1
|
Lyons BM, Maynes D, Crockett J, Iverson BD. Drop Retention and Departure in Adiabatic Shear Flow on Structured Superhydrophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18882-18895. [PMID: 39180481 DOI: 10.1021/acs.langmuir.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Drops are retained or held on surfaces due to a retention force exerted on the drop by the surface. This retention force is a function of the surface tension of the liquid, drop geometry, and the contact angle between the drop and the surface. When external or body forces exceed the retention force, the drop begins to move. This work explores the conditions for which drop departure occurs on structured superhydrophobic surfaces in the presence of an applied shear flow. Drop departure is explored for five microstructured superhydrophobic surfaces, one nanostructured carbon nanotube surface and one smooth hydrophobic surface. Surface solid fractions range from 0.05 to 1.00, and measured static contact angles range from 121° to 161°. Droplet volumes of 5, 10, 20, 30, 40, and 50 μL are tested on each surface. For each experiment, increasing air velocity is applied to a droplet placed on a surface until the droplet departs. High-speed imaging is used to track droplet base length, height, cross-section area (as viewed from the side) and advancing/receding contact angles. Measurements of drop advancing and receding contact angles are reported at the point of departure, with increasing contact angle hysteresis observed prior to departure. Contact angle hysteresis is observed to be a good indicator of droplet mobility. Measurements of the average air velocity over the height of the droplet are determined at the point of departure for all conditions. The measured air velocity shows strong dependence on the surface solid fraction, and the required shear flow velocity decreases as the surface solid fraction decreases. This is most pronounced at very low solid fractions. A coefficient of drag for the departing drops in shear flow is calculated and is shown to decrease with increasing Reynolds number.
Collapse
Affiliation(s)
- Blake M Lyons
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah 84604, United States
| | - Daniel Maynes
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah 84604, United States
| | - Julie Crockett
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah 84604, United States
| | - Brian D Iverson
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah 84604, United States
| |
Collapse
|
2
|
He D, Cui Y, Ming F, Wu W. Advancements in Passive Wireless Sensors, Materials, Devices, and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:8200. [PMID: 37837030 PMCID: PMC10575307 DOI: 10.3390/s23198200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In recent years, passive wireless sensors have been studied for various infrastructure sectors, making them a research and development focus. While substantial evidence already supports their viability, further effort is needed to understand their dependability and applicability. As a result, issues related to the theory and implementation of wireless sensors still need to be resolved. This paper aims to review and summarize the progress of the different materials used in different passive sensors, the current status of the passive wireless sensor readout devices, and the latest peripheral devices. It will also cover other related aspects such as the system equipment of passive wireless sensors and the nanogenerators for the energy harvesting for self-powered sensors for applications in contemporary life scenarios. At the same time, the challenges for future developments and applications of passive wireless are discussed.
Collapse
Affiliation(s)
- Denghui He
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China; (D.H.); (F.M.)
| | - Yuanhui Cui
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China; (D.H.); (F.M.)
| | - Fangchao Ming
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China; (D.H.); (F.M.)
| | - Weiping Wu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 390 Qinghe Road, Jiading District, Shanghai 201800, China
- Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 390 Qinghe Road, Jiading District, Shanghai 201800, China
| |
Collapse
|
3
|
Upadhyaya AM, Hasan MK, Abdel-Khalek S, Hassan R, Srivastava MC, Sharan P, Islam S, Saad AME, Vo N. A Comprehensive Review on the Optical Micro-Electromechanical Sensors for the Biomedical Application. Front Public Health 2021; 9:759032. [PMID: 34926383 PMCID: PMC8674308 DOI: 10.3389/fpubh.2021.759032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
This study presented an overview of current developments in optical micro-electromechanical systems in biomedical applications. Optical micro-electromechanical system (MEMS) is a particular class of MEMS technology. It combines micro-optics, mechanical elements, and electronics, called the micro-opto electromechanical system (MOEMS). Optical MEMS comprises sensing and influencing optical signals on micron-level by incorporating mechanical, electrical, and optical systems. Optical MEMS devices are widely used in inertial navigation, accelerometers, gyroscope application, and many industrial and biomedical applications. Due to its miniaturised size, insensitivity to electromagnetic interference, affordability, and lightweight characteristic, it can be easily integrated into the human body with a suitable design. This study presented a comprehensive review of 140 research articles published on photonic MEMS in biomedical applications that used the qualitative method to find the recent advancement, challenges, and issues. The paper also identified the critical success factors applied to design the optimum photonic MEMS devices in biomedical applications. With the systematic literature review approach, the results showed that the key design factors could significantly impact design, application, and future scope of work. The literature of this paper suggested that due to the flexibility, accuracy, design factors efficiency of the Fibre Bragg Grating (FBG) sensors, the demand has been increasing for various photonic devices. Except for FBG sensing devices, other sensing systems such as optical ring resonator, Mach-Zehnder interferometer (MZI), and photonic crystals are used, which still show experimental stages in the application of biosensing. Due to the requirement of sophisticated fabrication facilities and integrated systems, it is a tough choice to consider the other photonic system. Miniaturisation of complete FBG device for biomedical applications is the future scope of work. Even though there is a lot of experimental work considered with an FBG sensing system, commercialisation of the final FBG device for a specific application has not been seen noticeable progress in the past.
Collapse
Affiliation(s)
- Anup M. Upadhyaya
- Department of Mechanical Engineering, Amity School of Engineering and Technology (ASET), Amity University, Noida, Lucknow, India
- Department of Mechanical Engineering, The Oxford College of Engineering, Bangalore, India
- Department of Electronics and Communication Engineering, The Oxford College of Engineering, Bangalore, India
| | - Mohammad Kamrul Hasan
- Network and Communication Technology Lab, Center for Cyber Security, Faculty of Information Science and Technology, The National University of Malaysia (UKM), Bangi, Malaysia
| | - S. Abdel-Khalek
- Department of Mathematics and Statistics, College of Science, Taif University, Taif, Saudi Arabia
| | - Rosilah Hassan
- Network and Communication Technology Lab, Center for Cyber Security, Faculty of Information Science and Technology, The National University of Malaysia (UKM), Bangi, Malaysia
| | - Maneesh C. Srivastava
- Department of Mechanical Engineering, Amity School of Engineering and Technology (ASET), Amity University, Noida, Lucknow, India
- Department of Mechanical Engineering, The Oxford College of Engineering, Bangalore, India
| | - Preeta Sharan
- Department of Electronics and Communication Engineering, The Oxford College of Engineering, Bangalore, India
| | - Shayla Islam
- Institute of Computer Science and Digital Innovation, University College Sedaya International (UCSI) University, Kuala Lumpur, Malaysia
| | - Asma Mohammed Elbashir Saad
- Department of Physics College of Science and Humanities in AL-Kharj, Prince Sattam Bin Abdulaziz University, AL-Kharj, Saudi Arabia
| | - Nguyen Vo
- Department of Information Technology, Victorian Institute of Technology, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Nathani MU, Nazemi H, Love C, Babu Lopez Y, Swaminathan S, Emadi A. Capacitive Based Micromachined Resonators for Low Level Mass Detection. MICROMACHINES 2020; 12:13. [PMID: 33375651 PMCID: PMC7823894 DOI: 10.3390/mi12010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022]
Abstract
Advancements in microfabrication technologies and novel materials have led to new innovations in miniaturized gas sensors that can identify miniscule changes in a complex environment. Micromachined resonators with the capability to offer high sensitivity and selectivity in array integration make mass loading a potential mechanism for electronic nose applications. This paper investigates the mass sensing characteristics of progressive capacitive based micromachined resonators as potential candidates for volatile organic compound detection where also there is a need for miniaturized array configuration. In this paper, a detailed investigative review of the major three geometric designs of capacitive based micromachined resonators, namely, the microcantilever, the microbridge and the clamped membrane sensors is performed. Although many reviews are present in literature regarding mass sensors, however there is a gap in the literature regarding the common capacitive based micromachined mass sensors. This research gives a review on the foundation for capacitive based micromachined mass sensors while highlighting the potential capabilities of each geometric design to be developed further. Moreover, this paper also introduces the advancements based on the geometric designs of the capacitive based micromachined mass sensors. An in-depth analysis is done for each geometric design, to identify the critical design parameters, which affect the sensors' performances. Furthermore, the theoretically achievable mass sensitivity for each capacitive based micromachined mass sensor is modeled and analyzed using finite element analysis with mass variation in the picogram range. Finally, a critical analysis is done on the sensor sensitivities and further discussed in detail wherein each design is compared to each other and its current advances. Additionally, an insight to the advantages and disadvantages associated with each simulated geometry and its different advances are given. The results of the investigative review and analysis indicate that the sensitivities of the capacitive based micromachined sensors are dependent not only on the material composition of the devices but also on the varying degrees of clamping between the sensor geometries. In essence, the paper provides future research the groundwork to choose proper candidate geometry for a capacitive based micromachined mass sensor, with its several advantages over other mass sensors, based on the needed application.
Collapse
Affiliation(s)
- Muhammad Umair Nathani
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada; (H.N.); (C.L.); (Y.B.L.); (S.S.); (A.E.)
| | | | | | | | | | | |
Collapse
|