1
|
Zhao L, Geng X, Wang J, Liu Y, Yan W, Xu Z, Chen J. Excited-state dynamics of 3-hydroxychromone in gas phase. Phys Chem Chem Phys 2024. [PMID: 39028298 DOI: 10.1039/d4cp01190b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In recent years, 3-hydroxychromone (3-HC) and its derivatives have attracted much interest for their applications as molecular photoswitches and fluorescent probes. A clear understanding of their excited-state dynamics is essential for their applications and further development of new functional 3-HC derivatives. However, the deactivation mechanism of the photoexcited 3-HC family is still puzzling as their spectral properties are sensitive to the surrounding medium and substituents. The excited-state relaxation channels of 3-HC have been a matter of intense debate. In the current work, we thoroughly investigated the excited-state decay process of the 3-HC system in the gas phase using high-level electronic structure calculations and on-the-fly excited-state dynamic simulations intending to provide insight into the intrinsic photochemical properties of the 3-HC system. A new deactivation mechanism is proposed in the gas phase, which is different from that in solvents. The excited-state intramolecular proton transfer (ESIPT) process that occurs in solutions is not preferred in the gas phase due to the existence of a sizable energy barrier (∼0.8 eV), and thus, no dual fluorescence is found. On the contrary, the non-radiative decay process is the dominant decay channel, which is driven by photoisomerization combined with ring-puckering and ring-opening processes. The results coincide with the observations of an experiment performed in a supersonic jet by Itoh (M. Itoh, Pure Appl. Chem., 1993, 65(8), 1629-1634). The current work indicates that the solution environment plays an important role in regulating the excited-state dynamic behaviour of the 3-HC system. This study thus provides theoretical guidance for the rational design and improvement of the photochemical properties of the 3-HC system and paves the way for further investigation into its photochemical properties in complex environments.
Collapse
Affiliation(s)
- Li Zhao
- College of Science, China University of Petroleum (East China) Qingdao 266580, Shandong, China.
| | - Xuehui Geng
- College of Science, China University of Petroleum (East China) Qingdao 266580, Shandong, China.
| | - Jiangyue Wang
- College of Science, China University of Petroleum (East China) Qingdao 266580, Shandong, China.
| | - Yuxuan Liu
- College of Science, China University of Petroleum (East China) Qingdao 266580, Shandong, China.
| | - Wenhui Yan
- College of Science, China University of Petroleum (East China) Qingdao 266580, Shandong, China.
| | - Zhijie Xu
- College of Science, China University of Petroleum (East China) Qingdao 266580, Shandong, China.
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry University of Copenhagen Universitetsparken 5, 2100 KøbenhavnØ, Denmark.
| |
Collapse
|
2
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
Banik D, Karak A, Halder S, Banerjee S, Mandal M, Maiti A, Jana K, Mahapatra AK. A turn-on fluorescent probe for selective detection of H 2S in environmental samples and bio-imaging in human breast cancer cells. Org Biomol Chem 2023; 21:8020-8030. [PMID: 37772332 DOI: 10.1039/d3ob01319g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A triphenylamine-benzothaizole-based turn-on fluorescent probe TPB-NO2 was designed and synthesized for tracking H2S in both environmental and biological samples depending upon the sensing strategy of thiolysis of 2,4-dinitrophenyl (DNP) ether. Due to PET (photoinduced electron transfer), occurring from donor triphenylamine moiety to acceptor DNP moiety, the probe TPB-NO2 itself is very weakly fluorescent and colorless in DMSO/H2O solution (1 : 1, v/v; 10 mM HEPES buffer, pH 7.4). But the addition of H2S leads to thiolysis of 2,4-dinitrophenyl ether to block the initial PET process and hence it exhibits naked eye detectable turn-on response with bright cyan fluorescence and intense brown color. Not only that, the probe exhibits excellent selectivity over other bio-thiols like Cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), fast response time (<2 min), and high sensitivity with a detection limit of 9.81 nM. Moreover, to explore the practical applicability of our probe we employed it to monitor H2S successfully in environmental water samples, solid-state TLC strip study, Quantitative determination of H2S in eggs, and in the bioimaging of human breast cancer cells (MDA-MB 231).
Collapse
Affiliation(s)
- Dipanjan Banik
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Shilpita Banerjee
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Moumi Mandal
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Anwesha Maiti
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| |
Collapse
|
4
|
Shang Z, Meng Q, Tian D, Wang Y, Zhang Z, Zhang Z, Zhang R. Red-emitting fluorescent probe for hydrogen sulfide detection and its applications in food freshness determination and in vivo bioimaging. Food Chem 2023; 427:136701. [PMID: 37423045 DOI: 10.1016/j.foodchem.2023.136701] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
We report the development of a red-emitting fluorescence probe (XDS) for hydrogen sulfide (H2S) detection in biosystems, real-world food samples, and application of this probe for monitoring of H2S production during food spoilage. The XDS probe is developed by coupling of coumarin derivative to rhodanic-CN through a H2S responsive CC bond. Remarkable fluorescence quenching of XDS is observed as a result of the response to H2S. Semi-quantitative detection of H2S in three real-world water and two beer samples and monitoring of H2S production during food spoilage in real-time by "naked-eye" and smartphone colorimetric analysis are then achieved using XDS as the probe. Moreover, XDS is low toxicity, allowing it being used for visualizing endogenous and exogenous H2S in vivo in a mouse model. It is expected that the successful development of XDS could provide an effective tool for investigating the roles of H2S in biomedical system and for future food safety evaluation.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province 114051, PR China.
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Cao X, Lu H, Wei Y, Jin L, Zhang Q, Liu B. A simple "turn-on" fluorescent probe capable of recognition cysteine with rapid response and high sensing in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121167. [PMID: 35316627 DOI: 10.1016/j.saa.2022.121167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Cysteine (Cys), an essential biological amino acid, participates several crucial functions in various physiological and pathological processes. The sensitive and specific detection of Cys is of great significance for understanding its biological function to disease diagnosis. Herein, we designed and synthesized a simple fluorescence sensor 2-(benzothiophen-2-yl)-4-oxo-4H-chromen-3-yl acrylate (BTCA) composed of a flavonol skeleton as the fluorophore and acrylic ester group as the recognition receptor. Probe BTCA displayed high selectivity and extremely fast response toward Cys in phosphate buffer solution in the presence of other competitive species even Homocysteine (Hcy) and Glutathione (GSH) owing to a specific conjugate addition-cyclization reaction between the acrylate moiety and Cys. The photoluminescence mechanism of probe BTCA toward Cys was modulated by excited state intramolecular proton transfer (ESIPT) process. The sensing property for Cys was studied by UV-Visible, fluorescence spectrophotometric analyses and time-dependent density functional theory (TD-DFT) calculations, those results indicated that probe BTCA possessed excellent sensitivity, higher specificity, dramatically "naked-eye" fluorescence enhancement (30-fold), high anti-interference ability, especially immediate response speed (within 40 s). Additionally, the practicability of sensor BTCA in exogenous and endogenous Cys imaging in living cells and zebrafish was elucidated as well, suggesting that it has remarkedly diagnostic significance in physiological and pathological process.
Collapse
Affiliation(s)
- Xiaoyan Cao
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China.
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Yifan Wei
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Lingxia Jin
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Qiang Zhang
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Bo Liu
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| |
Collapse
|
6
|
Yu J, Qiu S, Zhang K, Zhou T, Ban X, Duan Y, Jia D, Zhu Q, Zhang T. A novel thermally-activated delayed fluorescent probe based on hydroxyl as identify group for detection of iron ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Meng X, Song L, Han H, Zhao J, Zheng D. A novel mechanism of intramolecular proton transfer in the excited state of 3-hydroxy-4H-benzochromone derivatives: A new explanation at the theoretical level. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Du Y, Wang H, Zhang T, Wen W, Li Z, Bi M, Liu J. An ESIPT-based fluorescent probe with fast-response for detection of hydrogen sulfide in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120390. [PMID: 34536889 DOI: 10.1016/j.saa.2021.120390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT) has recently received considerable attention due to its dual fluorescent changes and large Stokes shift. Hydrogen sulfide (H2S) is a gas signal molecule that plays important roles in modulating the functions of different systems. Herein, by modifying 2-(2́-hydroxyphenyl) benzothiazole (HBT) scaffold, a novel near-infrared mitochondria-targeted fluorescent probe HBTP-H2S has been rationally designed based on excited-state intramolecular proton transfer (ESIPT) effect. The nucleophilic addition reaction of the H2S with probe HBTP-H2S caused the break of the conjugated skeleton, resulting the shifting of maximum emission peak from 658 nm to 470 nm. HBTP-H2S showed fast-response response time, good selectivity and a large Stokes shift (188 nm) toward H2S. Most importantly, inspired by the inherent advantages of the probe, HBTP-H2S was successfully employed to monitor mitochondrial H2S in HepG2 cells.
Collapse
Affiliation(s)
- Yuting Du
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China.
| | - Hongliang Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Ting Zhang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Wei Wen
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Zhiying Li
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Minjie Bi
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Juan Liu
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| |
Collapse
|
9
|
Zhang L, Luo S, Chen Z, Cui L. A highly sensitive and selective fluorescent probe for tracking hydrogen sulfide in red wine. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lina Zhang
- Department of basic education Zunyi Medical and Pharmaceutical College 563006 Zunyi P. R. China
| | - Sen Luo
- Department of basic education Zunyi Medical and Pharmaceutical College 563006 Zunyi P. R. China
| | - Zhehong Chen
- Department of basic education Zunyi Medical and Pharmaceutical College 563006 Zunyi P. R. China
| | - Linyun Cui
- Department of basic education Zunyi Medical and Pharmaceutical College 563006 Zunyi P. R. China
| |
Collapse
|
10
|
Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Ou L, Guo R, Lin W. A coumarin-based "off-on" fluorescent probe for highly selective detection of hydrogen sulfide and imaging in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1511-1516. [PMID: 33690756 DOI: 10.1039/d1ay00097g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S), as a significant signaling molecule, is associated with diverse physiological and pathological processes. However, it's still a challenge to explore outstanding tools for detecting endogenous H2S in vivo. Thus, a simple "off-on" H2S fluorescent probe CMHS has been reasonably designed, and it is based on coumarin as the fluorophore group. The probe CMHS displayed a crucial turn-on fluorescence enhancement (180-fold), rapid reaction time, high selectivity, and a low limit of detection (2.31 × 10-7 M). Additionally, probe CMHS could be applied to visualize exogenous and endogenous H2S successfully in HeLa cells with low cytotoxicity and good permeability.
Collapse
Affiliation(s)
- Luying Ou
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | | | | |
Collapse
|
12
|
Chumak AY, Mudrak VO, Kotlyar VM, Doroshenko AO. 4’-Nitroflavonol fluorescence: Excited state intramolecular proton transfer reaction from the non-emissive excited state. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Li H, Fang Y, Yan J, Ren X, Zheng C, Wu B, Wang S, Li Z, Hua H, Wang P, Li D. Small-molecule fluorescent probes for H2S detection: Advances and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116117] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Gudipati R, Kandula V, Raghavulu K, Basavaiah K, Yennam S, Behera M. Peroxy‐Benzoic Acid Mediated Domino C[sp
2
] Hydroxylation /Annulation of Enaminones for the Synthesis of 3‐Hydroxy Chromones. ChemistrySelect 2020. [DOI: 10.1002/slct.202001749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramakrishna Gudipati
- Department of Medicinal ChemistryGVK Biosciences Pvt. Ltd. Plot No. 125 (part)&126, IDA, Mallapur Hyderabad Telangana India 500076
- Department of Inorganic & Analytical ChemistryAndhra University Waltair Junction Visakhapatnam Andhra Pradesh India 530003
| | - Venu Kandula
- Department of Medicinal ChemistryGVK Biosciences Pvt. Ltd. Plot No. 125 (part)&126, IDA, Mallapur Hyderabad Telangana India 500076
| | - K. Raghavulu
- Department of Medicinal ChemistryGVK Biosciences Pvt. Ltd. Plot No. 125 (part)&126, IDA, Mallapur Hyderabad Telangana India 500076
- Department of Inorganic & Analytical ChemistryAndhra University Waltair Junction Visakhapatnam Andhra Pradesh India 530003
| | - K. Basavaiah
- Department of Inorganic & Analytical ChemistryAndhra University Waltair Junction Visakhapatnam Andhra Pradesh India 530003
| | - Satyanarayana Yennam
- Department of Medicinal ChemistryGVK Biosciences Pvt. Ltd. Plot No. 125 (part)&126, IDA, Mallapur Hyderabad Telangana India 500076
| | - Manoranjan Behera
- Department of Medicinal ChemistryGVK Biosciences Pvt. Ltd. Plot No. 125 (part)&126, IDA, Mallapur Hyderabad Telangana India 500076
| |
Collapse
|
15
|
Fu D, Zhi W, Lv L, Luo Y, Xiong X, Kang X, Hou W, Yan J, Zhao H, Zheng L. Construction of ratiometric hydrogen sulfide probe with two reaction sites and its applications in solution and in live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117391. [PMID: 31344579 DOI: 10.1016/j.saa.2019.117391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S), as the third multifunctional signaling biomolecule, it acts as a neuromodulator in the human brain and is recognized as an important gas transmitter in human physiology. The abnormal concentrations of H2S in human cells can result in several common diseases. Therefore, accurate, fast, and reliable methodologies are required for measuring the in vitro and in vivo concentrations of H2S to further investigate its function. In this study, a novel DR-SO2N3 fluorescent probe containing the fluorophore Disperse Red 277 and a sulfonyl azide group was developed and exploited based on the structural characteristic of Disperse Red 277 that contains the active site easily can be attacked by HS-. Therefore, this probe featured two reaction sites that involved the reduction and Michael addition of H2S and exhibited rapid ratiometric fluorescence changes and high selectivity towards H2S with a 619-fold enhancement factor. Further, the density functional theory (DFT)/time-dependent density functional theory (TDDFT) studies are conducted to understand the photophysical properties of DR-SO2N3 and the final product DRHS-SO2NH2, which makes the proposed mechanism more reasonable. Furthermore, the probe was successfully applied for the ratiometric fluorescence imaging of exogenous H2S in living cells.
Collapse
Affiliation(s)
- Deyang Fu
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, PR China
| | - Weiru Zhi
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, PR China
| | - Lihua Lv
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, PR China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, #2 Linggong Road, Dalian 116024, PR China
| | - Xiaoqing Xiong
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, #2 Linggong Road, Dalian 116024, PR China.
| | - Xiaohui Kang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, #2 Linggong Road, Dalian 116024, PR China; College of Pharmacy, Dalian Medical University, Western 9 Lvshun nan Road, Dalian 116044, PR China.
| | - Wei Hou
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, PR China
| | - Jun Yan
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, PR China
| | - Hongjuan Zhao
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, PR China
| | - Laijiu Zheng
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, PR China
| |
Collapse
|
16
|
Bezner BJ, Ryan LS, Lippert AR. Reaction-Based Luminescent Probes for Reactive Sulfur, Oxygen, and Nitrogen Species: Analytical Techniques and Recent Progress. Anal Chem 2019; 92:309-326. [DOI: 10.1021/acs.analchem.9b04990] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
A new coumarin-based fluorescent probe for selective recognition of Cu2+ and S2− in aqueous solution and living cells. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Sun C, Su X, Zhou Q, Shi Y. Regular tuning of the ESIPT reaction of 3-hydroxychromone-based derivatives by substitution of functional groups. Org Chem Front 2019. [DOI: 10.1039/c9qo00722a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The electron-withdrawing ability of an atom and length of substitution groups would affect the ESIPT reaction and photophysical properties of 3-hydroxychromone-based derivatives.
Collapse
Affiliation(s)
- Chaofan Sun
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun 130012
- China
| | - Xing Su
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun 130012
- China
| | - Qiao Zhou
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun 130012
- China
| | - Ying Shi
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun 130012
- China
| |
Collapse
|