1
|
Ly K, Pathan A, Rackus DG. A review of electrochemical sensing in droplet systems: Droplet and digital microfluidics. Anal Chim Acta 2025; 1347:343744. [PMID: 40024652 DOI: 10.1016/j.aca.2025.343744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Microfluidic technologies based on droplets provide discrete volumes within which chemical and/or biological processes can take place. Two major platforms in this space include droplet microfluidics (emulsions within channels) and digital microfluidics (discrete droplet manipulation by electric fields). The integration of electrochemical sensing with both microfluidic platforms offers advantages in miniaturization and portability, as sensors can be integrated directly within the microfluidic devices and instrumentation is relatively compact. RESULTS This review provides background on droplet and digital microfluidic technologies and electrochemical sensing before moving to methods and applications. A discussion of the various strategies to integrate sensing electrodes with both droplet and digital microfluidics and the merits of each method are included. A review of the many different applications of these integrated systems is provided. SIGNIFICANCE AND NOVELTY To date, there are no reviews that solely focus on the integration of electrochemical sensing with droplet and digital microfluidics. There are many advantages to combining electrochemical sensing with these platforms, especially for applications where portability or small form factors are paramount. While early reports on integrating electrochemical sensing with droplet and digital microfluidics are more than a decade old, the field is still relatively nascent, offering opportunity for many applications.
Collapse
Affiliation(s)
- Kathy Ly
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, Ontario, Canada, M5B 2K3; Institute for Biomedical Engineering, Science, and Technology (iBEST) - A Partnership Between St. Michael's Hospital, a Site of Unity Health Toronto and Toronto Metropolitan University Toronto, Canada, M5B 1W8, Canada; Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, M5B 1T8, Canada
| | - Aaliya Pathan
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, Ontario, Canada, M5B 2K3; Institute for Biomedical Engineering, Science, and Technology (iBEST) - A Partnership Between St. Michael's Hospital, a Site of Unity Health Toronto and Toronto Metropolitan University Toronto, Canada, M5B 1W8, Canada; Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, M5B 1T8, Canada
| | - Darius G Rackus
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, Ontario, Canada, M5B 2K3; Institute for Biomedical Engineering, Science, and Technology (iBEST) - A Partnership Between St. Michael's Hospital, a Site of Unity Health Toronto and Toronto Metropolitan University Toronto, Canada, M5B 1W8, Canada; Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, M5B 1T8, Canada.
| |
Collapse
|
2
|
Aggarwal D, de Campos RPS, Jemere AB, Bergren AJ, Pekas N. Integration of complementary split-ring resonators into digital microfluidics for manipulation and direct sensing of droplet composition. LAB ON A CHIP 2024; 24:4461-4469. [PMID: 39207247 DOI: 10.1039/d4lc00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This paper demonstrates the integration of complementary split-ring resonators (CSSRs) with digital microfluidics (DMF) sample manipulation for passive, on-chip radio-frequency (RF) sensing. Integration is accomplished by having the DMF and the RF-sensing components share the same ground plane: by designing the RF-resonant openings directly into the ground plane of a DMF device, both droplet motion and sensing are achieved, adding a new on-board detection mode for use in DMF. The system was modelled to determine basic features and to balance various factors that need to be optimized to maintain both functionalities (DMF-enabled droplet movement and RF detection) on the same chip. Simulated and experimental results show good agreement. Using a portable measurement setup, the integrated CSSR sensor was used to effectively identify a series of DMF-generated drops of ethanol-water mixtures of different compositions by measuring the resonant frequency of the CSSR. In addition, we show that a binary solvent system (ethanol/water mixtures) results in consistent changes in the measured spectrum in response to changes in concentration, indicating that the sensor can distinguish not only between pure solvents from each other, but also between mixtures of varied compositions. We anticipate that this system can be refined further to enable additional applications and detection modes for DMF systems and other portable sensing platforms alike. This proof-of-principle study demonstrates that the integrated DMF-CSSR sensor provides a new platform for monitoring and characterization of liquids with high sensitivity and low consumption of materials, and opens the way for new and exciting applications of RF sensing in microfluidics.
Collapse
Affiliation(s)
- Dipesh Aggarwal
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9, Canada.
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | | | - Abebaw B Jemere
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9, Canada.
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Adam Johan Bergren
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9, Canada.
- Department of Chemistry, University of British Columbia - Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Nikola Pekas
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9, Canada.
| |
Collapse
|
3
|
Strutt R, Xiong B, Abegg VF, Dittrich PS. Open microfluidics: droplet microarrays as next generation multiwell plates for high throughput screening. LAB ON A CHIP 2024; 24:1064-1075. [PMID: 38356285 PMCID: PMC10898417 DOI: 10.1039/d3lc01024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Multiwell plates are prominent in the biological and chemical sciences; however, they face limitations in terms of throughput and deployment in emerging bioengineering fields. Droplet microarrays, as an open microfluidic technology, organise tiny droplets typically in the order of thousands, on an accessible plate. In this perspective, we summarise current approaches for generating droplets, fluid handling on them, and analysis within droplet microarrays. By enabling unique plate engineering opportunities, demonstrating the necessary experimental procedures required for manipulating and interacting with biological cells, and integrating with label-free analytical techniques, droplet microarrays can be deployed across a more extensive experimental domain than what is currently covered by multiwell plates. Droplet microarrays thus offer a solution to the bottlenecks associated with multiwell plates, particularly in the areas of biological cultivation and high-throughput compound screening.
Collapse
Affiliation(s)
- Robert Strutt
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Bijing Xiong
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Vanessa Fabienne Abegg
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| |
Collapse
|
4
|
Sheng H, Chen L, Zhao Y, Long X, Chen Q, Wu C, Li B, Fei Y, Mi L, Ma J. Closed, one-stop intelligent and accurate particle characterization based on micro-Raman spectroscopy and digital microfluidics. Talanta 2024; 266:124895. [PMID: 37454511 DOI: 10.1016/j.talanta.2023.124895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Monoclonal antibodies are prone to form protein particles through aggregation, fragmentation, and oxidation under varying stress conditions during the manufacturing, shipping, and storage of parenteral drug products. According to pharmacopeia requirements, sub-visible particle levels need to be controlled throughout the shelf life of the product. Therefore, in addition to determining particle counts, it is crucial to accurately characterize particles in drug product to understand the stress condition of exposure and to implement appropriate mitigation actions for a specific formulation. In this study, we developed a new method for intelligent characterization of protein particles using micro-Raman spectroscopy on a digital microfluidic chip (DMF). Several microliters of protein particle solutions induced by stress degradation were loaded onto a DMF chip to generate multiple droplets for Raman spectroscopy testing. By training multiple machine learning classification models on the obtained Raman spectra of protein particles, eight types of protein particles were successfully characterized and predicted with high classification accuracy (93%-100%). The advantages of the novel particle characterization method proposed in this study include a closed system to prevent particle contamination, one-stop testing of morphological and chemical structure information, low sample volume consumption, reusable particle droplets, and simplified data analysis with high classification accuracy. It provides great potential to determine the probable root cause of the particle source or stress conditions by a single testing, so that an accurate particle control strategy can be developed and ultimately extend the product shelf-life.
Collapse
Affiliation(s)
- Han Sheng
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Liwen Chen
- Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China; Ruidge Biotech Co. Ltd., No. 888, Huanhu West 2nd Road, Lin-Gang Special Area, China (Shanghai) Pilot Free Trade Zone, Shanghai, 200131, China
| | - Yinping Zhao
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xiangan Long
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Qiushu Chen
- Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Chuanyong Wu
- Shanghai Hengxin BioTechnology, Ltd., 1688 North Guo Quan Rd, Bldg A8, Rm 801, Shanghai, 200438, China
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No.3888 Dong Nanhu Road, Changchun, Jilin, 130033, China
| | - Yiyan Fei
- Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Lan Mi
- Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Jiong Ma
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China; Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China; Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
5
|
He Y, Qiao Y, Ding L, Cheng T, Tu J. Recent advances in droplet sequential monitoring methods for droplet sorting. BIOMICROFLUIDICS 2023; 17:061501. [PMID: 37969470 PMCID: PMC10645479 DOI: 10.1063/5.0173340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Droplet microfluidics is an attractive technology to run parallel experiments with high throughput and scalability while maintaining the heterogeneous features of individual samples or reactions. Droplet sorting is utilized to collect the desired droplets based on droplet characterization and in-droplet content evaluation. A proper monitoring method is critical in this process, which governs the accuracy and maximum frequency of droplet handling. Until now, numerous monitoring methods have been integrated in the microfluidic devices for identifying droplets, such as optical spectroscopy, mass spectroscopy, electrochemical monitoring, and nuclear magnetic resonance spectroscopy. In this review, we summarize the features of various monitoring methods integrated into droplet sorting workflow and discuss their suitable condition and potential obstacles in use. We aim to provide a systematic introduction and an application guide for choosing and building a droplet monitoring platform.
Collapse
Affiliation(s)
- Yukun He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Qiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Ding
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianguang Cheng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Hu S, Ye J, Shi S, Yang C, Jin K, Hu C, Wang D, Ma H. Large-Area Electronics-Enabled High-Resolution Digital Microfluidics for Parallel Single-Cell Manipulation. Anal Chem 2023; 95:6905-6914. [PMID: 37071892 DOI: 10.1021/acs.analchem.3c00150] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Large-area electronics as switching elements are an ideal option for electrode-array-based digital microfluidics. With support of highly scalable thin-film semiconductor technology, high-resolution digital droplets (diameter around 100 μm) containing single-cell samples can be manipulated freely on a two-dimensional plane with programmable addressing logic. In addition, single-cell generation and manipulation as foundations for single-cell research demand ease of operation, multifunctionality, and accurate tools. In this work, we reported an active-matrix digital microfluidic platform for single-cell generation and manipulation. The active device contained 26,368 electrodes that could be independently addressed to perform parallel and simultaneous droplet generation and achieved single-cell manipulation. We demonstrate a high-resolution digital droplet generation with a droplet volume limit of 500 pL and show the continuous and stable movement of droplet-contained cells for over 1 h. Furthermore, the success rate of single droplet formation was higher than 98%, generating tens of single cells within 10 s. In addition, a pristine single-cell generation rate of 29% was achieved without further selection procedures, and the droplets containing single cells could then be tested for on-chip cell culturing. After 20 h of culturing, about 12.5% of the single cells showed cell proliferation.
Collapse
Affiliation(s)
- Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Jingmin Ye
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| | - Subao Shi
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| | - Chao Yang
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| | - Kai Jin
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Dongping Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| |
Collapse
|
7
|
Jenne A, von der Ecken S, Moxley-Paquette V, Soong R, Swyer I, Bastawrous M, Busse F, Bermel W, Schmidig D, Kuehn T, Kuemmerle R, Al Adwan-Stojilkovic D, Graf S, Frei T, Monette M, Wheeler AR, Simpson AJ. Integrated Digital Microfluidics NMR Spectroscopy: A Key Step toward Automated In Vivo Metabolomics. Anal Chem 2023; 95:5858-5866. [PMID: 36996326 DOI: 10.1021/acs.analchem.2c04201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Toxicity testing is currently undergoing a paradigm shift from examining apical end points such as death, to monitoring sub-lethal toxicity in vivo. In vivo nuclear magnetic resonance (NMR) spectroscopy is a key platform in this endeavor. A proof-of-principle study is presented which directly interfaces NMR with digital microfluidics (DMF). DMF is a "lab on a chip" method allowing for the movement, mixing, splitting, and dispensing of μL-sized droplets. The goal is for DMF to supply oxygenated water to keep the organisms alive while NMR detects metabolomic changes. Here, both vertical and horizontal NMR coil configurations are compared. While a horizontal configuration is ideal for DMF, NMR performance was found to be sub-par and instead, a vertical-optimized single-sided stripline showed most promise. In this configuration, three organisms were monitored in vivo using 1H-13C 2D NMR. Without support from DMF droplet exchange, the organisms quickly showed signs of anoxic stress; however, with droplet exchange, this was completely suppressed. The results demonstrate that DMF can be used to maintain living organisms and holds potential for automated exposures in future. However, due to numerous limitations of vertically orientated DMF, along with space limitations in standard bore NMR spectrometers, we recommend future development be performed using a horizontal (MRI style) magnet which would eliminate practically all the drawbacks identified here.
Collapse
Affiliation(s)
- Amy Jenne
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Sebastian von der Ecken
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Nicoya, B-29 King Street East, Kitchener, Ontario N2G 2K4, Canada
| | - Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Ian Swyer
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Monica Bastawrous
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Falko Busse
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Rainer Kuemmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | | | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Thomas Frei
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Martine Monette
- Bruker Canada Ltd., 2800 High Point Drive, Milton, Ontario L9T 6P4, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Andre J Simpson
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
8
|
Li Z, Bao Q, Liu C, Li Y, Yang Y, Liu M. Recent advances in microfluidics-based bioNMR analysis. LAB ON A CHIP 2023; 23:1213-1225. [PMID: 36651305 DOI: 10.1039/d2lc00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic resonance (NMR) has been used in a variety of fields due to its powerful analytical capability. To facilitate biochemical NMR (bioNMR) analysis for samples with a limited mass, a number of integrated systems have been developed by coupling microfluidics and NMR. However, there are few review papers that summarize the recent advances in the development of microfluidics-based NMR (μNMR) systems. Herein, we review the advancements in μNMR systems built on high-field commercial instruments and low-field compact platforms. Specifically, μNMR platforms with three types of typical microcoils settled in the high-field NMR instruments will be discussed, followed by summarizing compact NMR systems and their applications in biomedical point-of-care testing. Finally, a conclusion and future prospects in the field of μNMR were given.
Collapse
Affiliation(s)
- Zheyu Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
9
|
Plata M, Sharma M, Utz M, Werner JM. Fully Automated Characterization of Protein-Peptide Binding by Microfluidic 2D NMR. J Am Chem Soc 2023; 145:3204-3210. [PMID: 36716203 PMCID: PMC9912330 DOI: 10.1021/jacs.2c13052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We demonstrate an automated microfluidic nuclear magnetic resonance (NMR) system that quantitatively characterizes protein-ligand interactions without user intervention and with minimal sample needs through protein-detected heteronuclear 2D NMR spectroscopy. Quantitation of protein-ligand interactions is of fundamental importance to the understanding of signaling and other life processes. As is well-known, NMR provides rich information both on the thermodynamics of binding and on the binding site. However, the required titrations are laborious and tend to require large amounts of sample, which are not always available. The present work shows how the analytical power of NMR detection can be brought in line with the trend of miniaturization and automation in life science workflows.
Collapse
Affiliation(s)
- Marek Plata
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Manvendra Sharma
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Marcel Utz
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom,Email
for M.U.:
| | - Jörn M. Werner
- School
for Biological Sciences, University of Southampton, B85 Life Science Building, University
Rd, SouthamptonSO17 1BJ, United Kingdom,Email for J.M.W.:
| |
Collapse
|
10
|
Das A, Fehse S, Polack M, Panneerselvam R, Belder D. Surface-Enhanced Raman Spectroscopic Probing in Digital Microfluidics through a Microspray Hole. Anal Chem 2023; 95:1262-1272. [PMID: 36577121 DOI: 10.1021/acs.analchem.2c04053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a novel approach for surface-enhanced Raman spectroscopy (SERS) detection in digital microfluidics (DMF). This is made possible by a microspray hole (μSH) that uses an electrostatic spray (ESTAS) for sample transfer from inside the chip to an external SERS substrate. To realize this, a new ESTAS-compatible stationary SERS substrate was developed and characterized for sensitive and reproducible SERS measurements. In a proof-of-concept study, we successfully applied the approach to detect various analyte molecules using the DMF chip and achieved micro-molar detection limits. Moreover, this technique was exemplarily employed to study an organic reaction occurring in the DMF device, providing vibrational spectroscopic data.
Collapse
Affiliation(s)
- Anish Das
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, Leipzig 04103, Germany
| | - Sebastian Fehse
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, Leipzig 04103, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, Leipzig 04103, Germany
| | - Rajapandiyan Panneerselvam
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, Leipzig 04103, Germany.,Department of Chemistry, SRM University AP, Amaravati, Andhra Pradesh 522502, India
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, Leipzig 04103, Germany
| |
Collapse
|
11
|
Yanagisawa M, Watanabe C, Yoshinaga N, Fujiwara K. Cell-Size Space Regulates the Behavior of Confined Polymers: From Nano- and Micromaterials Science to Biology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11811-11827. [PMID: 36125172 DOI: 10.1021/acs.langmuir.2c01397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer micromaterials in a liquid or gel phase covered with a surfactant membrane are widely used materials in pharmaceuticals, cosmetics, and foods. In particular, cell-sized micromaterials of biopolymer solutions covered with a lipid membrane have been studied as artificial cells to understand cells from a physicochemical perspective. The characteristics and phase transitions of polymers confined to a microscopic space often differ from those in bulk systems. The effect that causes this difference is referred to as the cell-size space effect (CSE), but the specific physicochemical factors remain unclear. This study introduces the analysis of CSE on molecular diffusion, nanostructure transition, and phase separation and presents their main factors, i.e., short- and long-range interactions with the membrane surface and small volume (finite element nature). This serves as a guide for determining the dominant factors of CSE. Furthermore, we also introduce other factors of CSE such as spatial closure and the relationships among space size, the characteristic length of periodicity, the structure size, and many others produced by biomolecular assemblies through the analysis of protein reaction-diffusion systems and biochemical reactions.
Collapse
Affiliation(s)
- Miho Yanagisawa
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| | - Chiho Watanabe
- School of Integrated Arts and Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Natsuhiko Yoshinaga
- Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 9808577, Japan
- MathAM-OIL, National Institute of Advanced Industrial Science and Technology, Sendai 980-8577, Japan
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
12
|
Das A, Weise C, Polack M, Urban RD, Krafft B, Hasan S, Westphal H, Warias R, Schmidt S, Gulder T, Belder D. On-the-Fly Mass Spectrometry in Digital Microfluidics Enabled by a Microspray Hole: Toward Multidimensional Reaction Monitoring in Automated Synthesis Platforms. J Am Chem Soc 2022; 144:10353-10360. [PMID: 35640072 DOI: 10.1021/jacs.2c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report an approach for the online coupling of digital microfluidics (DMF) with mass spectrometry (MS) using a chip-integrated microspray hole (μSH). The technique uses an adapted electrostatic spray ionization (ESTASI) method to spray a portion of a sample droplet through a microhole in the cover plate, allowing its chemical content to be analyzed by MS. This eliminates the need for chip disassembly or the introduction of capillary emitters for MS analysis, as required by state-of-the-art. For the first time, this allows the essential advantage of a DMF device─free droplet movement─to be retained during MS analysis. The broad applicability of the developed seamless coupling of DMF and mass spectrometry was successfully applied to the study of various on-chip organic syntheses as well as protein and peptide analysis. In the case of a Hantzsch synthesis, we were able to show that the method is very well suited for monitoring even rapid chemical reactions that are completed in a few seconds. In addition, the strength of the low resource consumption in such on-chip microsyntheses was demonstrated by the example of enzymatic brominations, for which only a minute amount of a special haloperoxidase is required in the droplet. The unique selling point of this approach is that the analyzed droplet remains completely movable after the MS measurement and is available for subsequent on-DMF chip processes. This is illustrated here for the example of MS analysis of the starting materials in the corresponding droplets before they are combined to investigate the reaction progress by DMF-MS further. This technology enables the ongoing and almost unlimited tracking of multistep chemical processes in a DMF chip and offers exciting prospects for transforming digital microfluidics into automated synthesis platforms.
Collapse
Affiliation(s)
- Anish Das
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Chris Weise
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Raphael D Urban
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Benjamin Krafft
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sadat Hasan
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Hannes Westphal
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Simon Schmidt
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Tanja Gulder
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Narahari T, Dahmer J, Sklavounos A, Kim T, Satkauskas M, Clotea I, Ho M, Lamanna J, Dixon C, Rackus DG, Silva SJRD, Pena L, Pardee K, Wheeler AR. Portable sample processing for molecular assays: application to Zika virus diagnostics. LAB ON A CHIP 2022; 22:1748-1763. [PMID: 35357372 DOI: 10.1039/d1lc01068a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper introduces a digital microfluidic (DMF) platform for portable, automated, and integrated Zika viral RNA extraction and amplification. The platform features reconfigurable DMF cartridges offering a closed, humidified environment for sample processing at elevated temperatures, as well as programmable control instrumentation with a novel thermal cycling unit regulated using a proportional integral derivative (PID) feedback loop. The system operates on 12 V DC power, which can be supplied by rechargeable battery packs for remote testing. The DMF system was optimized for an RNA processing pipeline consisting of the following steps: 1) magnetic-bead based RNA extraction from lysed plasma samples, 2) RNA clean-up, and 3) integrated, isothermal amplification of Zika RNA. The DMF pipeline was coupled to a paper-based, colorimetric cell-free protein expression assay for amplified Zika RNA mediated by toehold switch-based sensors. Blinded laboratory evaluation of Zika RNA spiked in human plasma yielded a sensitivity and specificity of 100% and 75% respectively. The platform was then transported to Recife, Brazil for evaluation with infectious Zika viruses, which were detected at the 100 PFU mL-1 level from a 5 μL sample (equivalent to an RT-qPCR cycle threshold value of 32.0), demonstrating its potential as a sample processing platform for miniaturized diagnostic testing.
Collapse
Affiliation(s)
- Tanya Narahari
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Joshua Dahmer
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Alexandros Sklavounos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Taehyeong Kim
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Monika Satkauskas
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Ioana Clotea
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Man Ho
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Julian Lamanna
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Christopher Dixon
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Darius G Rackus
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Severino Jefferson Ribeiro da Silva
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Institute (FIOCRUZ Pernambuco), Av. Professor Moraes Rego, s/n - Cidade Universitária, Recife, PE, CEP 50.740-465, Brazil
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Institute (FIOCRUZ Pernambuco), Av. Professor Moraes Rego, s/n - Cidade Universitária, Recife, PE, CEP 50.740-465, Brazil
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8 Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
14
|
Ben-Tal Y, Boaler PJ, Dale HJA, Dooley RE, Fohn NA, Gao Y, García-Domínguez A, Grant KM, Hall AMR, Hayes HLD, Kucharski MM, Wei R, Lloyd-Jones GC. Mechanistic analysis by NMR spectroscopy: A users guide. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:28-106. [PMID: 35292133 DOI: 10.1016/j.pnmrs.2022.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
A 'principles and practice' tutorial-style review of the application of solution-phase NMR in the analysis of the mechanisms of homogeneous organic and organometallic reactions and processes. This review of 345 references summarises why solution-phase NMR spectroscopy is uniquely effective in such studies, allowing non-destructive, quantitative analysis of a wide range of nuclei common to organic and organometallic reactions, providing exquisite structural detail, and using instrumentation that is routinely available in most chemistry research facilities. The review is in two parts. The first comprises an introduction to general techniques and equipment, and guidelines for their selection and application. Topics include practical aspects of the reaction itself, reaction monitoring techniques, NMR data acquisition and processing, analysis of temporal concentration data, NMR titrations, DOSY, and the use of isotopes. The second part comprises a series of 15 Case Studies, each selected to illustrate specific techniques and approaches discussed in the first part, including in situ NMR (1/2H, 10/11B, 13C, 15N, 19F, 29Si, 31P), kinetic and equilibrium isotope effects, isotope entrainment, isotope shifts, isotopes at natural abundance, scalar coupling, kinetic analysis (VTNA, RPKA, simulation, steady-state), stopped-flow NMR, flow NMR, rapid injection NMR, pure shift NMR, dynamic nuclear polarisation, 1H/19F DOSY NMR, and in situ illumination NMR.
Collapse
Affiliation(s)
- Yael Ben-Tal
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Patrick J Boaler
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Harvey J A Dale
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ruth E Dooley
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom; Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Nicole A Fohn
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Yuan Gao
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrés García-Domínguez
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Katie M Grant
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew M R Hall
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Hannah L D Hayes
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Maciej M Kucharski
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ran Wei
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom.
| |
Collapse
|
15
|
Kabay G, Manz A, Dincer C. Microfluidic Roadmap for Translational Nanotheranostics. SMALL METHODS 2022; 6:e2101217. [PMID: 34957704 DOI: 10.1002/smtd.202101217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Nanotheranostic materials (NTMs) shed light on the mechanisms responsible for complex diseases such as cancer because they enable making a diagnosis, monitoring the disease progression, and applying a targeted therapy simultaneously. However, several issues such as the reproducibility and mass production of NTMs hamper their application for clinical practice. To address these issues and facilitate the clinical application of NTMs, microfluidic systems have been increasingly used. This perspective provides a glimpse into the current state-of-art of NTM research, emphasizing the methods currently employed at each development stage of NTMs and the related open problems. This work reviews microfluidic technologies used to develop NTMs, ranging from the fabrication and testing of a single NTM up to their manufacturing on a large scale. Ultimately, a step-by-step vision on the future development of NTMs for clinical practice enabled by microfluidics techniques is provided.
Collapse
Affiliation(s)
- Gozde Kabay
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| | - Andreas Manz
- Korea Institute of Science and Technology (KIST) in Europe, 66123, Saarbrücken, Germany
| | - Can Dincer
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| |
Collapse
|
16
|
Bezrukov A, Galyametdinov Y. Characterizing properties of polymers and colloids by their reaction-diffusion behavior in microfluidic channels. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Plata M, Hale W, Sharma M, Werner JM, Utz M. Microfluidic platform for serial mixing experiments with in operando nuclear magnetic resonance spectroscopy. LAB ON A CHIP 2021; 21:1598-1603. [PMID: 33662071 DOI: 10.1039/d0lc01100b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a microfluidic platform that allows in operando nuclear magnetic resonance (NMR) observation of serial mixing experiments. Gradually adding one reagent to another is a fundamental experimental modality, widely used to quantify equilibrium constants, for titrations, and in chemical kinetics studies. NMR provides a non-invasive means to quantify concentrations and to follow structural changes at the molecular level as a function of exchanged volume. Using active pneumatic valving on the microfluidic device directly inside an NMR spectrometer equipped with a transmission-line NMR microprobe, the system allows injection of aliquots and in situ mixing in a sample volume of less than 10 μL.
Collapse
Affiliation(s)
- Marek Plata
- School of Chemistry, University of Southampton, SO17 1BJ, UK. and Institute for Life Sciences, University of Southampton, SO17 1BJ, UK and School of Biological Sciences, University of Southampton, SO17 1BJ, UK
| | - William Hale
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| | | | - Jörn M Werner
- Institute for Life Sciences, University of Southampton, SO17 1BJ, UK and School of Biological Sciences, University of Southampton, SO17 1BJ, UK
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK. and Institute for Life Sciences, University of Southampton, SO17 1BJ, UK
| |
Collapse
|
18
|
Nassar O, Jouda M, Rapp M, Mager D, Korvink JG, MacKinnon N. Integrated impedance sensing of liquid sample plug flow enables automated high throughput NMR spectroscopy. MICROSYSTEMS & NANOENGINEERING 2021; 7:30. [PMID: 34567744 PMCID: PMC8433180 DOI: 10.1038/s41378-021-00253-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 06/13/2023]
Abstract
A novel approach for automated high throughput NMR spectroscopy with improved mass-sensitivity is accomplished by integrating microfluidic technologies and micro-NMR resonators. A flow system is utilized to transport a sample of interest from outside the NMR magnet through the NMR detector, circumventing the relatively vast dead volume in the supplying tube by loading a series of individual sample plugs separated by an immiscible fluid. This dual-phase flow demands a real-time robust sensing system to track the sample position and velocities and synchronize the NMR acquisition. In this contribution, we describe an NMR probe head that possesses a microfluidic system featuring: (i) a micro saddle coil for NMR spectroscopy and (ii) a pair of interdigitated capacitive sensors flanking the NMR detector for continuous position and velocity monitoring of the plugs with respect to the NMR detector. The system was successfully tested for automating flow-based measurement in a 500 MHz NMR system, enabling high resolution spectroscopy and NMR sensitivity of 2.18 nmol s1/2 with the flow sensors in operation. The flow sensors featured sensitivity to an absolute difference of 0.2 in relative permittivity, enabling distinction between most common solvents. It was demonstrated that a fully automated NMR measurement of nine individual 120 μL samples could be done within 3.6 min or effectively 15.3 s per sample.
Collapse
Affiliation(s)
- Omar Nassar
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mazin Jouda
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Rapp
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan G. Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Lu JM, Wang HF, Pan JZ, Fang Q. Research Progress of Microfluidic Technique in Synthesis of Micro/Nano Materials. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Xie J, You X, Huang Y, Ni Z, Wang X, Li X, Yang C, Zhang D, Chen H, Sun H, Chen Z. 3D-printed integrative probeheads for magnetic resonance. Nat Commun 2020; 11:5793. [PMID: 33188186 PMCID: PMC7666178 DOI: 10.1038/s41467-020-19711-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Magnetic resonance (MR) technology has been widely employed in scientific research, clinical diagnosis and geological survey. However, the fabrication of MR radio frequency probeheads still face difficulties in integration, customization and miniaturization. Here, we utilized 3D printing and liquid metal filling techniques to fabricate integrative radio frequency probeheads for MR experiments. The 3D-printed probehead with micrometer precision generally consists of liquid metal coils, customized sample chambers and radio frequency circuit interfaces. We screened different 3D printing materials and optimized the liquid metals by incorporating metal microparticles. The 3D-printed probeheads are capable of performing both routine and nonconventional MR experiments, including in situ electrochemical analysis, in situ reaction monitoring with continues-flow paramagnetic particles and ions separation, and small-sample MR imaging. Due to the flexibility and accuracy of 3D printing techniques, we can accurately obtain complicated coil geometries at the micrometer scale, shortening the fabrication timescale and extending the application scenarios. Here, the authors combine 3D printing and liquid metal filling techniques to fabricate customised probeheads for magnetic resonance experiments. They demonstrate in situ electrochemical nuclear magnetic resonance analysis, reaction monitoring with continues-flow separation and small-sample imaging.
Collapse
Affiliation(s)
- Junyao Xie
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 361005, Xiamen, China.,State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, China
| | - Xueqiu You
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 361005, Xiamen, China. .,State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, China.
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 361005, Xiamen, China.,State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, China
| | - Zurong Ni
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 361005, Xiamen, China.,State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, China
| | - Xinchang Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 361005, Xiamen, China.,State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, China
| | - Xingrui Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, China.,Department of Chemistry, Xiamen University, 361005, Xiamen, China
| | - Chaoyong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, China.,Department of Chemistry, Xiamen University, 361005, Xiamen, China
| | - Dechao Zhang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 361005, Xiamen, China.,State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, China
| | - Hong Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, China
| | - Huijun Sun
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 361005, Xiamen, China. .,State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 361005, Xiamen, China. .,State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, China. .,Fujian Science & Technology Innovation Laboratory for Energy Materials of China, 361005, Xiamen, China.
| |
Collapse
|
21
|
Kremers T, Thelen S, Bosbach N, Schnakenberg U. PortaDrop: A portable digital microfluidic platform providing versatile opportunities for Lab-On-A-Chip applications. PLoS One 2020; 15:e0238581. [PMID: 32881948 PMCID: PMC7470335 DOI: 10.1371/journal.pone.0238581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 01/24/2023] Open
Abstract
Electrowetting-on-dielectric is a decent technique to manipulate discrete volumes of liquid in form of droplets. In the last decade, electrowetting-on-dielectric systems, also called digital microfluidic systems, became more frequently used for a variety of applications because of their high flexibility and reconfigurability. Thus, one design can be adapted to different assays by only reprogramming. However, this flexibility can only be useful if the entire system is portable and easy to use. This paper presents the development of a portable, stand-alone digital microfluidic system based on a Linux-based operating system running on a Raspberry Pi, which is unique. We present "PortaDrop" exhibiting the following key features: (1) an "all-in-one box" approach, (2) a user-friendly, self-explaining graphical user interface and easy handling, (3) the ability of integrated electrochemical measurements, (4) the ease to implement additional lab equipment via Universal Serial Bus and the General Purpose Interface Bus as well as (5) a standardized experiment documentation. We propose that PortaDrop can be used to carry out experiments in different applications, where small sample volumes in the nanoliter to picoliter range need to be handled an analyzed automatically. As a first application, we present a protocol, where a droplet is consequently exchanged by droplets of another medium using passive dispensing. The exchange is monitored by electrical impedance spectroscopy. It is the first time, the media exchange caused by passive dispensing is characterized by electrochemical impedance spectroscopy. Summarizing, PortaDrop allows easy combination of fluid handling by means of electrowetting and additional sensing.
Collapse
Affiliation(s)
- Tom Kremers
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - Sarah Thelen
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - Nils Bosbach
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - Uwe Schnakenberg
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
22
|
Davoodi H, Nordin N, Bordonali L, Korvink JG, MacKinnon N, Badilita V. An NMR-compatible microfluidic platform enabling in situ electrochemistry. LAB ON A CHIP 2020; 20:3202-3212. [PMID: 32734975 DOI: 10.1039/d0lc00364f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Combining microfluidic devices with nuclear magnetic resonance (NMR) has the potential of unlocking their vast sample handling and processing operation space for use with the powerful analytics provided by NMR. One particularly challenging class of integrated functional elements from the perspective of NMR are conductive structures. Metallic electrodes could be used for electrochemical sample interaction for example, yet they can cause severe NMR spectral and SNR degradation. These issues are more entangled at the micro-scale since the distorted volume occupies a higher ratio of the sample volume. In this study, a combination of simulation and experimental validation was used to identify an electrode geometry that, in terms of NMR spectral parameters, performs as well as for the case when no electrodes are present. By placing the metal tracks in the side-walls of a microfluidic channel, we found that NMR RF excitation performance was actually enhanced, without compromising B0 homogeneity. Monitoring in situ deposition of chitosan in the microfluidic platform is presented as a proof-of-concept demonstration of NMR characterisation of an electrochemical process.
Collapse
Affiliation(s)
- Hossein Davoodi
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Nurdiana Nordin
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. and Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lorenzo Bordonali
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Jan G Korvink
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Neil MacKinnon
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Vlad Badilita
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
23
|
Dixon C, Lamanna J, Wheeler AR. Direct loading of blood for plasma separation and diagnostic assays on a digital microfluidic device. LAB ON A CHIP 2020; 20:1845-1855. [PMID: 32338260 DOI: 10.1039/d0lc00302f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Finger-stick blood sampling is convenient for point of care diagnostics, but whole blood samples are problematic for many assays because of severe matrix effects associated with blood cells and cell debris. We introduce a new digital microfluidic (DMF) diagnostic platform with integrated porous membranes for blood-plasma separation from finger-stick blood volumes, capable of performing complex, multi-step, diagnostic assays. Importantly, the samples can be directly loaded onto the device by a finger "dab" for user-friendly operation. We characterize the platform by comparison to plasma generated via the "gold standard" centrifugation technique, and demonstrate a 21-step rubella virus (RV) IgG immunoassay yielding a detection limit of 1.9 IU mL-1, below the diagnostic cut-off. We propose that this work represents a critical next step in DMF based portable diagnostic assays-allowing the analysis of whole blood samples without pre-processing.
Collapse
Affiliation(s)
- Christopher Dixon
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | | | | |
Collapse
|
24
|
“Development and application of analytical detection techniques for droplet-based microfluidics”-A review. Anal Chim Acta 2020; 1113:66-84. [DOI: 10.1016/j.aca.2020.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 01/03/2023]
|
25
|
Zhang C, Su Y, Hu S, Jin K, Jie Y, Li W, Nathan A, Ma H. An Impedance Sensing Platform for Monitoring Heterogeneous Connectivity and Diagnostics in Lab-on-a-Chip Systems. ACS OMEGA 2020; 5:5098-5104. [PMID: 32201796 PMCID: PMC7081429 DOI: 10.1021/acsomega.9b04048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 05/12/2023]
Abstract
Reliable hardware connectivity is vital in heterogeneous integrated systems. For example, in digital microfluidics lab-on-a-chip systems, there are hundreds of physical connections required between a microelectromechanical fabricated device and the driving system that can be remotely located on a printed circuit board. Unfortunately, the connection reliability cannot be checked or monitored by vision-based detection methods that are commonly used in the semiconductor industry. Therefore, a sensing platform that can be seamlessly integrated into existing digital microfluidics systems and provide real-time monitoring of multiconnectivity is highly desired. Here, we report an impedance sensing platform that can provide fast detection of a single physical connection in timescales of milliseconds. Once connectivity is established, the same setup can be used to determine the droplet location. The sensing system can be scaled up to support multiple channels or applied to other heterogeneously integrated systems that require real-time monitoring and diagnostics of multiconnectivity systems.
Collapse
Affiliation(s)
- Chunjie Zhang
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese
Academy of Sciences, Suzhou 215163, P.R. China
- School
of Electronics and Information Engineering, Soochow University, 215006 Suzhou, P.R. China
| | - Yang Su
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese
Academy of Sciences, Suzhou 215163, P.R. China
- ACXEL
Tech Ltd., Cambridge CB4 0GA, U.K.
| | - Siyi Hu
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese
Academy of Sciences, Suzhou 215163, P.R. China
| | - Kai Jin
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese
Academy of Sciences, Suzhou 215163, P.R. China
| | - Yuhan Jie
- ACXEL
Tech Ltd., Cambridge CB4 0GA, U.K.
| | - Wenshi Li
- School
of Electronics and Information Engineering, Soochow University, 215006 Suzhou, P.R. China
| | | | - Hanbin Ma
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese
Academy of Sciences, Suzhou 215163, P.R. China
- ACXEL
Tech Ltd., Cambridge CB4 0GA, U.K.
- E-mail:
| |
Collapse
|
26
|
Ma H, Hu S, Jie Y, Jin K, Su Y. A floating top-electrode electrowetting-on-dielectric system. RSC Adv 2020; 10:4899-4906. [PMID: 35498287 PMCID: PMC9049253 DOI: 10.1039/c9ra09491a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/17/2020] [Indexed: 11/22/2022] Open
Abstract
Herein, we describe a novel device configuration for a double-plate electrowetting-on-dielectric system with a floating top-electrode. As a conventional double-plate EWOD device requires a grounded electrode on the top-plate, it will cause additional fabrication complicity and cost during the encapsulation process. In this work, we found that by carefully designing the electrode arrangement and configuring the driving electronic circuit, the droplet driving force can be maintained with a floating electrode on the top-plate. This can provide the possibilities to integrate additional electrical or electrochemical sensing functions on the top-plate. We use both finite element analysis and the fabricated system to validate the theory, and the results indicate that floating top-electrode EWOD systems are highly reliable and reproducible once the design considerations are fully met. A novel device configuration for an electrowetting-on-dielectric system with a floating top-electrode, which provides possibilities to enable a true lab-on-a-chip.![]()
Collapse
Affiliation(s)
- Hanbin Ma
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science No. 88 Keling Road Suzhou Jiangsu Province 215163 P. R. China .,ACXEL Tech Ltd Unit 184 Cambridge Science Park Cambridge CB4 0GA UK
| | - Siyi Hu
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science No. 88 Keling Road Suzhou Jiangsu Province 215163 P. R. China
| | - Yuhan Jie
- ACXEL Tech Ltd Unit 184 Cambridge Science Park Cambridge CB4 0GA UK
| | - Kai Jin
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science No. 88 Keling Road Suzhou Jiangsu Province 215163 P. R. China
| | - Yang Su
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science No. 88 Keling Road Suzhou Jiangsu Province 215163 P. R. China .,ACXEL Tech Ltd Unit 184 Cambridge Science Park Cambridge CB4 0GA UK
| |
Collapse
|
27
|
Guo J, Jiang D, Feng S, Ren C, Guo J. µ‐NMR at the point of care testing. Electrophoresis 2020; 41:319-327. [DOI: 10.1002/elps.201900329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Jiuchuan Guo
- School of Information and Communication EngineeringUniversity of Electronic Science and Technology of China Chengdu P. R. China
| | - Di Jiang
- School of Information and Communication EngineeringUniversity of Electronic Science and Technology of China Chengdu P. R. China
| | - Shilun Feng
- School of EEENanyang Technological University Singapore
| | - Chunhui Ren
- School of Information and Communication EngineeringUniversity of Electronic Science and Technology of China Chengdu P. R. China
| | - Jinhong Guo
- School of Information and Communication EngineeringUniversity of Electronic Science and Technology of China Chengdu P. R. China
| |
Collapse
|
28
|
Wu B, Ecken S, Swyer I, Li C, Jenne A, Vincent F, Schmidig D, Kuehn T, Beck A, Busse F, Stronks H, Soong R, Wheeler AR, Simpson A. Rapid Chemical Reaction Monitoring by Digital Microfluidics‐NMR: Proof of Principle Towards an Automated Synthetic Discovery Platform. Angew Chem Int Ed Engl 2019; 58:15372-15376. [DOI: 10.1002/anie.201910052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Bing Wu
- Department of ChemistryUniversity of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Sebastian Ecken
- Department of ChemistryUniversity of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Ian Swyer
- Department of ChemistryUniversity of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Chunliang Li
- Laboratory of Physical ChemistryEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Amy Jenne
- Department of ChemistryUniversity of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Franck Vincent
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Daniel Schmidig
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Till Kuehn
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Armin Beck
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Falko Busse
- Bruker BioSpin GmbH Silberstreifen 4 76287 Rheinstetten Germany
| | - Henry Stronks
- Bruker Canada Ltd. 2800 High Point Drive Milton Ontario L9T 6P4 Canada
| | - Ronald Soong
- Department of ChemistryUniversity of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Aaron R. Wheeler
- Department of ChemistryUniversity of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - André Simpson
- Department of ChemistryUniversity of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| |
Collapse
|
29
|
Wu B, Ecken S, Swyer I, Li C, Jenne A, Vincent F, Schmidig D, Kuehn T, Beck A, Busse F, Stronks H, Soong R, Wheeler AR, Simpson A. Rapid Chemical Reaction Monitoring by Digital Microfluidics‐NMR: Proof of Principle Towards an Automated Synthetic Discovery Platform. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bing Wu
- Department of Chemistry University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Sebastian Ecken
- Department of Chemistry University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Ian Swyer
- Department of Chemistry University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Chunliang Li
- Laboratory of Physical Chemistry Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Amy Jenne
- Department of Chemistry University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Franck Vincent
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Daniel Schmidig
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Till Kuehn
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Armin Beck
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Falko Busse
- Bruker BioSpin GmbH Silberstreifen 4 76287 Rheinstetten Germany
| | - Henry Stronks
- Bruker Canada Ltd. 2800 High Point Drive Milton Ontario L9T 6P4 Canada
| | - Ronald Soong
- Department of Chemistry University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Aaron R. Wheeler
- Department of Chemistry University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - André Simpson
- Department of Chemistry University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| |
Collapse
|
30
|
Geng H, Cho SK. Antifouling digital microfluidics using lubricant infused porous film. LAB ON A CHIP 2019; 19:2275-2283. [PMID: 31184676 DOI: 10.1039/c9lc00289h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electrowetting-driven digital (droplet-based) microfluidics has a tremendous impact on lab-on-a-chip applications. However, the biofouling problem impedes the real applications of such digital microfluidics. Here we report antifouling digital microfluidics by introducing lubricant infused porous film to electrowetting (more exactly, electrowetting on dielectric or EWOD). Such film minimizes direct contact between droplets and the solid surface but provides liquid-liquid contact between droplets and the lubricant liquid, which thus prevents unspecific adsorption of biomolecules to the solid surface. We demonstrate the compatibility of the lubricant infused film with EWOD to transport bio droplets. This configuration shows robust and high performance even for long cyclic operations without fouling in a wide range of concentrations of protein solutions. In addition, a variety of conductive droplets, including deionized (DI) water, saline, protein solution, DNA solution, sheep blood, milk, ionic liquid and honey, are examined, similarly showing high performance in cyclic transportations. In addition, using the same electrode patterns used in EWOD, transportations of dielectric (non-conductive) droplets including light crude oil, propylene carbonate and alcohol are also achieved. Such capability of droplet handling without fouling will certainly benefit the practical applications of digital microfluidics in droplet handling, sampling, reaction, diagnosis in clinic medicine, biotechnology and chemistry fields.
Collapse
Affiliation(s)
- Hongyao Geng
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
31
|
Sharma M, Utz M. Modular transmission line probes for microfluidic nuclear magnetic resonance spectroscopy and imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:75-81. [PMID: 31026668 DOI: 10.1016/j.jmr.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Microfluidic NMR spectroscopy can probe chemical and bio-chemical processes non-invasively in a tightly controlled environment. We present a dual-channel modular probe assembly for high efficiency microfluidic NMR spectroscopy and imaging. It is compatible with a wide range of microfluidic devices, without constraining the fluidic design. It collects NMR signals from a designated sample volume on the device with high sensitivity and resolution. Modular design allows adapting the detector geometry to different experimental conditions with minimal cost, by using the same probe base. The complete probe can be built from easily available parts. The probe body mainly consists of prefabricated aluminium profiles, while the probe circuit and detector are made from printed circuit boards. We demonstrate a double resonance HX probe with a limit of detection of 1.4 nmol s-1/2 for protons at 600 MHz, resolution of 3.35 Hz, and excellent B1 homogeneity. We have successfully acquired 1H-13C and 1H-15N heteronuclear correlation spectra (HSQC), including a 1H-15N HSQC spectrum of 1 mM 15N labeled ubiquitin in 2.5 μl of sample volume.
Collapse
Affiliation(s)
- Manvendra Sharma
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|