1
|
Li C, Li J, Argall-Knapp Z, Hendrikse NW, Farooqui MA, Raykowski B, King A, Nong S, Liu Y. Combining Top-Down and Bottom-Up: An Open Microfluidic Microtumor Model for Investigating Tumor Cell-ECM Interaction and Anti-Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2402499. [PMID: 39811947 DOI: 10.1002/smll.202402499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/19/2024] [Indexed: 01/16/2025]
Abstract
Using a combined top-down (i.e., operator-directed) and bottom-up (i.e., cell-directed) strategy, an Under-oil Open Microfluidic System (UOMS)-based microtumor model is presented for investigating tumor cell migration and anti-metastasis drug test. Compared to the mainstream closed microfluidics-based microtumor models, the UOMS microtumor model features: i) micrometer-scale lateral resolution of surface patterning with open microfluidic design for flexible spatiotemporal sample manipulation (i.e., top-down); ii) self-organized extracellular matrix (ECM) structures and tumor cell-ECM spontaneous remodeling (i.e., bottom-up); and iii) free physical access to the samples on a device with minimized system disturbance. The UOMS microtumor model - allowing a controlled but also self-organized, cell-directed tumor-ECM microenvironment in an open microfluidic configuration - is used to test an anti-metastasis drug (incyclinide, aka CMT-3) with a triple-negative breast cancer cell line (MDA-MB-231). The in vitro results show a suppression of tumor cell migration and ECM remodeling echoing the in vivo mice metastasis results.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jiayi Li
- College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA
| | - Zach Argall-Knapp
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nathan W Hendrikse
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mehtab A Farooqui
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Bella Raykowski
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Anna King
- College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA
| | - Serratt Nong
- College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA
| | - Yingguang Liu
- College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA
| |
Collapse
|
2
|
Schrope JH, Horn A, Lazorchak K, Tinnen CW, Stevens JJ, Farooqui M, Li J, Bennin D, Robertson T, Juang TD, Ahmed A, Li C, Huttenlocher A, Beebe D. Confinement by liquid-liquid interface replicates in vivo neutrophil deformations and elicits bleb based migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544898. [PMID: 38106211 PMCID: PMC10723256 DOI: 10.1101/2023.06.14.544898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Leukocytes navigate through interstitial spaces resulting in deformation of both the motile leukocytes and surrounding cells. Creating an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, we engineer microchannels with a liquid-liquid interface that exerts confining pressures (200-3000 Pa) similar to cells in tissues, and, thus, is deformable by cell generated forces. Consequently, the balance between migratory cell-generated and interfacial pressures determines the degree of confinement. Pioneer cells that first contact the interfacial barrier require greater deformation forces to forge a path for migration, and as a result migrate slower than trailing cells. Critically, resistive pressures are tunable by controlling the curvature of the liquid interface, which regulates motility. By granting cells autonomy in determining their confinement, and tuning environmental resistance, interfacial deformations are made to match those of surrounding cells in vivo during interstitial neutrophil migration in a larval zebrafish model. We discover that, in this context, neutrophils employ a bleb-based mechanism of force generation to deform a barrier exerting cell-scale confining pressures.
Collapse
|
3
|
Li C, Hendrikse NW, Mai M, Farooqui MA, Argall-Knapp Z, Kim JS, Wheat EA, Juang T. Microliter Whole Blood Neutrophil Assay Preserving Physiological Lifespan and Functional Heterogeneity. SMALL METHODS 2024; 8:e2400373. [PMID: 38984758 PMCID: PMC11499044 DOI: 10.1002/smtd.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Indexed: 07/11/2024]
Abstract
For in vitro neutrophil functional assays, neutrophils are typically isolated from whole blood, having the target cells exposed to an artificial microenvironment with altered kinetics. Isolated neutrophils exhibit limited lifespans of only a few hours ex vivo, significantly shorter than the 3-5 day lifespan of neutrophils in vivo. In addition, due to neutrophils' inherently high sensitivity, neutrophils removed from whole blood exhibit stochastic non-specific activation that contributes to assay variability. Here, a method - named "µ-Blood" - is presented that enables functional neutrophil assays using a microliter of unprocessed whole blood. µ-Blood allows multiple phenotypic readouts of neutrophil function (including cell/nucleus morphology, motility, recruitment, and pathogen control). In µ-Blood, neutrophils show sustained migration and limited non-specific activation kinetics (<0.1% non-specific activation) over 3-6 days. In contrast, neutrophils isolated using traditional methods show increased and divergent activation kinetics (10-70% non-specific activation) in only 3 h. Finally, µ-Blood allows the capture and quantitative comparison of distinct neutrophil functional heterogeneity between healthy donors and cancer patients in response to microbial stimuli with the preserved physiological lifespan over 6 days.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nathan W Hendrikse
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Makenna Mai
- Department of Molecular and Cell Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mehtab A Farooqui
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zach Argall-Knapp
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jun Sung Kim
- Department of Molecular and Cell Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily A Wheat
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Terry Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
4
|
Magesh S, Schrope JH, Soto NM, Li C, Hurley AI, Huttenlocher A, Beebe DJ, Handelsman J. Co-zorbs: Motile, multispecies biofilms aid transport of diverse bacterial species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.607786. [PMID: 39257784 PMCID: PMC11383685 DOI: 10.1101/2024.08.29.607786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biofilms are three-dimensional structures containing one or more bacterial species embedded in extracellular polymeric substances. Although most biofilms are stationary, Flavobacterium johnsoniae forms a motile spherical biofilm called a zorb, which is propelled by its base cells and contains a polysaccharide core. Here, we report formation of spatially organized, motile, multispecies biofilms, designated "co-zorbs," that are distinguished by a core-shell structure. F. johnsoniae forms zorbs whose cells collect other bacterial species and transport them to the zorb core, forming a co-zorb. Live imaging revealed that co-zorbs also form in zebrafish, thereby demonstrating a new type of bacterial movement in vivo. This discovery opens new avenues for understanding community behaviors, the role of biofilms in bulk bacterial transport, and collective strategies for microbial success in various environments.
Collapse
Affiliation(s)
- Shruthi Magesh
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison; Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison; Madison, WI, USA
| | - Jonathan H. Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison; Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI, USA
| | - Nayanna Mercado Soto
- Microbiology Doctoral Training Program, University of Wisconsin-Madison; Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison; Madison, WI, USA
| | - Amanda I. Hurley
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison; Madison, WI, USA
- Avantiqor, 800 Wharf St SW, Washington, DC 20024
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison; Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison; Madison, WI, USA
| | - Jo Handelsman
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison; Madison, WI, USA
| |
Collapse
|
5
|
Giese MA, Bennin DA, Schoen TJ, Peterson AN, Schrope JH, Brand J, Jung HS, Keller NP, Beebe DJ, Dinh HQ, Slukvin II, Huttenlocher A. PTP1B phosphatase dampens iPSC-derived neutrophil motility and antimicrobial function. J Leukoc Biol 2024; 116:118-131. [PMID: 38417030 PMCID: PMC11212797 DOI: 10.1093/jleuko/qiae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Neutrophils are rapidly recruited to sites of infection and are critical for pathogen clearance. Therapeutic use of primary neutrophils has been limited, as they have a short lifespan and are not amenable to genetic manipulation. Human induced pluripotent stem cells (iPSCs) can provide a robust source of neutrophils for infusion and are genetically tractable. However, current work has indicated that dampened intracellular signaling limits iPSC-derived neutrophil (iNeutrophil) cellular activation and antimicrobial response. Here, we show that protein tyrosine phosphatase 1B (PTP1B) inhibits intracellular signaling and dampens iNeutrophil effector function. Deletion of the PTP1B phosphatase increased PI3K and ERK signaling and was associated with increased F-actin polymerization, cell migration, and phagocytosis. In contrast, other effector functions like NETosis and reactive oxygen species production were reduced. PTP1B-deficient neutrophils were more responsive to Aspergillus fumigatus and displayed rapid recruitment and control of hyphal growth. Accordingly, depletion of PTP1B increased production of inflammatory factors including the neutrophil chemokine interleukin-8. Taken together, these findings suggest that PTP1B limits iNeutrophil motility and antimicrobial function.
Collapse
Affiliation(s)
- Morgan A Giese
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin–Madison, 1525 Linden Dr. Madison 53706, WI, United States
| | - David A Bennin
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
| | - Taylor J Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin–Madison, 2015 Linden Dr. Madison 53706, WI, United States
| | - Ashley N Peterson
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin–Madison, 2015 Linden Dr. Madison 53706, WI, United States
| | - Jonathan H Schrope
- Department of Biomedical Engineering, University of Wisconsin–Madison, 1550 Engineering Dr. Madison 53706, WI, United States
| | - Josh Brand
- Cell and Molecular Pathology Graduate Program, University of Wisconsin–Madison, 1685 Highland Ave. Madison 53705, WI, United States
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
| | - Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct. Madison 53715, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave. Madison 53705, WI, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Ave. Madison 53705, WI, United States
| | - Huy Q Dinh
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct. Madison 53715, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave. Madison 53705, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Ave. Madison 53705, WI, United States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Department of Pediatrics, University of Wisconsin–Madison, 600 Highland Ave. Madison 53705, WI, United States
| |
Collapse
|
6
|
Li C, Hendrikse NW, Mai M, Farooqui MA, Argall-Knapp Z, Kim JS, Wheat EA, Juang T. Microliter whole blood neutrophil assay preserving physiological lifespan and functional heterogeneity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.28.23294744. [PMID: 37693613 PMCID: PMC10491351 DOI: 10.1101/2023.08.28.23294744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
For in vitro neutrophil functional assays, neutrophils are typically isolated from whole blood, having the target cells exposed to an artificial microenvironment with altered kinetics. Isolated neutrophils exhibit limited lifespans of only a few hours ex vivo, significantly shorter than the 3-5 day lifespan of neutrophils in vivo. In addition, due to neutrophil inherently high sensitivity, neutrophils removed from whole blood exhibit stochastic non-specific activation that contributes to assay variability. Here we present a method - named micro-Blood - that enables functional neutrophil assays using a microliter of unprocessed whole blood. micro-Blood allows multiple phenotypic readouts of neutrophil function (including cell/nucleus morphology, motility, recruitment, and pathogen control). In micro-Blood, neutrophils show sustained migration and limited non-specific activation kinetics (<0.1% non-specific activation) over 3-6 days. In contrast, neutrophils isolated using traditional methods show increased and divergent activation kinetics (10-70% non-specific activation) in only 3 h. Finally, micro-Blood allows the capture and quantitative comparison of distinct neutrophil functional heterogeneity between healthy donors and cancer patients in response to microbial stimuli with the preserved physiological lifespan over 6 days.
Collapse
|
7
|
Chen Q, Zhai H, Beebe DJ, Li C, Wang B. Visualization-enhanced under-oil open microfluidic system for in situ characterization of multi-phase chemical reactions. Nat Commun 2024; 15:1155. [PMID: 38326343 PMCID: PMC10850056 DOI: 10.1038/s41467-024-45076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Under-oil open microfluidic system, utilizing liquid-liquid boundaries for confinements, offers inherent advantages including clogging-free flow channels, flexible access to samples, and adjustable gas permeation, making it well-suited for studying multi-phase chemical reactions that are challenging for closed microfluidics. However, reports on the novel system have primarily focused on device fabrication and functionality demonstrations within biology, leaving their application in broader chemical analysis underexplored. Here, we present a visualization-enhanced under-oil open microfluidic system for in situ characterization of multi-phase chemical reactions with Raman spectroscopy. The enhanced system utilizes a semi-transparent silicon (Si) nanolayer over the substrate to enhance visualization in both inverted and upright microscope setups while reducing Raman noise from the substrate. We validated the system's chemical stability and capability to monitor gas evolution and gas-liquid reactions in situ. The enhanced under-oil open microfluidic system, integrating Raman spectroscopy, offers a robust open-microfluidic platform for label-free molecular sensing and real-time chemical/biochemical process monitoring in multi-phase systems.
Collapse
Affiliation(s)
- Qiyuan Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hang Zhai
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Bu Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Li C, Farooqui M, Yada RC, Cai JB, Huttenlocher A, Beebe DJ. The effect of whole blood logistics on neutrophil non-specific activation and kinetics ex vivo. Sci Rep 2024; 14:2543. [PMID: 38291060 PMCID: PMC10828393 DOI: 10.1038/s41598-023-50813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
While the exquisite sensitivity of neutrophils enables their rapid response to infection in vivo; this same sensitivity complicates the ex vivo study of neutrophils. Handling of neutrophils ex vivo is fraught with unwanted heterogeneity and alterations that can diminish the reproducibility of assays and limit what biological conclusions can be drawn. There is a need to better understand the influence of ex vivo procedures on neutrophil behavior to guide improved protocols for ex vivo neutrophil assessment to improve inter/intra-experimental variability. Here, we investigate how whole blood logistics (i.e., the procedure taken from whole blood collection to delivery of the samples to analytical labs and storage before neutrophil interrogation) affects neutrophil non-specific activation (i.e., baseline apoptosis and NETosis) and kinetics (i.e., activation over time). All the experiments (60+ whole blood neutrophil isolations across 36 blood donors) are performed by a single operator with optimized isolation and culture conditions, and automated image analysis, which together increase rigor and consistency. Our results reveal: (i) Short-term storage (< 8 h) of whole blood does not significantly affect neutrophil kinetics in subsequent two-dimensional (2D) cell culture; (ii) Neutrophils from long-term storage (> 24 h) in whole blood show significantly higher stability (i.e., less non-specific activation) compared to the control group with the isolated cells in 2D culture. (iii) Neutrophils have greater non-specific activation and accelerated kinetic profiles when stored in whole blood beyond 48 h.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Mehtab Farooqui
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ravi Chandra Yada
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph B Cai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Li C, Hendrikse NW, Argall-Knapp Z, Mai M, Kim JS. In Vitro Neutrophil-Bacteria Assay in Whole Blood Microenvironments with Single-Cell Confinement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576723. [PMID: 38328183 PMCID: PMC10849536 DOI: 10.1101/2024.01.22.576723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Blood is a common medium through which invasive bacterial infections disseminate in the human body. In vitro neutrophil-bacteria assays allow flexible mechanistic studies and screening of interventional strategies. In standard neutrophil-bacteria assays, both the immune cells and microorganisms are typically interrogated in an exogenous, homogeneous, bulk fluid environment (e.g., culture media or bacterial broth in microtiter plates), lacking the relevant physicochemical factors in the heterogenous blood-tissue microenvironment (e.g., capillary bed) with single-cell confinement. Here we present an in vitro neutrophil-bacteria assay by leveraging an open microfluidic model known as "μ-Blood" that supports sub-microliter liquid microchannels with single-cell confinement. In this study we compare the exogenous and endogenous fluids including neutrophils in RPMI (standard suspension cell culture media) and whole blood in response to Staphylococcus aureus ( S. aureus , a gram-positive, non-motile bacterium) in phosphate buffered saline (PBS), Mueller Hinton Broth (MHB), and human serum. Our results reveal a significant disparity between the exogenous and endogenous fluid microenvironments in the growth kinetics of bacteria, the spontaneous generation of capillary (i.e., Marangoni) flow, and the outcome of neutrophil intervention on the spreading bacteria.
Collapse
|
10
|
Zeng Y, Khor JW, van Neel TL, Tu WC, Berthier J, Thongpang S, Berthier E, Theberge AB. Miniaturizing chemistry and biology using droplets in open systems. Nat Rev Chem 2023; 7:439-455. [PMID: 37117816 PMCID: PMC10107581 DOI: 10.1038/s41570-023-00483-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/30/2023]
Abstract
Open droplet microfluidic systems manipulate droplets on the picolitre-to-microlitre scale in an open environment. They combine the compartmentalization and control offered by traditional droplet-based microfluidics with the accessibility and ease-of-use of open microfluidics, bringing unique advantages to applications such as combinatorial reactions, droplet analysis and cell culture. Open systems provide direct access to droplets and allow on-demand droplet manipulation within the system without needing pumps or tubes, which makes the systems accessible to biologists without sophisticated setups. Furthermore, these systems can be produced with simple manufacturing and assembly steps that allow for manufacturing at scale and the translation of the method into clinical research. This Review introduces the different types of open droplet microfluidic system, presents the physical concepts leveraged by these systems and highlights key applications.
Collapse
Affiliation(s)
- Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jian Wei Khor
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Tammi L van Neel
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Wan-Chen Tu
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Sanitta Thongpang
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, Thailand
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Li C, Farooqui M, Yada RC, Cai JB, Huttenlocher A, Beebe DJ. The effect of whole blood logistics on neutrophil non-specific activation and kinetics ex vivo. RESEARCH SQUARE 2023:rs.3.rs-2837704. [PMID: 37214903 PMCID: PMC10197797 DOI: 10.21203/rs.3.rs-2837704/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
While the exquisite sensitivity of neutrophils enables their rapid response to infection in vivo; this same sensitivity complicates the ex vivo study of neutrophils. Handling of neutrophils ex vivo is fraught with unwanted heterogeneity and alterations that can diminish the reproducibility of assays and limit what biological conclusions can be drawn. There is a need to better understand the influence of ex vivo procedures on neutrophil behavior to guide improved protocols for ex vivo neutrophil assessment to improve inter/intra-experimental variability. Here, we investigate how whole blood logistics (i.e., the procedure taken from whole blood collection to delivery of the samples to analytical labs and storage before neutrophil interrogation) affects neutrophil non-specific activation (i.e., baseline apoptosis and NETosis) and kinetics (i.e., activation over time). All the experiments (60+ whole blood neutrophil isolations across 36 blood donors) are performed by a single operator with optimized isolation and culture conditions, and automated image analysis, which together increase rigor and consistency. Our results reveal: i) Short-term storage (<8 h) of whole blood does not significantly affect neutrophil kinetics in subsequent two-dimensional (2D) cell culture; ii) Neutrophils from long-term storage (>24 h) in whole blood show significantly higher stability (i.e., less non-specific activation) compared to the control group with the isolated cells in 2D culture. iii) Neutrophils have greater non-specific activation and accelerated kinetic profiles when stored in whole blood beyond 48 h.
Collapse
Affiliation(s)
- Chao Li
- University of Wisconsin-Madison
| | | | | | | | | | | |
Collapse
|
12
|
Li C, McCrone S, Warrick JW, Andes DR, Hite Z, Volk CF, Rose WE, Beebe DJ. Under-oil open microfluidic systems for rapid phenotypic antimicrobial susceptibility testing. LAB ON A CHIP 2023; 23:2005-2015. [PMID: 36883560 PMCID: PMC10581760 DOI: 10.1039/d3lc00066d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Antimicrobial susceptibility testing (AST) remains the cornerstone of effective antimicrobial selection and optimization in patients. Despite recent advances in rapid pathogen identification and resistance marker detection with molecular diagnostics (e.g., qPCR, MALDI-TOF MS), phenotypic (i.e., microbial culture-based) AST methods - the gold standard in hospitals/clinics - remain relatively unchanged over the last few decades. Microfluidics-based phenotypic AST has been growing fast in recent years, aiming for rapid (i.e., turnaround time <8 h), high-throughput, and automated species identification, resistance detection, and antibiotics screening. In this pilot study, we describe the application of a multi-liquid-phase open microfluidic system, named under-oil open microfluidic systems (UOMS), to achieve a rapid phenotypic AST. UOMS provides an open microfluidics-based solution for rapid phenotypic AST (UOMS-AST) by implementing and recording a pathogen's antimicrobial activity in micro-volume testing units under an oil overlay. UOMS-AST allows free physical access (e.g., by standard pipetting) to the system and label-free, single-cell resolution optical access. UOMS-AST can accurately and rapidly determine antimicrobial activities [including susceptibility/resistance breakpoint and minimum inhibitory concentration (MIC)] from nominal sample/bacterial cells in a system aligned with clinical laboratory standards where open systems and optical microscopy are predominantly adopted. Further, we combine UOMS-AST with a cloud lab data analytic technique for real-time image analysis and report generation to provide a rapid (<4 h) sample-to-report turnaround time, shedding light on its utility as a versatile (e.g., low-resource setting and manual laboratory operation, or high-throughput automated system) phenotypic AST platform for hospital/clinic use.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sue McCrone
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jay W. Warrick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David R. Andes
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary Hite
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cecilia F. Volk
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Warren E. Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
13
|
Khor JW, Lee UN, Berthier J, Berthier E, Theberge AB. Interfacial tension driven open droplet microfluidics. ADVANCED MATERIALS INTERFACES 2023; 10:2202234. [PMID: 39584054 PMCID: PMC11583357 DOI: 10.1002/admi.202202234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 11/26/2024]
Abstract
Droplet microfluidics enables compartmentalized reactions in small scales and has been utilized for a variety of applications across chemical analysis, material science, and biology. While droplet microfluidics is a successful technology, barriers include high "activation energy" to develop custom applications and complex peripheral equipment. These barriers limit the adoption of droplet microfluidics in labs or prototyping environments. We demonstrate for the first time an open channel droplet microfluidic system that autonomously generates droplets at low Capillary numbers. Hundreds of droplets are produced in a run using only an open channel, pipettes, and a commercially available carrier fluid. Conceptual applications that showcase the process of droplet generation, splitting, transport, incubation, mixing, and sorting are demonstrated. The open nature of the device enables the use of physical tools such as tweezers and styli to directly access the system; with this, a new method of droplet sorting and transfer unique to open systems is demonstrated. This platform offers enhanced usability, direct access to the droplet contents, easy manufacturability, compact footprint, and high customizability. This design is a first step in exploring the space of power-free open droplet microfluidic systems and provides design rules for similar channel designs.
Collapse
Affiliation(s)
- Jian Wei Khor
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Ulri N. Lee
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Jean Berthier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
- Department of Urology, University of Washington School of Medicine, Seattle, Washington 98105, United States
| |
Collapse
|
14
|
Li C, Humayun M, Walker GM, Park KY, Connors B, Feng J, Pellitteri Hahn MC, Scarlett CO, Li J, Feng Y, Clark RL, Hefti H, Schrope J, Venturelli OS, Beebe DJ. Under-Oil Autonomously Regulated Oxygen Microenvironments: A Goldilocks Principle-Based Approach for Microscale Cell Culture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104510. [PMID: 35118834 PMCID: PMC8981459 DOI: 10.1002/advs.202104510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Indexed: 05/14/2023]
Abstract
Oxygen levels in vivo are autonomously regulated by a supply-demand balance, which can be altered in disease states. However, the oxygen levels of in vitro cell culture systems, particularly microscale cell culture, are typically dominated by either supply or demand. Further, the oxygen microenvironment in these systems is rarely monitored or reported. Here, a method to establish and dynamically monitor autonomously regulated oxygen microenvironments (AROM) using an oil overlay in an open microscale cell culture system is presented. Using this method, the oxygen microenvironment is dynamically regulated via the supply-demand balance of the system. Numerical simulation and experimental validation of oxygen transport within multi-liquid-phase, microscale culture systems involving a variety of cell types, including mammalian, fungal, and bacterial cells are presented. Finally, AROM is applied to establish a coculture between cells with disparate oxygen demands-primary intestinal epithelial cells (oxygen consuming) and Bacteroides uniformis (an anaerobic species prevalent in the human gut).
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Glenn M Walker
- Department of Biomedical Engineering, University of Mississippi University, Madison, MS, 38677, USA
| | - Keon Young Park
- Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Bryce Connors
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jun Feng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Molly C Pellitteri Hahn
- Analytical Instrumentation Center-Mass Spec Facility, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Cameron O Scarlett
- Analytical Instrumentation Center-Mass Spec Facility, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiayi Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yanbo Feng
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ryan L Clark
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hunter Hefti
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jonathan Schrope
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
15
|
Li C, Hurley A, Hu W, Warrick JW, Lozano GL, Ayuso JM, Pan W, Handelsman J, Beebe DJ. Social motility of biofilm-like microcolonies in a gliding bacterium. Nat Commun 2021; 12:5700. [PMID: 34588437 PMCID: PMC8481357 DOI: 10.1038/s41467-021-25408-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/09/2021] [Indexed: 11/27/2022] Open
Abstract
Bacterial biofilms are aggregates of surface-associated cells embedded in an extracellular polysaccharide (EPS) matrix, and are typically stationary. Studies of bacterial collective movement have largely focused on swarming motility mediated by flagella or pili, in the absence of a biofilm. Here, we describe a unique mode of collective movement by a self-propelled, surface-associated biofilm-like multicellular structure. Flavobacterium johnsoniae cells, which move by gliding motility, self-assemble into spherical microcolonies with EPS cores when observed by an under-oil open microfluidic system. Small microcolonies merge, creating larger ones. Microscopic analysis and computer simulation indicate that microcolonies move by cells at the base of the structure, attached to the surface by one pole of the cell. Biochemical and mutant analyses show that an active process drives microcolony self-assembly and motility, which depend on the bacterial gliding apparatus. We hypothesize that this mode of collective bacterial movement on solid surfaces may play potential roles in biofilm dynamics, bacterial cargo transport, or microbial adaptation. However, whether this collective motility occurs on plant roots or soil particles, the native environment for F. johnsoniae, is unknown.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Hurley
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wei Hu
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jay W Warrick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabriel L Lozano
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Divisions of Infectious Diseases and Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jose M Ayuso
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Wenxiao Pan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jo Handelsman
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
16
|
Sun G, Manning C, Lee GH, Majeed M, Lu H. Microswimmer Combing: Controlling Interfacial Dynamics for Open-Surface Multifunctional Screening of Small Animals. Adv Healthc Mater 2021; 10:e2001887. [PMID: 33890423 DOI: 10.1002/adhm.202001887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/13/2021] [Indexed: 12/31/2022]
Abstract
Image-based screening of multicellular model organisms is critical for both investigating fundamental biology and drug development. Current microfluidic techniques for high-throughput manipulation of small model organisms, although useful, are generally complicated to operate, which impedes their widespread adoption by biology laboratories. To address this challenge, this paper presents an ultrasimple and yet effective approach, "microswimmer combing," to rapidly isolate live small animals on an open-surface array. This approach exploits a dynamic contact line-combing mechanism designed to handle highly active microswimmers. The isolation method is robust, and the device operation is simple for users without a priori experience. The versatile open-surface device enables multiple screening applications, including high-resolution imaging of multicellular organisms, on-demand mutant selection, and multiplexed chemical screening. The simplicity and versatility of this method provide broad access to high-throughput experimentation for biologists and open up new opportunities to study active microswimmers by different scientific communities.
Collapse
Affiliation(s)
- Gongchen Sun
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Petit Institute of Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| | - Cassidy‐Arielle Manning
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Ga Hyun Lee
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Maryam Majeed
- Department of Biological Sciences Columbia University New York NY 10027 USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Petit Institute of Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
17
|
Li C, Hite Z, Warrick JW, Li J, Geller SH, Trantow VG, McClean MN, Beebe DJ. Under oil open-channel microfluidics empowered by exclusive liquid repellency. SCIENCE ADVANCES 2020; 6:eaay9919. [PMID: 32494607 PMCID: PMC7164933 DOI: 10.1126/sciadv.aay9919] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/30/2019] [Indexed: 05/04/2023]
Abstract
Recently, the functionality of under oil open microfluidics was expanded from droplet-based operations to include lateral flow in under oil aqueous channels. However, the resolution of the under oil fluidic channels reported so far is still far from comparable with that of closed-channel microfluidics (millimeters versus micrometers). Here, enabled by exclusive liquid repellency and an under oil sweep technique, open microchannels can now be prepared under oil (rather than in air), which shrinks the channel dimensions up to three orders of magnitude compared to previously reported techniques. Spatial trapping of different cellular samples and advanced control of mass transport (i.e., enhanced upper limit of flow rate, steady flow with passive pumping, and reversible fluidic valves) were achieved with open-channel designs. We apply these functional advances to enable dynamic measurements of dispersion from a pathogenic fungal biofilm. The ensemble of added capabilities reshapes the potential application space for open microfluidics.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary Hite
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jay W. Warrick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiayi Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stephanie H. Geller
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Victoria G. Trantow
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Megan N. McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Corresponding author. (D.J.B.); (M.N.M.)
| | - David J. Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Corresponding author. (D.J.B.); (M.N.M.)
| |
Collapse
|
18
|
Miyahira AK, Sharp A, Ellis L, Jones J, Kaochar S, Larman HB, Quigley DA, Ye H, Simons JW, Pienta KJ, Soule HR. Prostate cancer research: The next generation; report from the 2019 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2020; 80:113-132. [PMID: 31825540 PMCID: PMC7301761 DOI: 10.1002/pros.23934] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The 2019 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Prostate Cancer Research: The Next Generation," was held 20 to 23 June, 2019, in Los Angeles, California. METHODS The CHPCA Meeting is an annual conference held by the Prostate Cancer Foundation, that is uniquely structured to stimulate intense discussion surrounding topics most critical to accelerating prostate cancer research and the discovery of new life-extending treatments for patients. The 7th Annual CHPCA Meeting was attended by 86 investigators and concentrated on many of the most promising new treatment opportunities and next-generation research technologies. RESULTS The topics of focus at the meeting included: new treatment strategies and novel agents for targeted therapies and precision medicine, new treatment strategies that may synergize with checkpoint immunotherapy, next-generation technologies that visualize tumor microenvironment (TME) and molecular pathology in situ, multi-omics and tumor heterogeneity using single cells, 3D and TME models, and the role of extracellular vesicles in cancer and their potential as biomarkers. DISCUSSION This meeting report provides a comprehensive summary of the talks and discussions held at the 2019 CHPCA Meeting, for the purpose of globally disseminating this knowledge and ultimately accelerating new treatments and diagnostics for patients with prostate cancer.
Collapse
Affiliation(s)
- Andrea K. Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| | - Adam Sharp
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Womenʼs Hospital, Harvard Medical School, Boston, Massachusetts
- The Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Jennifer Jones
- National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - H. Benjamin Larman
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, California
| | - Huihui Ye
- Department of Pathology, University of California Los Angeles, Los Angeles, California
- Department of Urology, University of California Los Angeles, Los Angeles, California
| | - Jonathan W. Simons
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| | - Kenneth J. Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Howard R. Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| |
Collapse
|
19
|
Li C, Niles DJ, Juang DS, Lang JM, Beebe DJ. Automated System for Small-Population Single-Particle Processing Enabled by Exclusive Liquid Repellency. SLAS Technol 2019; 24:535-542. [PMID: 31180792 DOI: 10.1177/2472630319853219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exclusive liquid repellency (ELR) describes an extreme wettability phenomenon in which a liquid phase droplet is completely repelled from a solid phase when exposed to a secondary immiscible liquid phase. Earlier, we developed a multi-liquid-phase open microfluidic (or underoil) system based on ELR to facilitate rare-cell culture and single-cell processing. The ELR system can allow for the handling of small volumes of liquid droplets with ultra-low sample loss and biofouling, which makes it an attractive platform for biological applications that require lossless manipulation of rare cellular samples (especially for a limited sample size in the range of a few hundred to a few thousand cells). Here, we report an automated platform using ELR microdrops for single-particle (or single-cell) isolation, identification, and retrieval. This was accomplished via the combined use of a robotic liquid handler, an automated microscopic imaging system, and real-time image-processing software for single-particle identification. The automated ELR technique enables rapid, hands-free, and robust isolation of microdrop-encapsulated rare cellular samples.
Collapse
Affiliation(s)
- Chao Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Niles
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Duane S Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Affiliation(s)
- Gongchen Sun
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|