1
|
Colarusso E, Lauro G, Potenza M, Galatello P, Garigliota MLD, Ferraro MG, Piccolo M, Chini MG, Irace C, Campiglia P, Hoffstetter RK, Werz O, Ramunno A, Bifulco G. 5-methyl-2-carboxamidepyrrole-based novel dual mPGES-1/sEH inhibitors as promising anticancer candidates. Arch Pharm (Weinheim) 2025; 358:e2400708. [PMID: 39692230 DOI: 10.1002/ardp.202400708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Inhibiting microsomal prostaglandin E2 synthase-1 (mPGES-1), an inducible enzyme involved in prostaglandin E2 (PGE2) biosynthesis and tumor microenvironment (TME) homeostasis, is a valuable strategy for treating inflammation and cancer. In this work, 5-methylcarboxamidepyrrole-based molecules were designed and synthesized as new compounds targeting mPGES-1. Remarkably, compounds 1f, 2b, 2c, and 2d were able to significantly reduce the activity of the isolated enzyme, showing IC50 values in the low micromolar range. With the aim of further profiling the synthesized molecules, their ability to interfere with the activity of soluble epoxide hydrolase (sEH), whose inhibition blocks the loss of the anti-inflammatory mediators epoxyeicosatrienoic acids (EETs or epoxyicosatrienoic acids), was investigated in silico and by employing specific biological assays. Among the set of tested compounds, 1f, 2b, 2c, and 2d emerged as mPGES-1/sEH dual inhibitors. Moreover, given that overexpression of mPGES-1 has been observed in many human tumors, we finally explored the biological effect of our compounds in an in vitro model of human colorectal cancer (CRC). The obtained outcomes pave the way for future investigation to optimize and further characterize anticancer pharmacological profile of the carboxamidepyrrole-based molecules.
Collapse
Affiliation(s)
- Ester Colarusso
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Marianna Potenza
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Paola Galatello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine and Surgery, University of Naples, Naples, Italy
| | - Marialuisa Piccolo
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Naples, Italy
| | | | - Carlo Irace
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Naples, Italy
| | | | - Robert Klaus Hoffstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | |
Collapse
|
2
|
Huang Q, Lai T, Wang Q, Luo L. mPGES-1 Inhibitor Discovery Based on Computer-Aided Screening: Pharmacophore Models, Molecular Docking, ADMET, and MD Simulations. Molecules 2023; 28:6059. [PMID: 37630311 PMCID: PMC10458489 DOI: 10.3390/molecules28166059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
mPGES-1 is an enzyme, which, when activated by inflammatory factors, can cause prostaglandin E synthesis. Traditional non-steroidal anti-inflammatory drugs are capable of inhibiting prostaglandin production, yet they can also cause gastrointestinal reactions and coagulation disorders. mPGES-1, the enzyme at the conclusion of prostaglandin production, does not cause any adverse reactions when inhibited. Numerous studies have demonstrated that mPGES-1 is more abundant in cancerous cells than in healthy cells, indicating that decreasing the expression of mPGES-1 could be a potential therapeutic strategy for cancer. Consequently, the invention of mPGES-1 inhibitors presents a fresh avenue for the treatment of inflammation and cancer. Incorporating a database of TCM compounds, we collected a batch of compounds that had an inhibitory effect on mPGES-1 and possessed IC50 value. Firstly, a pharmacophore model was constructed, and the TCM database was screened, and the compounds with score cut-off values of more than 1 were retained. Then, the compounds retained after being screened via the pharmacodynamic model were screened for docking at the mPGES-1 binding site, followed by high-throughput virtual screening [HTVS] and standard precision [SP] and super-precision [XP] docking, and the compounds in the top 20% of the XP docking score were selected to calculate the total free binding energy of MM-GBSA. The best ten compounds were chosen by comparing their score against the reference ligand 4U9 and the MM-GBSA_dG_Bind score. ADMET analysis resulted in the selection of ten compounds, three of which had desirable medicinal properties. Finally, the binding energy of the target protein mPGES-1 and the candidate ligand compound was analyzed using a 100 ns molecular dynamics simulation of the reference ligand 4U9 and three selected compounds. After a gradual screening study and analysis, we identified a structure that is superior to the reference ligand 4U9 in all aspects, namely compound 15643. Taken together, the results of this study reveal a structure that can be used to inhibit mPGES-1 compound 15643, thereby providing a new option for anti-inflammatory and anti-tumor drugs.
Collapse
Affiliation(s)
- Qiqi Huang
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (Q.H.); (T.L.)
| | - Tianli Lai
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (Q.H.); (T.L.)
| | - Qu Wang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
3
|
Lu R, Akasaka H, Ruan KH. Design, synthesis and characterization of lead compounds as anti-inflammatory drugs targeting mPGES-1 via enzymelink screening. Future Med Chem 2023; 15:757-767. [PMID: 37248701 PMCID: PMC10318571 DOI: 10.4155/fmc-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Aim: The objective of this study was to synthesize and validate a set of compounds that selectively inhibit mPGES-1, with the potential to be developed into a novel anti-inflammatory drug. Methods: The synthesized compounds were characterized using 1H NMR spectroscopy and LC-MS to confirm their structure. Cellular and enzymatic assays were used to demonstrate their inhibitory activity on prostaglandin E2 production. Results: Docking studies revealed that compounds containing fluoro-, chloro- and methyl- groups displayed strong inhibitory activity against prostaglandin E2. The inhibitory activity of synthesized trimethyl and trifluoro was further validated using enzymatic and cell migration assays. Conclusion: The findings demonstrated that the synthesized compounds possess significant potential as a new generation of nonsteroidal anti-inflammatory drugs that selectively target mPGES-1 with fewer side effects.
Collapse
Affiliation(s)
- Renzhong Lu
- Department of Pharmacological & Pharmaceutical Sciences, Center for Experimental Therapeutics & Pharmacoinformatics, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Hironori Akasaka
- Department of Pharmacological & Pharmaceutical Sciences, Center for Experimental Therapeutics & Pharmacoinformatics, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Ke-He Ruan
- Department of Pharmacological & Pharmaceutical Sciences, Center for Experimental Therapeutics & Pharmacoinformatics, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
4
|
Potenza M, Giordano A, Chini MG, Saviano A, Kretzer C, Raucci F, Russo M, Lauro G, Terracciano S, Bruno I, Iorizzi M, Hofstetter RK, Pace S, Maione F, Werz O, Bifulco G. Identification of 2-Aminoacyl-1,3,4-thiadiazoles as Prostaglandin E 2 and Leukotriene Biosynthesis Inhibitors. ACS Med Chem Lett 2022; 14:26-34. [PMID: 36655121 PMCID: PMC9841589 DOI: 10.1021/acsmedchemlett.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The application of a multi-step scientific workflow revealed an unprecedented class of PGE2/leukotriene biosynthesis inhibitors with in vivo activity. Specifically, starting from a combinatorial virtual library of ∼4.2 × 105 molecules, a small set of compounds was identified for the synthesis. Among these, four novel 2-aminoacyl-1,3,4-thiadiazole derivatives (3, 6, 7, and 9) displayed marked anti-inflammatory properties in vitro by strongly inhibiting PGE2 biosynthesis, with IC50 values in the nanomolar range. The hit compounds also efficiently interfered with leukotriene biosynthesis in cell-based systems and modulated IL-6 and PGE2 biosynthesis in a lipopolysaccharide-stimulated J774A.1 macrophage cell line. The most promising compound 3 showed prominent in vivo anti-inflammatory activity in a mouse model, with efficacy comparable to that of dexamethasone, attenuating zymosan-induced leukocyte migration in mouse peritoneum with considerable modulation of the levels of typical pro-/anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Marianna Potenza
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,The
FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Assunta Giordano
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,Institute
of Biomolecular Chemistry (ICB), Consiglio
Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy
| | - Maria G. Chini
- Department
of Biosciences and Territory, University
of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Anella Saviano
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Christian Kretzer
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Federica Raucci
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Marina Russo
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gianluigi Lauro
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Stefania Terracciano
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Ines Bruno
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Maria Iorizzi
- Department
of Biosciences and Territory, University
of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Robert K. Hofstetter
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Simona Pace
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Francesco Maione
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Oliver Werz
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany,
| | - Giuseppe Bifulco
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,
| |
Collapse
|
5
|
Nguyen NT, Dai VV, Tri NN, Van Meervelt L, Trung NT, Dehaen W. Experimental and theoretical studies on the synthesis of 1,4,5-trisubstituted pyrrolidine-2,3-diones. Beilstein J Org Chem 2022; 18:1140-1153. [PMID: 36105726 PMCID: PMC9443309 DOI: 10.3762/bjoc.18.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Substituted 4-acetyl-3-hydroxy-3-pyrroline-2-ones have been prepared via three-component reactions and the tautomerism of these 3-pyrroline-2-ones is due to the slight difference of energy, and the significantly large rate constant of transformation between two tautomers. 1,4,5-Trisubstituted pyrrolidine-2,3-dione derivatives were prepared from the above mentioned 2-pyrrolidinone derivatives and aliphatic amines, which exist in enamine form and are stabilized by an intramolecular hydrogen bond. A possible reaction mechanism between 3-pyrroline-2-one and aliphatic amine (CH3NH2) was proposed based on computational results and the main product is formed favorably following the PES via the lowest ΔG # pathway in both the gas-phase and an ethanol solvent model. DFT calculations showed that kinetic selectivity is more significant than thermodynamic selectivity for forming main products.
Collapse
Affiliation(s)
- Nguyen Tran Nguyen
- Department of Chemistry, University of Science and Education, the University of Da Nang, Ton Duc Thang 459, 550000 Da Nang, Viet Nam
| | - Vo Viet Dai
- Department of Chemistry, University of Science and Education, the University of Da Nang, Ton Duc Thang 459, 550000 Da Nang, Viet Nam
| | - Nguyen Ngoc Tri
- Laboratory of Computational Chemistry and Modelling, Faculty of Natural Sciences, Quy Nhon University, An Duong Vuong 170, 820000 Quy Nhon, Viet Nam
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling, Faculty of Natural Sciences, Quy Nhon University, An Duong Vuong 170, 820000 Quy Nhon, Viet Nam
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
6
|
In Silico, In Vitro, and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway. Biomolecules 2022; 12:biom12010099. [PMID: 35053247 PMCID: PMC8774285 DOI: 10.3390/biom12010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC50 = 1.9 ± 0.4 µM) and 5-LO (IC50 = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases.
Collapse
|
7
|
Structure-based screening for the discovery of 1,2,4-oxadiazoles as promising hits for the development of new anti-inflammatory agents interfering with eicosanoid biosynthesis pathways. Eur J Med Chem 2021; 224:113693. [PMID: 34315041 DOI: 10.1016/j.ejmech.2021.113693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
The multiple inhibition of biological targets involved in pro-inflammatory eicosanoid biosynthesis represents an innovative strategy for treating inflammatory disorders in light of higher efficacy and safety. Herein, following a multidisciplinary protocol involving virtual combinatorial screening, chemical synthesis, and in vitro and in vivo validation of the biological activities, we report the identification of 1,2,4-oxadiazole-based eicosanoid biosynthesis multi-target inhibitors. The multidisciplinary scientific approach led to the identification of three 1,2,4-oxadiazole hits (compounds 1, 2 and 5), all endowed with IC50 values in the low micromolar range, acting as 5-lipoxygenase-activating protein (FLAP) antagonists (compounds 1 and 2), and as a multi-target inhibitor (compound 5) of arachidonic acid cascade enzymes, namely cyclooxygenase-1 (COX-1), 5-lipoxygenase (5-LO) and microsomal prostaglandin E2 synthase-1 (mPGES-1). Moreover, our in vivo results demonstrate that compound 5 is able to attenuate leukocyte migration in a model of zymosan-induced peritonitis and to modulate the production of IL-1β and TNF-α. These results are of interest for further expanding the chemical diversity around the 1,2,4-oxadiazole central core, enabling the identification of novel anti-inflammatory agents characterized by a favorable pharmacological profile and considering that moderate interference with multiple targets might have advantages in re-adjusting homeostasis.
Collapse
|
8
|
Engineering 'Enzymelink' for screening lead compounds to inhibit mPGES-1 while maintaining prostacyclin synthase activity. Future Med Chem 2021; 13:1091-1103. [PMID: 34080888 DOI: 10.4155/fmc-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: This study investigated our Enzymelinks, COX-2-10aa-mPGES-1 and COX-2-10aa-PGIS, as cellular cross-screening targets for quick identification of lead compounds to inhibit inflammatory PGE2 biosynthesis while maintaining prostacyclin synthesis. Methods: We integrated virtual and wet cross-screening using Enzymelinks to rapidly identify lead compounds from a large compound library. Results: From 380,000 compounds virtually cross-screened with the Enzymelinks, 1576 compounds were identified and used for wet cross-screening using HEK293 cells that overexpressed individual Enzymelinks as targets. The top 15 lead compounds that inhibited mPGES-1 activity were identified. The top compound that specifically inhibited inflammatory PGE2 biosynthesis alone without affecting COX-2 coupled to PGI2 synthase (PGIS) for PGI2 biosynthesis was obtained. Conclusion: Enzymelink technology could advance cyclooxygenase pathway-targeted drug discovery to a significant degree.
Collapse
|
9
|
Wu F, Zhou Y, Li L, Shen X, Chen G, Wang X, Liang X, Tan M, Huang Z. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front Chem 2020; 8:726. [PMID: 33062633 PMCID: PMC7517894 DOI: 10.3389/fchem.2020.00726] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Because undesirable pharmacokinetics and toxicity are significant reasons for the failure of drug development in the costly late stage, it has been widely recognized that drug ADMET properties should be considered as early as possible to reduce failure rates in the clinical phase of drug discovery. Concurrently, drug recalls have become increasingly common in recent years, prompting pharmaceutical companies to increase attention toward the safety evaluation of preclinical drugs. In vitro and in vivo drug evaluation techniques are currently more mature in preclinical applications, but these technologies are costly. In recent years, with the rapid development of computer science, in silico technology has been widely used to evaluate the relevant properties of drugs in the preclinical stage and has produced many software programs and in silico models, further promoting the study of ADMET in vitro. In this review, we first introduce the two ADMET prediction categories (molecular modeling and data modeling). Then, we perform a systematic classification and description of the databases and software commonly used for ADMET prediction. We focus on some widely studied ADMT properties as well as PBPK simulation, and we list some applications that are related to the prediction categories and web tools. Finally, we discuss challenges and limitations in the preclinical area and propose some suggestions and prospects for the future.
Collapse
Affiliation(s)
- Fengxu Wu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yuquan Zhou
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Langhui Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xianhuan Shen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ganying Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Xiaoqing Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xianyang Liang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Mengyuan Tan
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| |
Collapse
|
10
|
Lauro G, Terracciano S, Cantone V, Ruggiero D, Fischer K, Pace S, Werz O, Bruno I, Bifulco G. A Combinatorial Virtual Screening Approach Driving the Synthesis of 2,4-Thiazolidinedione-Based Molecules as New Dual mPGES-1/5-LO Inhibitors. ChemMedChem 2020; 15:481-489. [PMID: 32022480 DOI: 10.1002/cmdc.201900694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO), two key enzymes involved in pro-inflammatory eicosanoid biosynthesis, represents a new strategy for treating inflammatory disorders. Herein we report the discovery of 2,4-thiazolidinedione-based mPGES-1/5-LO dual inhibitors following a multidisciplinary protocol, involving virtual combinatorial screening, chemical synthesis, and validation of the biological activities for the selected compounds. Following the multicomponent-based chemical route for the decoration of the 2,4-thiazolidinedione core, a large library of virtual compounds was built (∼2.0×104 items) and submitted to virtual screening. Nine selected molecules were synthesized and biologically evaluated, disclosing among them four compounds able to reduce the activity of both enzymes in the mid- and low- micromolar range of activities. These results are of interest for further expanding the chemical diversity around the 2,4-thiazolidinedione central core, facilitating the identification of novel anti-inflammatory agents endowed with a promising and safer pharmacological profile.
Collapse
Affiliation(s)
- Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Vincenza Cantone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy.,PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Katrin Fischer
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| |
Collapse
|