1
|
Padnya P, Shiabiev I, Pysin D, Gerasimova T, Ranishenka B, Stanavaya A, Abashkin V, Shcharbin D, Shi X, Shen M, Nazarova A, Stoikov I. Non-Viral Systems Based on PAMAM-Calix-Dendrimers for Regulatory siRNA Delivery into Cancer Cells. Int J Mol Sci 2024; 25:12614. [PMID: 39684325 DOI: 10.3390/ijms252312614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer is one of the most common diseases in developed countries. Recently, gene therapy has emerged as a promising approach to cancer treatment and has already entered clinical practice worldwide. RNA interference-based therapy is a promising method for cancer treatment. However, there are a number of limitations that require vectors to deliver therapeutic nucleic acids to target tissues and organs. Active research is currently underway to find highly effective, low-toxic nanomaterials capable of acting as nanocarriers. In this study, we demonstrated for the first time the ability of symmetrical polyamidoamine dendronized thiacalix[4]arenes (PAMAM-calix-dendrimers) to form stable positively charged complexes with siRNAs, protect them from enzymatic degradation, and efficiently deliver gene material to HeLa cells. A distinctive feature of PAMAM-calix-dendrimers was the unusual decrease in hemo- and cytotoxicity with increasing generation, while these compounds did not cause toxic effects at concentrations required for siRNA binding and delivery. A comparative analysis of the efficiency of complex formation of PAMAM-calix-dendrimers and classical PAMAM dendrimers with siRNAs was also performed. The findings may facilitate the creation of novel unique gene delivery systems for cancer nanomedicine development.
Collapse
Affiliation(s)
- Pavel Padnya
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Igor Shiabiev
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Dmitry Pysin
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Bahdan Ranishenka
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus
| | - Alesia Stanavaya
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Anastasia Nazarova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| |
Collapse
|
2
|
Marcos PM, Berberan-Santos MN. Recent Advances in Calixarene-Based Fluorescent Sensors for Biological Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:7181. [PMID: 39598958 PMCID: PMC11597938 DOI: 10.3390/s24227181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Due to their structural features, macrocyclic compounds such as calixarenes, conjugated with a variety of fluorophores have led to the development of fluorescent probes for numerous applications. This review covers the recent advances (from 2009 to date) made in calixarene-based fluorescent sensors and their biological applications. In addition to the fluorescence mechanisms used to signal the analyte binding, this article focuses mainly on the detection of biological relevant ions, on the selective sensing of biomolecules, such as amino acids, enzymes, drugs and other organic compounds, and on intracellular imaging. Calixarene-containing fluorescent nanoparticles and nanoaggregates for imaging and drug delivery are also described. Finally, this review presents some conclusions and future perspectives in this field.
Collapse
Affiliation(s)
- Paula M. Marcos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, 1749-016 Lisboa, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mário N. Berberan-Santos
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| |
Collapse
|
3
|
Sultanova ED, Fedoseeva AA, Fatykhova AM, Mironova DA, Ziganshina SA, Ziganshin MA, Evtugyn VG, Burilov VA, Solovieva SE, Antipin IS. Multi-functional imidazolium dendrimers based on thiacalix[4]arenes: self-assembly, catalysis and DNA binding. SOFT MATTER 2024; 20:7072-7082. [PMID: 39189648 DOI: 10.1039/d4sm00764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
For the first time, dendrimers based on thiacalix[4]arenes bearing imidazolium dendrons on one side and alkyl fragments on another side of the macrocyclic platform and symmetrical dendrimers with four dendrons on both sides were synthesized. Dendrons consist of gallic acid-based branches functionalized with imidazolium and triazolium groups. The physicochemical properties of the dendrimers such as micellar concentration (CMC), size, and solubilization capacity were measured. Novel dendrimers exhibit high binding efficiency with calf thymus DNA (ctDNA) as revealed by fluorescence quenching of the DNA-EtBr complex in the presence of macrocycles. Dendrimers have been used as supports for Pd nanoparticles, which show high catalytic activity for the reduction of nitroaromatic compounds.
Collapse
Affiliation(s)
- Elza D Sultanova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Angelina A Fedoseeva
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Aigul M Fatykhova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Diana A Mironova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Sufia A Ziganshina
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Marat A Ziganshin
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Vladimir G Evtugyn
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Vladimir A Burilov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Svetlana E Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Igor S Antipin
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| |
Collapse
|
4
|
Lazar AN, Perret F, Perez-Lloret M, Michaud M, Coleman AW. Promises of anionic calix[n]arenes in life science: State of the art in 2023. Eur J Med Chem 2024; 264:115994. [PMID: 38070431 DOI: 10.1016/j.ejmech.2023.115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Because they hold together molecules by means of non-covalent interactions - relatively weak and thus, potentially reversible - the anionic calixarenes have become an interesting tool for efficiently binding a large range of ligands - from gases to large organic molecules. Being highly water soluble and conveniently biocompatible, they showed growing interest for many interdisciplinary fields, particularly in biology and medicine. Thanks to their intrinsic conical shape, they provide suitable platforms, from vesicles to bilayers. This is a valuable characteristic, as so they mimic the biologically functional architectures. The anionic calixarenes propose efficient alternatives for overcoming the limitations linked to drug delivery and bioavailability, as well as drug resistance along with limiting the undesirable side effects. Moreover, the dynamic non-covalent binding with the drugs enables predictable and on demand drug release, controlled by the stimuli present in the targeted environment. This particular feature instigated the use of these versatile, stimuli-responsive compounds for sensing biomarkers of diverse pathologies. The present review describes the recent achievements of the anionic calixarenes in the field of life science, from drug carriers to biomedical engineering, with a particular outlook on their applications for the diagnosis and treatment of different pathologies.
Collapse
Affiliation(s)
- Adina-N Lazar
- Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS, F-69621, France.
| | - Florent Perret
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, Univ. Lyon - CNRS - Univ. Claude Bernard Lyon 1 - CPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne, 69622, Cedex, France.
| | - Marta Perez-Lloret
- School of Biological and Chemical Sciences, University of Galway, Ireland Galway, Ireland
| | - Mickael Michaud
- CIRI, Univ. Lyon1, Inserm, U1111, CNRS, UMR5308, ENS, Lyon, France
| | | |
Collapse
|
5
|
Aliabadi HAM, Forouzandeh-Malati M, Hassanzadeh-Afruzi F, Noruzi EB, Ganjali F, Kashtiaray A, Bani MS, Eftekhari RB, Eivazzadeh-Keihan R, Maleki A. Magnetic xanthan gum-silk fibroin hydrogel: A nanocomposite for biological and hyperthermia applications. Int J Biol Macromol 2023; 253:127005. [PMID: 37734527 DOI: 10.1016/j.ijbiomac.2023.127005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
A magnetic xanthan hydrogel/silk fibroin nanobiocomposite (XG hydrogel/SF/Fe3O4) was designed, fabricated, and characterized using analyzing methods such as FT-IR, EDX, FE-SEM, XRD, TGA, and VSM to evaluate the exact structure of product nanobiocomposite. The FE-SEM images reveal the presence of spherical shapes exhibiting a narrow size range and homogeneous distribution, measuring between 30 and 35 nm in diameter. The VSM analysis demonstrates the superparamagnetic properties of the XG hydrogel/SF/Fe3O4 nanobiocomposite, exhibiting a magnetic saturation of 54 emu/g at room temperature. The biological response of the nanobiocomposite scaffolds was assessed through cell viability and red blood cell hemolytic assays. MCF10A cells were exposed to a concentration of 1.75 mg/mL of the nanobiocomposite, and after 2 and 3 days, the cell viability was found to be 96.95 % and 97.02 %, respectively. The hemolytic effect was nearly 0 % even at higher concentrations (2 mg/mL). Furthermore, the magnetic nanobiocomposite showed excellent potential for hyperthermia applications, with a maximum specific absorption rate of 7 W/g for 1 mg/mL of the sample under a magnetic field in different frequencies (100, 200, 300, and 400 MHz) and 5 to 20 min time intervals.
Collapse
Affiliation(s)
| | - Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Reza Baradaran Eftekhari
- Department of Pharmaceuticals, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
6
|
Yousefnezhad M, Davaran S, Babazadeh M, Akbarzadeh A, Pazoki-Toroudi H. PCL-based nanoparticles for doxorubicin-ezetimibe co-delivery: A combination therapy for prostate cancer using a drug repurposing strategy. BIOIMPACTS : BI 2023; 13:241-253. [PMID: 37431480 PMCID: PMC10329752 DOI: 10.34172/bi.2023.24252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/21/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Drug repurposing is an effective strategy for identifying the use of approved drugs for new therapeutic purposes. This strategy has received particular attention in the development of cancer chemotherapy. Considering that a growing body of evidence suggesting the cholesterol-lowering drug ezetimibe (EZ) may prevent the progression of prostate cancer, we investigated the effect of EZ alone and in combination with doxorubicin (DOX) on prostate cancer treatment. METHODS In this study, DOX and EZ were encapsulated within a PCL-based biodegradable nanoparticle. The physicochemical properties of drug containing nanoparticle based on PCL-PEG-PCL triblock copolymer (PCEC) have been exactly determined. The encapsulation efficiency and release behavior of DOX and EZ were also studied at two different pHs and temperatures. RESULTS The average size of nanoparticles (NPs) observed by field emission scanning electron microscopy (FE-SEM) was around 82±23.80 nm, 59.7±18.7 nm, and 67.6±23.8 nm for EZ@PCEC, DOX@PCEC, and DOX+EZ@PCEC NPs, respectively, which had a spherical morphology. In addition, DLS measurement showed a monomodal size distribution of around 319.9, 166.8, and 203 nm hydrodynamic diameters and negative zeta potential (-30.3, -6.14, and -43.8) mV for EZ@PCEC, DOX@PCEC, and DOX+EZ@PCEC NPs, respectively. The drugs were released from the NPs sustainably in a pH and temperature-dependent manner. Based on the MTT assay results, PCEC copolymer exhibited negligible cytotoxicity on the PC3 cell line. Therefore, PCEC was a biocompatible and suitable nano-vehicle for this study. The cytotoxicity of the DOX-EZ-loaded NPs on the PC3 cell line was higher than that of NPs loaded with single drugs. All the data confirmed the synergistic effect of EZ in combination with DOX as an anticancer drug. Furthermore, fluorescent microscopy and DAPI staining were performed to show the cellular uptake, and morphological changes-induced apoptosis of treated cells. CONCLUSION Overall, the data from the experiments represented the successful preparation of the nanocarriers with high encapsulation efficacy. The designed nanocarriers could serve as an ideal candidate for combination therapy of cancer. The results corroborated each other and presented successful EZ and DOX formulations containing PCEC NPs and their efficiency in treating prostate cancer.
Collapse
Affiliation(s)
- Mina Yousefnezhad
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirzaagha Babazadeh
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
7
|
Shafiei-Irannejad V, Rahimkhoei V, Molaparast M, Akbari A. Synthesis and characterization of novel hybrid nanomaterials based on β-cyclodextrine grafted halloysite nanotubes for delivery of doxorubicin to MCF-7 cell line. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Molaparast M, Malekinejad H, Rahimi M, Shafiei-Irannejad V. Biocompatible functionalized graphene nanosheet for delivery of doxorubicin to breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Calix[4]arene-based thiosemicarbazide Schiff-base ligand and its transition metal complexes: synthesis and biological assessment. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Molaparast M, Ehsanimehr S, Kahyaei M, Mahboubi N, Shafiei-Irannejad V. Polymeric complex based on poly (styrene-alt-maleic anhydride)- targeted with folic acid for doxorubicin delivery to HT-29 colorectal cancer cells. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1999953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Morteza Molaparast
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- ERNAM – Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Sedigheh Ehsanimehr
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Maryam Kahyaei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Negin Mahboubi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Mostovaya O, Padnya P, Shiabiev I, Mukhametzyanov T, Stoikov I. PAMAM-calix-dendrimers: Synthesis and Thiacalixarene Conformation Effect on DNA Binding. Int J Mol Sci 2021; 22:ijms222111901. [PMID: 34769329 PMCID: PMC8585033 DOI: 10.3390/ijms222111901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/16/2022] Open
Abstract
A convenient method for the synthesis of the first generation PAMAM dendrimers based on the thiacalix[4]arene has been developed for the first time. Three new PAMAM-calix-dendrimers with the macrocyclic core in cone, partial cone, and 1,3-alternate conformations were obtained with high yields. The interaction of the obtained compounds with salmon sperm DNA resulted in the formation of the associates of the size up to 200 nm, as shown by the UV-Vis spectroscopy, DLS, and TEM. It was demonstrated by the CD method that the structure of the DNA did not undergo significant changes upon binding. The PAMAM-calix-dendrimer based on the macrocycle in cone conformation stabilized DNA and prevented its degradation.
Collapse
Affiliation(s)
| | - Pavel Padnya
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| | | | | | - Ivan Stoikov
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| |
Collapse
|
12
|
Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021; 13:2022. [PMID: 34205672 PMCID: PMC8234925 DOI: 10.3390/polym13122022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Pure bioactive compounds alone can only be exceptionally administered in medical treatment. Usually, drugs are produced as various forms of active compounds and auxiliary substances, combinations assuring the desired healing functions. One of the important drug forms is represented by a combination of active substances and particle-shaped polymer in the nano- or micrometer size range. The review describes recent progress in this field balanced with basic information. After a brief introduction, the paper presents a concise overview of polymers used as components of nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles with functional groups is discussed. A section is devoted to formation of particles by self-assembly of homo- and copolymer-bearing functional groups. Special attention is focused on modification of the primary functional groups introduced during particle preparation, including introduction of ligands promoting anchorage of particles onto the chosen living cell types by interactions with specific receptors present in cell membranes. Particular attention is focused on progress in methods suitable for preparation of particles loaded with bioactive substances. The review ends with a brief discussion of the still not answered questions and unsolved problems.
Collapse
Affiliation(s)
- Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| | | | | | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| |
Collapse
|
13
|
Oguz M, Dogan B, Durdagi S, Bhatti AA, Karakurt S, Yilmaz M. Investigation of supramolecular interaction of quercetin with N, N-dimethylamine-functionalized p-sulfonated calix[4,8]arenes using molecular modeling and their in vitro cytotoxic response towards selected cancer cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj03038h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although quercetin is an effective bioactive compound preventing the progress of several human cancers, its impact is reduced due to low bioavailability.
Collapse
Affiliation(s)
- Mehmet Oguz
- Selcuk University, Department of Chemistry, 42075 Konya, Turkey
- Department of Advanced Material and Nanotechnology, Selcuk University, 42031 Konya, Turkey
| | - Berna Dogan
- Department of Biochemistry, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Asif Ali Bhatti
- Department of Chemistry, Government College University Hyderabad, Hyderabad, 71000, Pakistan
| | - Serdar Karakurt
- Selcuk University, Department of Biochemistry, Konya 42075, Turkey
| | - Mustafa Yilmaz
- Selcuk University, Department of Chemistry, 42075 Konya, Turkey
| |
Collapse
|
14
|
Eivazzadeh-Keihan R, Bahojb Noruzi E, Khanmohammadi Chenab K, Jafari A, Radinekiyan F, Hashemi SM, Ahmadpour F, Behboudi A, Mosafer J, Mokhtarzadeh A, Maleki A, Hamblin MR. Metal-based nanoparticles for bone tissue engineering. J Tissue Eng Regen Med 2020; 14:1687-1714. [PMID: 32914573 DOI: 10.1002/term.3131] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Tissue is vital to the organization of multicellular organisms, because it creates the different organs and provides the main scaffold for body shape. The quest for effective methods to allow tissue regeneration and create scaffolds for new tissue growth has intensified in recent years. Tissue engineering has recently used some promising alternatives to existing conventional scaffold materials, many of which have been derived from nanotechnology. One important example of these is metal nanoparticles. The purpose of this review is to cover novel tissue engineering methods, paying special attention to those based on the use of metal-based nanoparticles. The unique physiochemical properties of metal nanoparticles, such as antibacterial effects, shape memory phenomenon, low cytotoxicity, stimulation of the proliferation process, good mechanical and tensile strength, acceptable biocompatibility, significant osteogenic potential, and ability to regulate cell growth pathways, suggest that they can perform as novel types of scaffolds for bone tissue engineering. The basic principles of various nanoparticle-based composites and scaffolds are discussed in this review. The merits and demerits of these particles are critically discussed, and their importance in bone tissue engineering is highlighted.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Masoud Hashemi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Farnoush Ahmadpour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Behboudi
- Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Eivazzadeh‐Keihan R, Noruzi EB, Radinekiyan F, Salimi Bani M, Maleki A, Shaabani B, Haghpanahi M. Synthesis of Core-Shell Magnetic Supramolecular Nanocatalysts based on Amino-Functionalized Calix[4]arenes for the Synthesis of 4H-Chromenes by Ultrasonic Waves. ChemistryOpen 2020; 9:735-742. [PMID: 32626643 PMCID: PMC7327476 DOI: 10.1002/open.202000005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/01/2020] [Indexed: 12/20/2022] Open
Abstract
One of the most common phenol-formaldehyde cyclic oligomers from hydroxyalkylation reactions that exhibit supramolecular chemistry are calixarenes. These macrocyclic compounds are qualified to act as synthetic catalysts due to their specific features including being able to form host-guest complexes, having unique structural scaffolds and their relative ease of chemical modifications with a variety of functions on their upper rim and lower rim. Here, a functional magnetic nanocatalyst was designed and synthesized by using a synthetic amino-functionalized calix[4]arene. Its catalytic activity was evaluated in a one-pot synthesis of 2-amino-4H-chromene derivatives. Besides, this novel magnetic nanocatalyst was characterized by spectroscopic and analytical techniques such as FT-IR, EDX, FE-SEM, TEM VSM, XRD analysis.
Collapse
Affiliation(s)
- Reza Eivazzadeh‐Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of ChemistryIran University of Science and TechnologyTehran16846-13114Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic ChemistryUniversity of TabrizTabrizIran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of ChemistryIran University of Science and TechnologyTehran16846-13114Iran
| | - Milad Salimi Bani
- School of Mechanical EngineeringIran University of Science and TechnologyTehranIran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of ChemistryIran University of Science and TechnologyTehran16846-13114Iran
| | - Behrouz Shaabani
- Faculty of Chemistry, Department of Inorganic ChemistryUniversity of TabrizTabrizIran
| | - Mohammad Haghpanahi
- School of Mechanical EngineeringIran University of Science and TechnologyTehranIran
| |
Collapse
|
16
|
Khelghati N, Rasmi Y, Farahmandan N, Sadeghpour A, Mir SM, Karimian A, Yousefi B. Hyperbranched polyglycerol β-cyclodextrin as magnetic platform for optimization of doxorubicin cytotoxic effects on Saos-2 bone cancerous cell line. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Carbohydrate polymer-based silver nanocomposites: Recent progress in the antimicrobial wound dressings. Carbohydr Polym 2020; 231:115696. [DOI: 10.1016/j.carbpol.2019.115696] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 02/08/2023]
|
18
|
Bahojb Noruzi E, Molaparast M, Zarei M, Shaabani B, Kariminezhad Z, Ebadi B, Shafiei-Irannejad V, Rahimi M, Pietrasik J. Para-sulfonatocalix[n]arene-based biomaterials: Recent progress in pharmaceutical and biological applications. Eur J Med Chem 2020; 190:112121. [PMID: 32061960 DOI: 10.1016/j.ejmech.2020.112121] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/07/2023]
Abstract
The history, properties, and characteristics of para-sulfonato-calixarenes are described. On the one hand, the inherent antibacterial and antifungal properties against microorganisms, and on the other hand non-toxicity of these supramolecules toward human organs are analyzed. The resulting biocompatibility of para-sulfonato-calixarenes makes them potential candidates for diverse life sciences and pharmaceutical applications without significant side effects. The interactions with different drugs, the capability of drug encapsulation, delivery, and release, the formation of host-quest assemblies and inclusion complexation between para-sulfonato-calixarenes and drugs were also investigated in detail. Besides, their function in cancer treatment and their toxicity against different cancer cell lines were fully reviewed and summarized. Afterward, the capability of these macrocyclic compounds for biosensing of organic compounds, peptides and enzymes activity was highlighted. In this review, we also take a brief look at recent reports on the applications of para-sulfonato-calixarenes in fluorescence imaging and their usage as highly stable and bright probes for in vivo and in vitro imaging and sensing.
Collapse
Affiliation(s)
- Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
| | - Morteza Molaparast
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Zarei
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Shaabani
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
| | - Zahra Kariminezhad
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Baharin Ebadi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mahdi Rahimi
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland.
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland.
| |
Collapse
|
19
|
Synthesis, Crystal Structure, and Biological Activity of a Multidentate Calix[4]arene Ligand Doubly Functionalized by 2-Hydroxybenzeledene-Thiosemicarbazone. Molecules 2020; 25:molecules25020370. [PMID: 31963211 PMCID: PMC7024204 DOI: 10.3390/molecules25020370] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
The design and synthesis of a novel tert-butyl-calix[4]arene functionalized at 1, 3 positions of the lower rim with two terminal 2-hydroxybenzeledene-thiosemicarbazone moieties is reported. The new ligand with multi-dentate chelating properties was fully characterized by several techniques: ESI-Mass spectroscopy, FT-IR, 1H-NMR, and single crystal X-ray diffraction. The solid state structure confirms that the calix[4]arene macrocycle has the expected open cone conformation, with two opposite phenyl rings inclined outwards with large angles. The conformation of the two alkoxythiosemicarbazone arms produces a molecule with a C2 point group symmetry. An interesting chiral helicity is observed, with the two thiosemicarbazone groups oriented in opposite directions like a two-blade propeller. A water molecule is encapsulated in the center of the two-blade propeller through multiple H-bond coordinations. The antibacterial, antifungal, anticancer, and cytotoxic activities of the calix[4]arene-thiosemicarbazone ligand and its metal derivatives (Co2+, Ni2+, Cu2+, and Zn2+) were investigated. A considerable antibacterial activity (in particular against E. coli, MIC, and MBC = 31.25 μg/mL) was observed for the ligand and its metal derivatives. Significant antifungal activities against yeast (C. albicans) were also observed for the ligand (MIC = 31.25 μg/mL and MBC = 125 μg/mL) and for its Co2+ derivative (MIC = 62.5 μg/mL). All compounds show cytotoxicity against the tested cancerous cells. For the Saos-2 cell line, the promising anticancer activity of ligand L (IC50 < 25 μg/mL) is higher than its metal derivatives. The microscopic analysis of DAPI-stained cells shows that the treated cells change in morphology, with deformation and fragmentation of the nuclei. The hemo-compatibility study demonstrated that this class of compounds are suitable candidates for further in vivo investigations.
Collapse
|
20
|
Bahojb Noruzi E, Kheirkhahi M, Shaabani B, Geremia S, Hickey N, Asaro F, Nitti P, Kafil HS. Design of a Thiosemicarbazide-Functionalized Calix[4]arene Ligand and Related Transition Metal Complexes: Synthesis, Characterization, and Biological Studies. Front Chem 2019; 7:663. [PMID: 31649917 PMCID: PMC6794423 DOI: 10.3389/fchem.2019.00663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
In this study, we synthesized a new thiosemicarbazide-functionalized calix[4]arene L and its Co2+, Ni2+, Cu2+, and Zn2+ transition metal complexes. For characterization several techniques were employed: Fourier-transform infrared (FT-IR), 1H nuclear magnetic resonance (NMR), 13C-NMR, 15N-NMR, correlation spectroscopy (COZY), nuclear Overhauser enhancement spectroscopy (NOESY), electrospray ionization (ESI)-mass spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and elemental analysis. To explore the capability of the thiosemicarbazide function hosted on a calix[4]arene scaffold for growth inhibition of bacteria, fungi, and cancerous tumor cells, a series of biological evaluations were performed. For L, the antimicrobial tests revealed a higher antibacterial activity against gram-positive Bacillus subtilis and a lower activity against gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), whereas the gram-positive Staphylococcus aureus shows resistance. All examined metal derivatives show an enhancement of the antibacterial activity against gram-negative E. coli bacteria, with a more significant improvement for the Ni2+ and Zn2+ complexes. MTT assays showed a considerable in vitro anticancer activity of Co2+, Ni2+, and Cu2+ complexes against Saos-2 bone cancer cell lines. The activity is ascribable to the inorganic ions rather than calixarene ligand. Hemolysis assay results demonstrated that all compounds have high blood compatibility.
Collapse
Affiliation(s)
- Ehsan Bahojb Noruzi
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahsa Kheirkhahi
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Behrouz Shaabani
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Patrizia Nitti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Kashapov RR, Razuvayeva YS, Ziganshina AY, Mukhitova RK, Sapunova AS, Voloshina AD, Syakaev VV, Latypov SK, Nizameev IR, Kadirov MK, Zakharova LY. N-Methyl-d-glucamine-Calix[4]resorcinarene Conjugates: Self-Assembly and Biological Properties. Molecules 2019; 24:E1939. [PMID: 31137548 PMCID: PMC6572135 DOI: 10.3390/molecules24101939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 11/16/2022] Open
Abstract
Deep insight of the toxicity of supramolecular systems based on macrocycles is of fundamental interest because of their importance in biomedical applications. What seems to be most interesting in this perspective is the development of the macrocyclic compounds with biocompatible fragments. Here, calix[4]resorcinarene derivatives containing N-methyl- d-glucamine moieties at the upper rim and different chemical groups at the lower rim were synthesized and investigated. These macrocycles showed a tendency to self-aggregate in aqueous solution, and their self-assembly abilities depend on the structure of the lower rim. The in vitro cytotoxic and antimicrobial activity of the calix[4]resorcinarenes revealed the relationship of biological properties with the ability to aggregate. Compared to macrocycles with methyl groups on the lower rim, calix[4]resorcinarenes with sulfonate groups appear to possess very similar antibacterial properties, but over six times less hemolytic activity. In some ways, this is the first example that reveals the dependence of the observed hemolytic and antibacterial activity on the lipophilicity of the calix[4]arene structure.
Collapse
Affiliation(s)
- Ruslan R Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
- Kazan National Research Technological University, 68 K. Marks str., Kazan 420015, Russia.
| | - Yuliya S Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
- Kazan National Research Technological University, 68 K. Marks str., Kazan 420015, Russia.
| | - Albina Y Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Rezeda K Mukhitova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Victor V Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Shamil K Latypov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
- Kazan National Research Technological University, 68 K. Marks str., Kazan 420015, Russia.
| | - Marsil K Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
- Kazan National Research Technological University, 68 K. Marks str., Kazan 420015, Russia.
| | - Lucia Y Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
- Kazan National Research Technological University, 68 K. Marks str., Kazan 420015, Russia.
| |
Collapse
|
22
|
Ashjaran M, Babazadeh M, Akbarzadeh A, Davaran S, Salehi R. Stimuli-responsive polyvinylpyrrolidone-NIPPAm-lysine graphene oxide nano-hybrid as an anticancer drug delivery on MCF7 cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:443-454. [PMID: 30688104 DOI: 10.1080/21691401.2018.1543198] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Despite the advances in the development of chemotherapeutic agents, resistance to chemotherapy and adverse side effects are still big challenges against successful cancer treatment. To overcome these problems, one strategy is the application of nanomaterials and drug delivery systems to efficiently deliver the anticancer agents to tumour tissues with minimum toxic effects on healthy organs. In this study a graphene oxide nanohybrid (GO/NHs) was designed and fabricated for the delivery of chemotherapeutic agent fluorouracil (FU) to the breast cancer MCF7 cells. After preparation and characterization of GO/NHs, several biological analysis including haemolysis assay, cytotoxicity assay, cellular uptake, apoptosis assay, and protein expression were performed. The cytotoxic effects of FU, FU loaded GO/NHs (FU-GO/NHs), and blank GO/NHs was determined by MTT assay. The results of MTT assay showed no significant cytotoxicity for blank nano-hybrid on MCF7 cells. Furthermore, FU-GO/NHs were more cytotoxic than free FU. The uptake analysis results showed that developed nanocarrier could completely be internalized into the cells in the first hour. Besides, apoptotic effects and nuclear morphology changes of cells was evaluated by DAPI staining under fluorescent microscopy. Protein expression levels of p53, PARP, cleaved PARP, Bcl-2, and Bax were determined by western blot analysis. Western blot results showed higher levels of p53 and cleaved PARP after treatment with FU-GO/NHs, however, no substantial effect was observed for Bax and Bcl-2 protein concentrations.
Collapse
Affiliation(s)
- Maryam Ashjaran
- a Department of Chemistry , Tabriz branch, Islamic Azad University , Tabriz , Iran
| | - Mirzaagha Babazadeh
- a Department of Chemistry , Tabriz branch, Islamic Azad University , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- b Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,c Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,d Universal Scientific Education and Research Network (USERN) , Tabriz , Iran
| | - Soodabeh Davaran
- b Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Roya Salehi
- b Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|