1
|
Wang Y. Novel drug discovery approaches for MMP-13 inhibitors in the treatment of osteoarthritis. Bioorg Med Chem Lett 2024; 114:130009. [PMID: 39477129 DOI: 10.1016/j.bmcl.2024.130009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/05/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Recently, the key role of matrix metalloproteinase-13 (MMP-13) in a variety of diseases has attracted much attention. In the field of osteoarthritis (OA) treatment, the study of MMP-13 inhibitors has become a hotspot, and the development of selective MMP-13 inhibitors is a key direction of OA treatment strategies. This paper aims to summarize the latest research progress on MMP-13 inhibitors in drug design and delivery systems in OA treatment, in order to provide new ideas and strategies for the development of MMP-13 inhibitors. In the context of drug design, researchers have utilized innovative drug discovery strategies to developed a number of potential MMP-13 inhibitors by accurately simulating the active site and analyzing the structure of known inhibitors. With regard to delivery systems, nanotechnology has been extensively employed to enhance the targeting and bioavailability of MMP-13 inhibitors, effectively improving therapeutic efficacy through precise delivery to the lesion site. The latest research developments not only reveal the significant potential of MMP-13 inhibitors in disease treatment, but also provide new directions and challenges for future research.
Collapse
Affiliation(s)
- Yi Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
2
|
Er-Rajy M, El Fadili M, Faris A, Zarougui S, Elhallaoui M. Design of potential anti-cancer agents as COX-2 inhibitors, using 3D-QSAR modeling, molecular docking, oral bioavailability proprieties, and molecular dynamics simulation. Anticancer Drugs 2024; 35:117-128. [PMID: 38018861 DOI: 10.1097/cad.0000000000001492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Modeling the structural properties of novel morpholine-bearing 1, 5-diaryl-diazole derivatives as potent COX-2 inhibitor, two proposed models based on CoMFA and CoMSIA were evaluated by external and internal validation methods. Partial least squares analysis produced statistically significant models with Q 2 values of 0.668 and 0.652 for CoMFA and CoMSIA, respectively, and also a significant non-validated correlation coefficient R² with values of 0.882 and 0.878 for CoMFA and CoMSIA, respectively. Both models met the requirements of Golbraikh and Tropsha, which means that both models are consistent with all validation techniques. Analysis of the CoMFA and CoMSIA contribution maps and molecular docking revealed that the R1 substituent has a very significant effect on their biological activity. The most active molecules were evaluated for their thermodynamic stability by performing MD simulations for 100 ns; it was revealed that the designed macromolecular ligand complex with 3LN1 protein exhibits a high degree of structural and conformational stability. Based on these results, we predicted newly designed compounds, which have acceptable oral bioavailability properties and would have high synthetic accessibility.
Collapse
Affiliation(s)
- Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | | | | | | | | |
Collapse
|
3
|
Du L, Gao X, Zhao L, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J. Assessment of the risk of imidaclothiz to the dominant aphid parasitoid Binodoxys communis (Hymenoptera: Braconidae). ENVIRONMENTAL RESEARCH 2023; 238:117165. [PMID: 37739156 DOI: 10.1016/j.envres.2023.117165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The neonicotinoid of imidaclothiz insecticide with low resistance and high efficiency, has great potential for application in pest control in specifically cotton field. In this systematically evaluate the effects of sublethal doses of imidaclothiz (LC10: 11.48 mg/L; LC30: 28.03 mg/L) on the biology, transcriptome, and microbiome of Binodoxys communis, the predominant primary parasitic natural enemy of aphids. The findings indicated that imidaclothiz has significant deleterious effects on the survival rate, parasitic rate, and survival time of B. communis. Additionally, there was a marked reduction in the survival rate and survival time of the F1 generation, that is, the negative effect of imidaclothiz on B. communis was continuous and trans-generational. Transcriptome analysis revealed that imidaclothiz treatment elicited alterations in the expression of genes associated with energy and detoxification metabolism. In addition, 16S rRNA analysis revealed a significant increase in the relative abundance of Rhodococcus and Pantoea, which are associated with detoxification metabolism, due to imidaclothiz exposure. These findings provide evidence that B. communis may regulate gene expression in conjunction with symbiotic bacteria to enhance adaptation to imidaclothiz. Finally, this study precise evaluation of imidaclothiz's potential risk to B. communis and provides crucial theoretical support for increasing the assessment of imidaclothiz in integrated pest management.
Collapse
Affiliation(s)
- Lingen Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Likang Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
4
|
Wu F, Wang Z, Li X, Pu Q, Wu Y, Cao N, Wang X. Molecular design of environment-friendly amide herbicide substitutes with high efficacy, low phytotoxicity and medication safety. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132858. [PMID: 39491986 DOI: 10.1016/j.jhazmat.2023.132858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The primary goal of this investigation was to formulate an ecologically sustainable alternative to amide herbicides (AHs) characterized by robust herbicidal effectiveness, minimal corn phytotoxicity, and commendable pharmaceutical safety. We employed comparative molecular similarity index analysis (CoMSIA), a three-dimensional quantitative structure-activity relationship (3D-QSAR) model, which systematically outlined parameters such as herbicidal effectiveness, corn phytotoxicity, and AHs biodegradability. Subsequently, after thorough evaluation, we carefully selected a group of fourteen stable AH-substitute compounds known for their safety and environmental compatibility, considering aspects like pharmacokinetics, toxicokinetics, functional properties, and environmental friendliness. This resulted in a significant increase in herbicidal effectiveness, ranging from 21.64% to 34.07%, alongside a decrease in corn phytotoxicity within the range of 12.19-20.87%. Furthermore, we achieved an improvement in biodegradability, measured within the spectrum of 4.92-9.40%. Importantly, these changes also correlated with the reduction of hepatotoxicity, mutagenicity, and cutaneous health risks. Finally, we delved into the mechanisms underlying the improved herbicidal effectiveness, reduced corn phytotoxicity, and enhanced biodegradability of AHs substitutes through molecular docking and analysis of amino acid interactions. The investigation concluded that non-covalent forces governing the interaction between AHs substitutes and receptor proteins are crucial in determining herbicidal effectiveness, corn phytotoxicity, and biodegradability. Specifically, Van der Waals and electrostatic forces emerged as key factors governing the binding affinities of AH molecules with receptor proteins, both before and after modification. In summary, this study introduces innovative approaches in the field of agricultural chemical weeding technology and provides a theoretical framework for the environmentally responsible management of AHs herbicides.
Collapse
Affiliation(s)
- Fuxing Wu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Zini Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xinao Li
- Moe Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- Moe Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Yang Wu
- Moe Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Ning Cao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xiaoli Wang
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Banerjee S, Baidya SK, Adhikari N, Jha T. An updated patent review of matrix metalloproteinase (MMP) inhibitors (2021-present). Expert Opin Ther Pat 2023; 33:631-649. [PMID: 37982191 DOI: 10.1080/13543776.2023.2284935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are strongly interlinked with the progression and mechanisms of several life-threatening diseases including cancer. Thus, novel MMP inhibitors (MMPIs) as promising drug candidates can be effective in combating these diseases. However, no MMPIs are marketed to date due to poor pharmacokinetics and lower selectivity. Therefore, this review was performed to study the newer MMPIs patented after the COVID-19 period for an updated perspective on MMPIs. AREAS COVERED This review highlights patents related to MMPIs, and their therapeutic implications published between January 2021 and August 2023 available in the Google Patents, Patentscope, and Espacenet databases. EXPERT OPINION Despite various MMP-related patents disclosed up to 2020, newer patent applications in the post-COVID-19 period decreased a lot. Besides major MMPs, other isoforms (i.e. MMP-3 and MMP-7) have gained attention recently for drug development. This may open up newer dimensions targeting these MMPs for therapeutic advancements. The isoform selectivity and bioavailability are major concerns for effective MMPI development. Thus, adopting theoretical approaches and experimental methodologies can unveil the development of novel MMPIs with improved pharmacokinetic profiles. Nevertheless, the involvement of MMPs in cancer, and the mechanisms of such MMPs in other diseases should be extensively studied for novel MMPI development.
Collapse
Affiliation(s)
| | | | | | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
6
|
Parwez S, Panigrahi L, Ahmed S, Siddiqi MI. Machine learning-based predictive modeling, virtual screening and biological evaluation studies for identification of potential inhibitors of MMP-13. J Biomol Struct Dyn 2023; 41:7190-7203. [PMID: 36062572 DOI: 10.1080/07391102.2022.2117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/21/2022] [Indexed: 10/14/2022]
Abstract
Matrix Metalloproteinase-13 (MMP-13) is a collagenase that regulates the homeostasis of the extracellular matrix (ECM) and basement membrane, as well as the breakdown of type II collagen. Recent research studies on the molecular and cellular mechanisms of cartilage degradation suggest that MMP-13 overexpression triggers osteoarthritis and is considered a promising target for osteoarthritis treatment. The present work employs machine learning-based virtual screening and structure-based rational drug design approaches to identify potential inhibitors of MMP-13 with diverse chemical scaffolds. The twelve top-scoring screened compounds were subjected to biological evaluation to validate the robustness and predictive modeling of ML-based Virtual Screening. It was observed that eight compounds exhibited approximately 44%-60% inhibition at 0.1 µM concentration, and the IC50 lies in the range of 1.9-2.3 µM against MMP-13. Interestingly, two of the compounds, DP01473 and RH01617, showed potent dose-dependent inhibitory activity. Compound DP01473 inhibited MMP-13 by 44%, 50%, and 70%, while compound RH01617 inhibited MMP-13 by 54%, 55%, and 57% at 0.1 μM, 1 μM, and 10 μM concentrations, respectively, and can be further optimized for the design and development of more potent MMP-13 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shahid Parwez
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute (CSIR-CDRI) Campus, Lucknow, India
| | - Lalita Panigrahi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute (CSIR-CDRI) Campus, Lucknow, India
| |
Collapse
|
7
|
Choi JY, Chung E. Molecular Dynamics Simulations of Matrix Metalloproteinase 13 and the Analysis of the Specificity Loop and the S1'-Site. Int J Mol Sci 2023; 24:10577. [PMID: 37445757 PMCID: PMC10342107 DOI: 10.3390/ijms241310577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The specificity loop of Matrix Metalloproteinases (MMPs) is known to regulate recognition of their substrates, and the S1'-site surrounded by the loop is a unique place to address the selectivity of ligands toward each MMP. Molecular dynamics (MD) simulations of apo-MMP-13 and its complex forms with various ligands were conducted to identify the role of the specificity loop for the ligand binding to MMP-13. The MD simulations showed the dual role of T247 as a hydrogen bond donor to the ligand, as well as a contributor to the formation of the van der Waal surface area, with T245 and K249 on the S1'-site. The hydrophobic surface area mediated by T247 blocks the access of water molecules to the S1'-site of MMP-13 and stabilizes the ligand in the site. The F252 residue is flexible in order to search for the optimum location in the S1'-site of the apo-MMP-13, but once a ligand binds to the S1'-site, it can form offset π-π or edge-to-π stacking interactions with the ligand. Lastly, H222 and Y244 provide the offset π-π and π-CH(Cβ) interactions on each side of the phenyl ring of the ligand, and this sandwiched interaction could be critical for the ligand binding to MMP-13.
Collapse
Affiliation(s)
- Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Eugene Chung
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA
| |
Collapse
|
8
|
Xue J, Chen X, Zhao Y, Li Y. Exposure to high-performance benzotriazole ultraviolet stabilizers: Advance in toxicological effects, environmental behaviors and remediation mechanism using in-silica methods. CHEMOSPHERE 2023; 315:137699. [PMID: 36608879 DOI: 10.1016/j.chemosphere.2022.137699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs), as light stabilizers, have attracted widespread attention because of their easy migration in the environment and their acute toxicity and biological toxicity effects, such as immunotoxicity and hepatotoxicity. Accordingly, the treatment and remediation mechanisms of high-performance, environmentally friendly, and low human health risk BUVS substitutes were analyzed. Firstly, the weights and the comprehensive effect (CE) values of migration and toxicity of BUVSs were determined by Topsis assisted by the coefficient of variation (CV) method. From this, a three-dimensional quantitative structure activity relationship (3D-QSAR) model based on the CE values of the 13 BUVSs was constructed. Secondly, EPI software was used to predict the functionality and environmental friendliness of BUVS substitutes, and a partial least squares regression machine learning (ML-PLSR) model was used to analyze the mechanism. Then, ADMET (absorption, distribution, metabolism, excretion, toxicity), TOPKAT, and exposure dose models were used to evaluate the ecological and human health risks of BUVSs and their substitutes. Finally, the key charge information affecting the UV-326 substitutes was deduced by time dependent density functional theory (TDDFT). Using UV-326 as an example, 15 UV-326 substitutes with reduced CE values were designed (reductions of 2.61%-23.18%). Compared with ML-PLSR models of acute toxicity, immunotoxicity, and hepatotoxicity, it was found that the decrease of DM and Qyy values and the increase of Qzz value could further decrease the toxicity of the UV-326 substitutes. Ecological and human health risk assessment showed that the exposure risks of the six UV-326 substitutes were within acceptable limits. TDDFT showed that the change of electron distribution and electron excitation type were the key factors affecting the performance of the UV-326 substitutes, and a charge transfer excitation type was more conducive to obtaining high-performance, environmentally friendly UV-326 substitutes. This study aims to alleviate the toxic damage to the ecological environment and human health caused by BUVS exposure.
Collapse
Affiliation(s)
- Jiaqi Xue
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xinyi Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China; Zhejiang Institute of Mechanical & Electrical Engineering Co., Ltd, Hangzhou, 310051, China.
| | - Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
9
|
Er-Rajy M, El Fadili M, Mujwar S, Zarougui S, Elhallaoui M. Design of novel anti-cancer drugs targeting TRKs inhibitors based 3D QSAR, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:11657-11670. [PMID: 36695085 DOI: 10.1080/07391102.2023.2170471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Tropomyosin receptor kinase (TRK) enzymes are responsible for different types of tumors caused by neurotrophic tyrosine receptor kinase gene fusion and have been identified as an effective target for anticancer therapy. The study of the mechanism between polo-like kinase (PLKs) and pyrazol inhibitors was performed using 3D-QSAR modeling, molecular docking, and MD simulations in order to design high-activity inhibitors. The HQSAR (Q2 = 0.793, R2 = 0.917, R2ext = 0.961), CoMFA (Q2 = 0.582, R2 = 0.722, R2ext = 0.951), CoMSIA/SE (Q2 = 0.603, R2 = 0.801, R2ext = 0.849), and Topomer CoMFA (Q2 = 0.726, R2 = 0.992, R2ext = 0.717) showed good reliability and predictability. All models have been successfully tested by external validation, so all five established models are reliable. The analysis of the different contour maps of different models gives structural information to improve the inhibitory function. Molecular docking results show that the amino acids Met 592, GLU 590, LEU 657, VAL 524, and PHE 589 are the active sites of the tropomyosin receptor TRKs. The results obtained by MD showed that compound 19i could form a more stable complex protein (PDB id: 5KVT). Based on these results, we developed new compounds and their expected inhibitory activities. The results of physicochemical and ADME-Tox properties showed that the four proposed molecules are orally bioavailable, and they are not toxic in the Ames test. Thus, these results would provide modeling information that could help experimental researchers find TRK type I inhibitors more efficiently.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed El Fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
10
|
Menezes Spadeto JP, Freitas MP, Cormanich RA. Fluorinated dihydropyridines as candidates to block L-type voltage-dependent calcium channels. J Biomol Struct Dyn 2022; 40:13456-13471. [PMID: 34720037 DOI: 10.1080/07391102.2021.1989039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Voltage-gated calcium (Cav) channels malfunction may lead to Alzheimer's and cardiovascular disorders, thus a critical protein target for drug development and treatment against several diseases. Indeed, dihydropyridines (DHPs) as nifedipine and amlodipine are top-selling pharmaceuticals and, respectively, the 121st and 5th most prescribed drugs in the United States that have been used as successful selective blockers for L-type Ca2+ channels (LCC) and may be helpful model structures to compare with new DHP analogs. In this context, we have performed a structure-based drug design (SBDD) study of several fluorinated DHPs by using homology modeling, molecular docking, quantitative structure activity relationship (QSAR) and molecular dynamics calculations. Such approaches combined with molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) interaction energy results and screening of ADMET (absorption, distribution, metabolism, excretion and toxicity) properties indicate that all ligands in this study are potential new candidates to be tested experimentally for inhibition of LCC and may have higher affinities than the commonly used drugs, being convenient synthetic routes proposed for 11-16, which are among the ligands that showed the best theoretical results concerning LCC inhibition. Furthermore, the ligand interactions with the binding site were carefully examined using the topological noncovalent interactions (NCI) method, which highlighted specifically responsible amino acid residues that increase the spontaneity of the new proposed DHP ligands.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- João Paulo Menezes Spadeto
- Department of Organic Chemistry, Laboratory of Experimental and Theoretical Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Matheus P Freitas
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | - Rodrigo A Cormanich
- Department of Organic Chemistry, Laboratory of Experimental and Theoretical Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Xiao J, Li Y. Screening of benzophenone ultraviolet absorbers with high-efficiency light absorption capacity, low-permeability and low-toxicity by 3D-QSAR model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Qureshi S, Khandelwal R, Madhavi M, Khurana N, Gupta N, Choudhary SK, Suresh RA, Hazarika L, Srija CD, Sharma K, Hindala MR, Hussain T, Nayarisseri A, Singh SK. A Multi-target Drug Designing for BTK, MMP9, Proteasome and TAK1 for the Clinical Treatment of Mantle Cell Lymphoma. Curr Top Med Chem 2021; 21:790-818. [PMID: 33463471 DOI: 10.2174/1568026621666210119112336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma characterized by the mutation and overexpression of the cyclin D1 protein by the reciprocal chromosomal translocation t(11;14)(q13:q32). AIM The present study aims to identify potential inhibition of MMP9, Proteasome, BTK, and TAK1 and determine the most suitable and effective protein target for the MCL. METHODOLOGY Nine known inhibitors for MMP9, 24 for proteasome, 15 for BTK and 14 for TAK1 were screened. SB-3CT (PubChem ID: 9883002), oprozomib (PubChem ID: 25067547), zanubrutinib (PubChem ID: 135565884) and TAK1 inhibitor (PubChem ID: 66760355) were recognized as drugs with high binding capacity with their respective protein receptors. 41, 72, 102 and 3 virtual screened compounds were obtained after the similarity search with compound (PubChem ID:102173753), PubChem compound SCHEMBL15569297 (PubChem ID:72374403), PubChem compound SCHEMBL17075298 (PubChem ID:136970120) and compound CID: 71814473 with best virtual screened compounds. RESULT MMP9 inhibitors show commendable affinity and good interaction profile of compound holding PubChem ID:102173753 over the most effective established inhibitor SB-3CT. The pharmacophore study of the best virtual screened compound reveals its high efficacy based on various interactions. The virtual screened compound's better affinity with the target MMP9 protein was deduced using toxicity and integration profile studies. CONCLUSION Based on the ADMET profile, the compound (PubChem ID: 102173753) could be a potent drug for MCL treatment. Similar to the established SB-3CT, the compound was non-toxic with LD50 values for both the compounds lying in the same range.
Collapse
Affiliation(s)
- Shahrukh Qureshi
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India
| | - Naveesha Khurana
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Neha Gupta
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Saurav K Choudhary
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Revathy A Suresh
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Lima Hazarika
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Chillamcherla D Srija
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Mali R Hindala
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Sanjeev K Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
13
|
Li Q, Feng K, Liu J, Ren Y. Molecular modeling studies of novel naphthyridine and isoquinoline derivatives as CDK8 inhibitors. J Biomol Struct Dyn 2020; 39:6355-6369. [PMID: 32723012 DOI: 10.1080/07391102.2020.1797537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cell cycle is an important part of cellular activities. The selective inhibition of cyclin-dependent kinases (CDK) activity in tumor cells can lead to continuous cell proliferation. Thirty-nine CDK8 inhibitors were systematically investigated on the basis of a three-dimensional quantitative structure-activity relationship (3D-QSAR). Models for comparative molecular field analysis (q2=0.64, r2=0.98) and comparative molecular similarity index analysis (q2=0.609, r2=0.952) were obtained. Contour maps illustrated that bioactivity of inhibitors is most affected by steric, electrostatic, hydrogen bond donor, and receptor interactions of molecular groups. Twenty new CDK8 inhibitors (DS01-DS20) were designed based on the contour maps. The results of ADME prediction illustrated that the designed compounds had potential druggability. The binding mode between a ligand and receptor was explored through molecular docking and molecular dynamics. Results revealed that the hydrogen bond interaction with residue LYS52 remarkably affected the activity of these compounds. Further analysis indicated that the introduction of fluorine to an amino naphthyridine ring of compound 28 contributes to the improvement of molecular activities. Pharmacophore-based virtual screening and Surflex-Sim in the ZINC database of 1,30,000 molecules demonstrated that 14 compounds with an indazole ring might be antitumor inhibitors. 3D-QSAR, molecular docking, molecular dynamics and pharmacophore results are consistent. These findings can be used as a reference for the design and discovery of new CDK8 inhibitors that can reduce design errors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Qunlin Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Kairui Feng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Jianxin Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yujie Ren
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
14
|
In silico studies of novel scaffold of thiazolidin-4-one derivatives as anti-Toxoplasma gondii agents by 2D/3D-QSAR, molecular docking, and molecular dynamics simulations. Struct Chem 2020. [DOI: 10.1007/s11224-019-01458-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Abstract
Osteoarthritis (OA) is a degenerative disease of the articular cartilage with subchondral bone lesions. Osteoarthritis etiologies are mainly related to age, obesity, strain, trauma, joint congenital anomalies, joint deformities, and other factors. Osteoarthritis seriously affects the quality of life; however, there is no effective way to cure osteoarthritis. Aerobic exercise refers to a dynamic rhythmic exercise involving the large muscle groups of the body with aerobic metabolism. More and more evidence shows that exercise has become a useful tool for the treatment of osteoarthritis. This chapter will discuss the role of exercise in the prevention and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Huang S, Ren Y, Peng X, Qian P, Meng L. Computer-aid drug design, synthesis, and anticoagulant activity evaluation of novel dabigatran derivatives as thrombin inhibitors. Eur J Pharm Sci 2019; 137:104965. [PMID: 31247296 DOI: 10.1016/j.ejps.2019.104965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
Abstract
In this study, computer-aided drug design techniques were adopted to explore the structural and chemical features for dabigatran and design novel derivatives. The built 3D-QSAR models demonstrated significant statistical quality and excellent predictive ability by internal and external validation. Based on QSAR information, 11 novel dabigatran derivatives (12a-12k) were designed and predicted, then ADME prediction and molecular docking were performed. Furthermore, all designed compounds were synthesized and characterized by 1H NMR, 13C NMR and HR-MS. Finally, they were evaluated for anticoagulant activity in vitro. The activity results showed that the 10 obtained compounds exhibited comparable activity to the reference dabigatran (IC50 = 9.99 ± 1.48 nM), except for compound 12i. Further analysis on molecular docking was performed on three compounds (12a, 12c and 12g) with better activity (IC50 = 11.19 ± 1.70 nM, IC50 = 10.94 ± 1.85 nM and IC50 = 11.19 ± 1.70 nM). MD simulations (10 ns) were carried out, and their binding free energies were calculated, which showed strong hydrogen bond and pi-pi stacking interactions with key residues Gly219, Asp189 and Trp60D. The 10 novel dabigatran derivatives obtained can be further studied as anticoagulant candidate compounds.
Collapse
Affiliation(s)
- Shanshan Huang
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yujie Ren
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Xiuxiu Peng
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Pingping Qian
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Lingwei Meng
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|