuming to make, screen, and deconvolute. Here, we established a strategy for synthesizing and screening combinatorial libraries on a picomolar scale by using acoustic droplet ejection to combine building blocks at nanoliter volumes, which reduced the reaction volumes, reagent consumption, and synthesis time. As a proof-of-concept, we assembled a 2700-member target-focused macrocyclic library that we could subsequently assay in the same microtiter synthesis plates, saving the need for additional transfers and deconvolution schemes. We screened the library against the MDM2-p53 protein-protein interaction and generated micromolar and sub-micromolar inhibitors. Our approach based on acoustic liquid transfer provides a general strategy for the development of macrocycle ligands.
Collapse
Affiliation(s)
- Gontran Sangouard
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Alessandro Zorzi
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yuteng Wu
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Edouard Ehret
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sangram Kale
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Cristina Díaz-Perlas
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jonathan Vesin
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
15
|
Sangouard G, Zorzi A, Wu Y, Ehret E, Schüttel M, Kale S, Díaz‐Perlas C, Vesin J, Bortoli Chapalay J, Turcatti G, Heinis C. Picomole‐Scale Synthesis and Screening of Macrocyclic Compound Libraries by Acoustic Liquid Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gontran Sangouard
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Alessandro Zorzi
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Yuteng Wu
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Edouard Ehret
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Sangram Kale
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Cristina Díaz‐Perlas
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jonathan Vesin
- Biomolecular Screening Facility School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
16
|
Sutanto F, Shaabani S, Oerlemans R, Eris D, Patil P, Hadian M, Wang M, Sharpe ME, Groves MR, Dömling A. Combining High-Throughput Synthesis and High-Throughput Protein Crystallography for Accelerated Hit Identification. Angew Chem Int Ed Engl 2021; 60:18231-18239. [PMID: 34097796 PMCID: PMC8456925 DOI: 10.1002/anie.202105584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/31/2021] [Indexed: 12/24/2022]
Abstract
Protein crystallography (PX) is widely used to drive advanced stages of drug optimization or to discover medicinal chemistry starting points by fragment soaking. However, recent progress in PX could allow for a more integrated role into early drug discovery. Here, we demonstrate for the first time the interplay of high throughput synthesis and high throughput PX. We describe a practical multicomponent reaction approach to acrylamides and -esters from diverse building blocks suitable for mmol scale synthesis on 96-well format and on a high-throughput nanoscale format in a highly automated fashion. High-throughput PX of our libraries efficiently yielded potent covalent inhibitors of the main protease of the COVID-19 causing agent, SARS-CoV-2. Our results demonstrate, that the marriage of in situ HT synthesis of (covalent) libraires and HT PX has the potential to accelerate hit finding and to provide meaningful strategies for medicinal chemistry projects.
Collapse
Affiliation(s)
- Fandi Sutanto
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Shabnam Shaabani
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Rick Oerlemans
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Deniz Eris
- Photon Science DivisionPaul Scherrer InstituteSwitzerland
| | - Pravin Patil
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Mojgan Hadian
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Meitian Wang
- Photon Science DivisionPaul Scherrer InstituteSwitzerland
| | | | - Matthew R. Groves
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Alexander Dömling
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| |
Collapse
|
17
|
Sutanto F, Shaabani S, Oerlemans R, Eris D, Patil P, Hadian M, Wang M, Sharpe ME, Groves MR, Dömling A. Combining High‐Throughput Synthesis and High‐Throughput Protein Crystallography for Accelerated Hit Identification. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fandi Sutanto
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shabnam Shaabani
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Rick Oerlemans
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Deniz Eris
- Photon Science Division Paul Scherrer Institute Switzerland
| | - Pravin Patil
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Mojgan Hadian
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Meitian Wang
- Photon Science Division Paul Scherrer Institute Switzerland
| | | | - Matthew R. Groves
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Alexander Dömling
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
18
|
Gao K, Shaabani S, Xu R, Zarganes-Tzitzikas T, Gao L, Ahmadianmoghaddam M, Groves MR, Dömling A. Nanoscale, automated, high throughput synthesis and screening for the accelerated discovery of protein modifiers. RSC Med Chem 2021; 12:809-818. [PMID: 34124680 PMCID: PMC8152715 DOI: 10.1039/d1md00087j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/14/2021] [Indexed: 11/26/2022] Open
Abstract
Hit finding in early drug discovery is often based on high throughput screening (HTS) of existing and historical compound libraries, which can limit chemical diversity, is time-consuming, very costly, and environmentally not sustainable. On-the-fly compound synthesis and in situ screening in a highly miniaturized and automated format has the potential to greatly reduce the medicinal chemistry environmental footprint. Here, we used acoustic dispensing technology to synthesize a library in a 1536 well format based on the Groebcke-Blackburn-Bienaymé reaction (GBB-3CR) on a nanomole scale. The unpurified library was screened by differential scanning fluorimetry (DSF) and cross-validated using microscale thermophoresis (MST) against the oncogenic protein-protein interaction menin-MLL. Several GBB reaction products were found as μM menin binder, and the structural basis of the interactions with menin was elucidated by co-crystal structure analysis. Miniaturization and automation of the organic synthesis and screening process can lead to an acceleration in the early drug discovery process, which is an alternative to classical HTS and a step towards the paradigm of continuous manufacturing.
Collapse
Affiliation(s)
- Kai Gao
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Shabnam Shaabani
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Ruixue Xu
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Tryfon Zarganes-Tzitzikas
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Li Gao
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Maryam Ahmadianmoghaddam
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Matthew R Groves
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Alexander Dömling
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| |
Collapse
|
19
|
|
20
|
Sutanto F, Shaabani S, Neochoritis CG, Zarganes-Tzitzikas T, Patil P, Ghonchepour E, Dömling A. Multicomponent reaction-derived covalent inhibitor space. SCIENCE ADVANCES 2021; 7:eabd9307. [PMID: 33536213 PMCID: PMC7857676 DOI: 10.1126/sciadv.abd9307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/15/2020] [Indexed: 05/16/2023]
Abstract
The area of covalent inhibitors is gaining momentum due to recently introduced clinical drugs, but libraries of these compounds are scarce. Multicomponent reaction (MCR) chemistry is well known for its easy access to a very large and diverse chemical space. Here, we show that MCRs are highly suitable to generate libraries of electrophiles based on different scaffolds and three-dimensional shapes and highly compatible with multiple functional groups. According to the building block principle of MCR, acrylamide, acrylic acid ester, sulfurylfluoride, chloroacetic acid amide, nitrile, and α,β-unsaturated sulfonamide warheads can be easily incorporated into many different scaffolds. We show examples of each electrophile on 10 different scaffolds on a preparative scale as well as in a high-throughput synthesis mode on a nanoscale to produce libraries of potential covalent binders in a resource- and time-saving manner. Our operational procedure is simple, mild, and step economical to facilitate future covalent library synthesis.
Collapse
Affiliation(s)
- Fandi Sutanto
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Shabnam Shaabani
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | | | - Tryfon Zarganes-Tzitzikas
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Pravin Patil
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Ehsan Ghonchepour
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9700 AD Groningen, The Netherlands.
| |
Collapse
|
21
|
Grainger R, Whibley S. A Perspective on the Analytical Challenges Encountered in High-Throughput Experimentation. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rachel Grainger
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Stuart Whibley
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| |
Collapse
|
22
|
Nazeri MT, Farhid H, Mohammadian R, Shaabani A. Cyclic Imines in Ugi and Ugi-Type Reactions. ACS COMBINATORIAL SCIENCE 2020; 22:361-400. [PMID: 32574488 DOI: 10.1021/acscombsci.0c00046] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ugi four-component reactions (U-4CRs) are widely recognized as being highly efficient for the synthesis of pseudopeptides. However, the products of these reactions are not so interesting as drug candidates because they are not conformationally restricted enough for a potent interaction with biological targets. One possible way to overcome this problem is to replace amine and oxo components in the U-4CRs with cyclic imines in so-called Joullié-Ugi three-component reactions (JU-3CRs). This approach provides a robust single-step route to peptide moieties connected to N-heterocyclic motifs that are found as core skeletons in many natural products and pharmaceutical compounds. JU-3CRs also provide much better diastereoselectivity than their four-component analogues. We survey here the redesign of many synthetic routes for the efficient preparation of a wide variety of three-, five-, six-, and seven-membered heterocyclic compounds connected to the peptide backbone. Additionally, in the Ugi reactions based on the cyclic imines, α-acidic isocyanides, or azides can be replaced with normal isocyanides or acids, respectively, leading to the synthesis of N-heterocycles attached to oxazoles or tetrazoles, which are of great pharmaceutical significance. This Review includes all research articles related to Ugi reactions based on the cyclic imines to the year 2020 and will be useful to chemists in designing novel synthetic routes for the synthesis of individual and combinatorial libraries of natural products and drug-like compounds.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Hassan Farhid
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Reza Mohammadian
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| |
Collapse
|
23
|
Osipyan A, Shaabani S, Warmerdam R, Shishkina SV, Boltz H, Dömling A. Automated, Accelerated Nanoscale Synthesis of Iminopyrrolidines. Angew Chem Int Ed Engl 2020; 59:12423-12427. [PMID: 32048418 PMCID: PMC7383484 DOI: 10.1002/anie.202000887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 12/24/2022]
Abstract
Miniaturization and acceleration of synthetic chemistry is an emerging area in pharmaceutical, agrochemical, and materials research and development. Herein, we describe the synthesis of iminopyrrolidine-2-carboxylic acid derivatives using chiral glutamine, oxo components, and isocyanide building blocks in an unprecedented Ugi-3-component reaction. We used I-DOT, a positive-pressure-based low-volume and non-contact dispensing technology to prepare more than 1000 different derivatives in a fully automated fashion. In general, the reaction is stereoselective, proceeds in good yields, and tolerates a wide variety of functional groups. We exemplify a pipeline of fast and efficient nanomole-scale scouting to millimole-scale synthesis for the discovery of a useful novel reaction with great scope.
Collapse
Affiliation(s)
- Angelina Osipyan
- Pharmacy Department, Drug Design groupUniversity of GroningenDeusinglaan 19713AVGroningenThe Netherlands
| | - Shabnam Shaabani
- Pharmacy Department, Drug Design groupUniversity of GroningenDeusinglaan 19713AVGroningenThe Netherlands
| | - Robert Warmerdam
- Pharmacy Department, Drug Design groupUniversity of GroningenDeusinglaan 19713AVGroningenThe Netherlands
| | - Svitlana V. Shishkina
- SSI “Institute for Single Crystals,”National Academy of Science of Ukraine60 Lenina Ave.Kharkiv61001Ukraine
| | - Harry Boltz
- Dispendix GmbHHeßbrühlstraße 770565StuttgartGermany
| | - Alexander Dömling
- Pharmacy Department, Drug Design groupUniversity of GroningenDeusinglaan 19713AVGroningenThe Netherlands
| |
Collapse
|
24
|
Osipyan A, Shaabani S, Warmerdam R, Shishkina SV, Boltz H, Dömling A. Automated, Accelerated Nanoscale Synthesis of Iminopyrrolidines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Angelina Osipyan
- Pharmacy Department, Drug Design group University of Groningen Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shabnam Shaabani
- Pharmacy Department, Drug Design group University of Groningen Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Robert Warmerdam
- Pharmacy Department, Drug Design group University of Groningen Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Svitlana V. Shishkina
- SSI “Institute for Single Crystals,” National Academy of Science of Ukraine 60 Lenina Ave. Kharkiv 61001 Ukraine
| | - Harry Boltz
- Dispendix GmbH Heßbrühlstraße 7 70565 Stuttgart Germany
| | - Alexander Dömling
- Pharmacy Department, Drug Design group University of Groningen Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
25
|
Cheng Y, Li Z. Chemoselective Aza-Michael addition of indoles with 2-arylidenemalononitriles. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1708947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ya Cheng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
26
|
Atar AB, Kang J, Jadhav AH. A [bmim]Cl-promoted domino protocol using an isocyanide-based [4+1]-cycloaddition reaction for the synthesis of diversely functionalized 3-alkylamino-2-alkyl/aryl/hetero-aryl indolizine-1-carbonitriles under solvent-free conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj05738b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A room temperature-based ionic liquid [bmim]Cl-catalyzed multicomponent coupling strategy for the synthesis of 3-alkylamino-2-alkyl/aryl/hetero-aryl indolizine-1-carbonitrile derivatives under mild conditions is shown.
Collapse
Affiliation(s)
- Amol Balu Atar
- Department of Chemistry
- Sejong University
- Seoul 143-747
- South Korea
| | - Jongmin Kang
- Department of Chemistry
- Sejong University
- Seoul 143-747
- South Korea
| | - Arvind H. Jadhav
- Centre for Nano and Material Science (CNMS)
- Jain University
- Bangalore 562112
- India
| |
Collapse
|
27
|
Alfano AI, Zampella A, Novellino E, Brindisi M, Lange H. Harnessing interrupted Fischer in continuous flow: sustainable synthesis of (spiro)indolenine and (spiro)indoline privileged scaffolds. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00329h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
3,3-Disubstituted indolenines are obtained via a green and sustainable flow chemistry protocol for interrupted Fischer indolisation reactions.
Collapse
Affiliation(s)
- Antonella Ilenia Alfano
- SPOTS-LAB – Sustainable Pharmaceutical and Organic Technology and Synthesis Laboratory
- Department of Pharmacy
- University of Naples ‘Federico II’
- 80131 Naples
- Italy
| | - Angela Zampella
- SPOTS-LAB – Sustainable Pharmaceutical and Organic Technology and Synthesis Laboratory
- Department of Pharmacy
- University of Naples ‘Federico II’
- 80131 Naples
- Italy
| | - Ettore Novellino
- SPOTS-LAB – Sustainable Pharmaceutical and Organic Technology and Synthesis Laboratory
- Department of Pharmacy
- University of Naples ‘Federico II’
- 80131 Naples
- Italy
| | - Margherita Brindisi
- SPOTS-LAB – Sustainable Pharmaceutical and Organic Technology and Synthesis Laboratory
- Department of Pharmacy
- University of Naples ‘Federico II’
- 80131 Naples
- Italy
| | - Heiko Lange
- SPOTS-LAB – Sustainable Pharmaceutical and Organic Technology and Synthesis Laboratory
- Department of Pharmacy
- University of Naples ‘Federico II’
- 80131 Naples
- Italy
| |
Collapse
|
28
|
Abstract
The advent of transition-metal catalysis (and likewise, bio-catalysis, photoredox-catalysis and organo-catalysis, etc.) promises to greatly increase access to diverse chemical matter in medicinal chemistry, but new catalytic reactions often fail to deliver product in applied synthesis.
Collapse
Affiliation(s)
- Spencer D. Dreher
- Chemistry Capabilities Accelerating Therapeutics
- Merck & Co., Inc
- Kenilworth
- USA
| |
Collapse
|