1
|
Agafonova I, Chingizova E, Chaikina E, Menchinskaya E, Kozlovskiy S, Likhatskaya G, Sabutski Y, Polonik S, Aminin D, Pislyagin E. Protection Activity of 1,4-Naphthoquinones in Rotenone-Induced Models of Neurotoxicity. Mar Drugs 2024; 22:62. [PMID: 38393033 PMCID: PMC10890484 DOI: 10.3390/md22020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The MTS cell viability test was used to screen a mini library of natural and synthetic 1,4-naphthoquinone derivatives (1,4-NQs) from marine sources. This screening identified two highly effective compounds, U-443 and U-573, which showed potential in protecting Neuro-2a neuroblastoma cells from the toxic effects of rotenone in an in vitro model of neurotoxicity. The selected 1,4-NQs demonstrated the capability to reduce oxidative stress by decreasing the levels of reactive oxygen species (ROS) and nitric oxide (NO) in Neuro-2a neuroblastoma cells and RAW 264.7 macrophage cells and displayed significant antioxidant properties in mouse brain homogenate. Normal mitochondrial function was restored and the mitochondrial membrane potential was also regained by 1,4-NQs after exposure to neurotoxins. Furthermore, at low concentrations, these compounds were found to significantly reduce levels of proinflammatory cytokines TNF and IL-1β and notably inhibit the activity of cyclooxygenase-2 (COX-2) in RAW 264.7 macrophages. The results of docking studies showed that the 1,4-NQs were bound to the active site of COX-2, analogically to a known inhibitor of this enzyme, SC-558. Both substances significantly improved the behavioral changes in female CD1 mice with rotenone-induced early stage of Parkinson's disease (PD) in vivo. It is proposed that the 1,4-NQs, U-443 and U-573, can protect neurons and microglia through their potent anti-ROS and anti-inflammatory activities.
Collapse
Affiliation(s)
- Irina Agafonova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Ekaterina Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Elena Chaikina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Sergey Kozlovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Galina Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Yuri Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Sergey Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| |
Collapse
|
2
|
Fang Z, Xie L, Wang L, Zhang Q, Li D. Silver-catalyzed cascade cyclization and functionalization of N-aryl-4-pentenamides: an efficient route to γ-lactam-substituted quinone derivatives. RSC Adv 2022; 12:26776-26780. [PMID: 36320855 PMCID: PMC9490777 DOI: 10.1039/d2ra05283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of γ-lactam-substituted quinone derivatives through a Ag2O-catalyzed cascade cyclization and functionalization of N-aryl-4-pentenamides has been developed. Related 2-oxazolidinone substituted quinone products can be also obtained with N-aryl allyl carbamates. The reactions proceed through an amidyl radical-initiated 5-exo-trig cyclization and followed radical addition to quinones. They provide an efficient route to various γ-lactam-substituted quinone derivatives with a wide range of substrate scope. The synthesis of γ-lactam and related 2-oxazolidinone substituted quinone derivatives through a Ag2O-catalyzed cascade cyclization and functionalization of N-ary-4-pentenamides and N-aryl allyl carbamates has been developed.![]()
Collapse
Affiliation(s)
- Zeguo Fang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Lin Xie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Liang Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Qian Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Dong Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
3
|
Shastri S, Shinde T, Woolley KL, Smith JA, Gueven N, Eri R. Short-Chain Naphthoquinone Protects Against Both Acute and Spontaneous Chronic Murine Colitis by Alleviating Inflammatory Responses. Front Pharmacol 2021; 12:709973. [PMID: 34497514 PMCID: PMC8419285 DOI: 10.3389/fphar.2021.709973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is characterised by chronic, relapsing, idiopathic, and multifactorial colon inflammation. Recent evidence suggests that mitochondrial dysfunction plays a critical role in the onset and recurrence of this disease. Previous reports highlighted the potential of short-chain quinones (SCQs) for the treatment of mitochondrial dysfunction due to their reversible redox characteristics. We hypothesised that a recently described potent mitoprotective SCQ (UTA77) could ameliorate UC symptoms and pathology. In a dextran sodium sulphate- (DSS-) induced acute colitis model in C57BL/6J mice, UTA77 substantially improved DSS-induced body weight loss, disease activity index (DAI), colon length, and histopathology. UTA77 administration also significantly increased the expression of tight junction (TJ) proteins occludin and zona-occludin 1 (ZO-1), which preserved intestinal barrier integrity. Similar responses were observed in the spontaneous Winnie model of chronic colitis, where UTA77 significantly improved DAI, colon length, and histopathology. Furthermore, UTA77 potently suppressed elevated levels of proinflammatory cytokines and chemokines in colonic explants of both DSS-treated and Winnie mice. These results strongly suggest that UTA77 or its derivatives could be a promising novel therapeutic approach for the treatment of human UC.
Collapse
Affiliation(s)
- Sonia Shastri
- Gut Health Laboratory, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Tanvi Shinde
- Gut Health Laboratory, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia.,Centre for Food Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Krystel L Woolley
- School of Natural Sciences-Chemistry, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Jason A Smith
- School of Natural Sciences-Chemistry, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rajaraman Eri
- Gut Health Laboratory, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| |
Collapse
|
4
|
Erasmus C, Aucamp J, Smit FJ, Seldon R, Jordaan A, Warner DF, N'Da DD. Synthesis and comparison of in vitro dual anti-infective activities of novel naphthoquinone hybrids and atovaquone. Bioorg Chem 2021; 114:105118. [PMID: 34216896 DOI: 10.1016/j.bioorg.2021.105118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/11/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
A principal factor that contributes towards the failure to eradicate leishmaniasis and tuberculosis infections is the reduced efficacy of existing chemotherapies, owing to a continuous increase in multidrug-resistant strains of the causative pathogens. This accentuates the dire need to develop new and effective drugs against both plights. A series of naphthoquinone-triazole hybrids was synthesized and evaluated in vitro against Leishmania (L.) and Mycobacterium tuberculosis (Mtb) strains. Their cytotoxicities were also evaluated, using the human embryonic kidney cell line (HEK-293). The hybrids were found to be non-toxic towards human cells and had demonstrated micromolar cellular antileishmanial and antimycobacterial potencies. Hybrid 13, i.e. 2-{[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione was the most active of all. It was found with MIC90 0.5 µM potency against Mtb in a protein free medium, and with half-maxima inhibitory concentrations (IC50) of 0.81 µM and 1.48 µM against the infective promastigote parasites of L. donavani and L. major, respectively, with good selectivity towards these pathogens (SI 22 - 65). Comparatively, the clinical naphthoquinone, atovaquone, although less cytotoxic, was found to be two-fold less antimycobacterial potent, and six- to twelve-fold less active against leishmania. Hybrid 13 may therefore stand as a potential anti-infective hit for further development in the search for new antitubercular and antileishmanial drugs. Elucidation of its exact mechanism of action and molecular targets will constitute future endeavour.
Collapse
Affiliation(s)
- Chané Erasmus
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Frans J Smit
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa; Wellcome Centre for Clinical Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
5
|
Feng Z, Nadikudi M, Woolley KL, Hemasa AL, Chear S, Smith JA, Gueven N. Bioactivity Profiles of Cytoprotective Short-Chain Quinones. Molecules 2021; 26:molecules26051382. [PMID: 33806577 PMCID: PMC7961879 DOI: 10.3390/molecules26051382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/28/2023] Open
Abstract
Short-chain quinones (SCQs) have been investigated as potential therapeutic candidates against mitochondrial dysfunction, which was largely thought to be associated with the reversible redox characteristics of their active quinone core. We recently reported a library of SCQs, some of which showed potent cytoprotective activity against the mitochondrial complex I inhibitor rotenone in the human hepatocarcinoma cell line HepG2. To better characterize the cytoprotection of SCQs at a molecular level, a bioactivity profile for 103 SCQs with different compound chemistries was generated that included metabolism related markers, redox activity, expression of cytoprotective proteins and oxidative damage. Of all the tested endpoints, a positive correlation with cytoprotection by SCQs in the presence of rotenone was only observed for the NAD(P)H:quinone oxidoreductase 1 (NQO1)-dependent reduction of SCQs, which also correlated with an acute rescue of ATP levels. The results of this study suggest an unexpected mode of action for SCQs that appears to involve a modification of NQO1-dependent signaling rather than a protective effect by the reduced quinone itself. This finding presents a new selection strategy to identify and develop the most promising compounds towards their clinical use.
Collapse
Affiliation(s)
- Zikai Feng
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (J.A.S.)
| | - Monila Nadikudi
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
| | - Krystel L. Woolley
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (J.A.S.)
| | - Ayman L. Hemasa
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
| | - Sueanne Chear
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
| | - Jason A. Smith
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (J.A.S.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
- Correspondence:
| |
Collapse
|
6
|
Novel Short-Chain Quinones to Treat Vision Loss in a Rat Model of Diabetic Retinopathy. Int J Mol Sci 2021; 22:ijms22031016. [PMID: 33498409 PMCID: PMC7864174 DOI: 10.3390/ijms22031016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR), one of the leading causes of blindness, is mainly diagnosed based on the vascular pathology of the disease. Current treatment options largely focus on this aspect with mostly insufficient therapeutic long-term efficacy. Mounting evidence implicates mitochondrial dysfunction and oxidative stress in the central etiology of DR. Consequently, drug candidates that aim at normalizing mitochondrial function could be an attractive therapeutic approach. This study compared the mitoprotective compounds, idebenone and elamipretide, side-by-side against two novel short-chain quinones (SCQs) in a rat model of DR. The model effectively mimicked type 2 diabetes over 21 weeks. During this period, visual acuity was monitored by measuring optokinetic response (OKR). Vision loss occurred 5–8 weeks after the onset of hyperglycemia. After 10 weeks of hyperglycemia, visual function was reduced by 65%. From this point, the right eyes of the animals were topically treated once daily with the test compounds. The left, untreated eye served as an internal control. Only three weeks of topical treatment significantly restored vision from 35% to 58–80%, while visual acuity of the non-treated eyes continued to deteriorate. Interestingly, the two novel SCQs restored visual acuity better than idebenone or elamipretide. This was also reflected by protection of retinal pathology against oxidative damage, retinal ganglion cell loss, reactive gliosis, vascular leakage, and retinal thinning. Overall, mitoprotective and, in particular, SCQ-based compounds have the potential to be developed into effective and fast-acting drug candidates against DR.
Collapse
|
7
|
Ng WSV, Trigano M, Freeman T, Varrichio C, Kandaswamy DK, Newland B, Brancale A, Rozanowska M, Votruba M. New avenues for therapy in mitochondrial optic neuropathies. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211029037. [PMID: 37181108 PMCID: PMC10032437 DOI: 10.1177/26330040211029037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 05/16/2023]
Abstract
Mitochondrial optic neuropathies are a group of optic nerve atrophies exemplified by the two commonest conditions in this group, autosomal dominant optic atrophy (ADOA) and Leber's hereditary optic neuropathy (LHON). Their clinical features comprise reduced visual acuity, colour vision deficits, centro-caecal scotomas and optic disc pallor with thinning of the retinal nerve fibre layer. The primary aetiology is genetic, with underlying nuclear or mitochondrial gene mutations. The primary pathology is owing to retinal ganglion cell dysfunction and degeneration. There is currently only one approved treatment and no curative therapy is available. In this review we summarise the genetic and clinical features of ADOA and LHON and then examine what new avenues there may be for therapeutic intervention. The therapeutic strategies to manage LHON and ADOA can be split into four categories: prevention, compensation, replacement and repair. Prevention is technically an option by modifying risk factors such as smoking cessation, or by utilising pre-implantation genetic diagnosis, although this is unlikely to be applied in mitochondrial optic neuropathies due to the non-life threatening and variable nature of these conditions. Compensation involves pharmacological interventions that ameliorate the mitochondrial dysfunction at a cellular and tissue level. Replacement and repair are exciting new emerging areas. Clinical trials, both published and underway, in this area are likely to reveal future potential benefits, since new therapies are desperately needed. Plain language summary Optic nerve damage leading to loss of vision can be caused by a variety of insults. One group of conditions leading to optic nerve damage is caused by defects in genes that are essential for cells to make energy in small organelles called mitochondria. These conditions are known as mitochondrial optic neuropathies and two predominant examples are called autosomal dominant optic atrophy and Leber's hereditary optic neuropathy. Both conditions are caused by problems with the energy powerhouse of cells: mitochondria. The cells that are most vulnerable to this mitochondrial malfunction are called retinal ganglion cells, otherwise collectively known as the optic nerve, and they take the electrical impulse from the retina in the eye to the brain. The malfunction leads to death of some of the optic nerve cells, the degree of vision loss being linked to the number of those cells which are impacted in this way. Patients will lose visual acuity and colour vision and develop a central blind spot in their field of vision. There is currently no cure and very few treatment options. New treatments are desperately needed for patients affected by these devastating diseases. New treatments can potentially arise in four ways: prevention, compensation, replacement and repair of the defects. Here we explore how present and possible future treatments might provide hope for those suffering from these conditions.
Collapse
Affiliation(s)
| | - Matthieu Trigano
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Thomas Freeman
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Carmine Varrichio
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Dinesh Kumar Kandaswamy
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Malgorzata Rozanowska
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences,
Cardiff University, Maindy Road, Cardiff, CF24 4HQ, Wales, UK; Cardiff Eye
Unit, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
8
|
Varricchio C, Beirne K, Aeschlimann P, Heard C, Rozanowska M, Votruba M, Brancale A. Discovery of Novel 2-Aniline-1,4-naphthoquinones as Potential New Drug Treatment for Leber's Hereditary Optic Neuropathy (LHON). J Med Chem 2020; 63:13638-13655. [PMID: 33180495 DOI: 10.1021/acs.jmedchem.0c00942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a rare genetic mitochondrial disease and the primary cause of chronic visual impairment for at least 1 in 10 000 individuals in the U.K. Treatment options remain limited, with only a few drug candidates and therapeutic approaches, either approved or in development. Recently, idebenone has been investigated as drug therapy in the treatment of LHON, although evidence for the efficacy of idebenone is limited in the literature. NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III were identified as the major enzymes involved in idebenone activity. Based on this mode of action, computer-aided techniques and structure-activity relationship (SAR) optimization studies led to the discovery of a series naphthoquinone-related small molecules, with comparable adenosine 5'-triphosphate (ATP) rescue activity to idebenone. Among these, three compounds showed activity in the nanomolar range and one, 2-((4-fluoro-3-(trifluoromethyl)phenyl)amino)-3-(methylthio)naphthalene-1,3-dione (1), demonstrated significantly higher potency ex vivo, and significantly lower cytotoxicity, than idebenone.
Collapse
Affiliation(s)
- Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K.,School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| | - Kathy Beirne
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| | - Pascale Aeschlimann
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K.,School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| | - Charles Heard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| | - Malgorzata Rozanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K.,Cardiff Eye Unit, University Hospital of Wales, Heath Park, Cardiff CF24 4LU, Wales, U.K
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| |
Collapse
|
9
|
Feng Z, Sedeeq M, Daniel A, Corban M, Woolley KL, Condie R, Azimi I, Smith JA, Gueven N. Comparative In Vitro Toxicology of Novel Cytoprotective Short-Chain Naphthoquinones. Pharmaceuticals (Basel) 2020; 13:ph13080184. [PMID: 32784558 PMCID: PMC7463972 DOI: 10.3390/ph13080184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Short-chain quinones (SCQs) have been identified as potential drug candidates against mitochondrial dysfunction, which largely depends on the reversible redox characteristics of the active quinone core. We recently identified 11 naphthoquinone derivatives, 1–11, from a library of SCQs that demonstrated enhanced cytoprotection and improved metabolic stability compared to the clinically used benzoquinone idebenone. Since the toxicity properties of our promising SCQs were unknown, this study developed multiplex methods and generated detailed toxicity profiles from 11 endpoint measurements using the human hepatocarcinoma cell line HepG2. Overall, the toxicity profiles were largely comparable across different assays, with simple standard assays showing increased sensitivity compared to commercial toxicity assays. Within the 11 naphthoquinones tested, the L-phenylalanine derivative 4 consistently demonstrated the lowest toxicity across all assays. The results of this study not only provide useful information about the toxicity features of SCQs but will also enable the progression of the most promising drug candidates towards their clinical use.
Collapse
Affiliation(s)
- Zikai Feng
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (R.C.); (J.A.S.)
- Correspondence: (Z.F.); (N.G.)
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
| | - Abraham Daniel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
| | - Monika Corban
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
| | - Krystel L. Woolley
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (R.C.); (J.A.S.)
| | - Ryan Condie
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (R.C.); (J.A.S.)
| | - Iman Azimi
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
| | - Jason A. Smith
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (R.C.); (J.A.S.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
- Correspondence: (Z.F.); (N.G.)
| |
Collapse
|
10
|
Idebenone Has Distinct Effects on Mitochondrial Respiration in Cortical Astrocytes Compared to Cortical Neurons Due to Differential NQO1 Activity. J Neurosci 2020; 40:4609-4619. [PMID: 32350039 DOI: 10.1523/jneurosci.1632-17.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022] Open
Abstract
Idebenone is a synthetic quinone that on reduction in cells can bypass mitochondrial Complex I defects by donating electrons to Complex III. The drug is used clinically to treat the Complex I disease Leber's hereditary optic neuropathy (LHON), but has been less successful in clinical trials for other neurodegenerative diseases. NAD(P)H:quinone oxidoreductase 1 (NQO1) appears to be the main intracellular enzyme catalyzing idebenone reduction. However, NQO1 is not universally expressed by cells of the brain. Using primary rat cortical cells pooled from both sexes, we tested the hypotheses that the level of endogenous NQO1 activity limits the ability of neurons, but not astrocytes, to use idebenone as an electron donor to support mitochondrial respiration. We then tested the prediction that NQO1 induction by pharmacological activation of the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) enables idebenone to bypass Complex I in cells with poor NQO1 expression. We found that idebenone stimulated respiration by astrocytes but reduced the respiratory capacity of neurons. Importantly, idebenone supported mitochondrial oxygen consumption in the presence of a Complex I inhibitor in astrocytes but not neurons, and this ability was reversed by inhibiting NQO1. Conversely, recombinant NQO1 delivery to neurons prevented respiratory impairment and conferred Complex I bypass activity. Nrf2 activators failed to increase NQO1 in neurons, but carnosic acid induced NQO1 in COS-7 cells that expressed little endogenous enzyme. Carnosic acid-idebenone combination treatment promoted NQO1-dependent Complex I bypass activity in these cells. Thus, combination drug strategies targeting NQO1 may promote the repurposing of idebenone for additional disorders.SIGNIFICANCE STATEMENT Idebenone is used clinically to treat loss of visual acuity in Leber's hereditary optic neuropathy. Clinical trials for several additional diseases have failed. This study demonstrates a fundamental difference in the way idebenone affects mitochondrial respiration in cortical neurons compared with cortical astrocytes. Cortical neurons are unable to use idebenone as a direct mitochondrial electron donor due to NQO1 deficiency. Our results suggest that idebenone behaves as an NQO1-dependent prodrug, raising the possibility that lack of neuronal NQO1 activity has contributed to the limited efficacy of idebenone in neurodegenerative disease treatment. Combination therapy with drugs able to safely induce NQO1 in neurons, as well as other brain cell types, may be able to unlock the neuroprotective therapeutic potential of idebenone or related quinones.
Collapse
|
11
|
Metabolic Stability of New Mito-Protective Short-Chain Naphthoquinones. Pharmaceuticals (Basel) 2020; 13:ph13020029. [PMID: 32059451 PMCID: PMC7169385 DOI: 10.3390/ph13020029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/30/2019] [Accepted: 02/08/2020] [Indexed: 01/11/2023] Open
Abstract
Short-chain quinones (SCQs) have been identified as potential drug candidates against mitochondrial dysfunction, which is largely dependent on their reversible redox characteristics of the active quinone core. We recently synthesized a SCQ library of > 148 naphthoquinone derivatives and identified 16 compounds with enhanced cytoprotection compared to the clinically used benzoquinone idebenone. One of the major drawbacks of idebenone is its high metabolic conversion in the liver, which significantly restricts its therapeutic activity. Therefore, this study assessed the metabolic stability of the 16 identified naphthoquinone derivatives 1–16 using hepatocarcinoma cells in combination with an optimized reverse-phase liquid chromatography (RP-LC) method. Most of the derivatives showed significantly better stability than idebenone over 6 hours (p < 0.001). By extending the side-chain of SCQs, increased stability for some compounds was observed. Metabolic conversion from the derivative 3 to 5 and reduced idebenone metabolism in the presence of 5 were also observed. These results highlight the therapeutic potential of naphthoquinone-based SCQs and provide essential insights for future drug design, prodrug therapy and polytherapy, respectively.
Collapse
|
12
|
Bioenzymatic and Chemical Derivatization of Renewable Fatty Acids. Biomolecules 2019; 9:biom9100566. [PMID: 31590242 PMCID: PMC6843907 DOI: 10.3390/biom9100566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022] Open
Abstract
In addition to our previous efforts toward bioenzymatic and chemical transformations of ricinoleic acid and oleic acid to their corresponding α,ω-dicarboxylic acids via their ester intermediates driven in Escherichia coli cells, several efficient oxidation conditions were investigated and optimized for the conversion of ω-hydroxycarboxylic acids to α,ω-dicarboxylic acids. Pd/C-catalyzed oxidation using NaBH4 in a basic aqueous alcohol and Ni(II) salt-catalyzed oxidation using aqueous sodium hypochlorite were considered to be excellent as a hybrid reaction for three successive chemical reactions (hydrogenation, hydrolysis, and oxidation) and an eco-friendly, cost-effective, and practical approach, respectively. Omega-hydroxycarboxylic acids and ω-aminocarboxylic acid were also easily prepared as useful building blocks for plastics or bioactive compounds from the bioenzymatically driven ester intermediate. The scope of the developed synthetic methods can be utilized for large-scale synthesis and various derivatizations.
Collapse
|