1
|
Khan AA, Nayak JK, Amin BU, Muddasar M, Culebras M, Ranade VV, Collins MN. Synthesis of high-efficient low-cost fertilizer carriers based on biodegradable lignin hydrogels. Int J Biol Macromol 2024; 281:136292. [PMID: 39368579 DOI: 10.1016/j.ijbiomac.2024.136292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Conventional fertilizers face environmental and economic challenges due to their high solubility, leading to significant losses via runoff and leachate. This study presents a biodegradable hydrogel, synthesized from lignin and polyvinyl alcohol (PVA), designed as an eco-friendly carrier for struvite (fertilizer) with controlled phosphate release. The hydrogel was analysed through scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC). Furthermore, the prepared hydrogels demonstrated high water absorption capacities (963.4 %, 706.4 %, and 410 % for LH4, LH8, and LH12, respectively) and exhibited Fickian diffusion behaviour. Phosphate release studies showed a gradual release over 6-8 h with concentrations of 20.5 ppm, 19.45 ppm, and 17.85 ppm for St-LH4, St-LH8, and St-LH12. These lignin-based hydrogels offer a promising, cost-effective solution for slow-release fertilizers with high efficiency.
Collapse
Affiliation(s)
- Abrar Ali Khan
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Jagdeep Kumar Nayak
- Multiphase Reactors and Intensification Group, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Bilal Ul Amin
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Muhammad Muddasar
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mario Culebras
- Institute of Material Science, University of Valencia, Valencia, Spain
| | - Vivek V Ranade
- Multiphase Reactors and Intensification Group, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Maurice N Collins
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; BiOrbic and AMBER Center, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
2
|
Akbarzadeh M, Olad A, Salari D, Mirmohseni A. Gelatin-carboxymethyl cellulose/iron-based metal-organic framework nanocomposite hydrogel as a promising biodegradable fertilizer release system: Synthesis, characterization, and fertilizer release studies. Int J Biol Macromol 2024; 279:135316. [PMID: 39236953 DOI: 10.1016/j.ijbiomac.2024.135316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Application of fertilizers is a routine method in agriculture to increase the fertility of plants However, conventional fertilizers have raised serious health and environmental problems in recent years. Therefore, the development of biodegradable superabsorbent hydrogels based on natural polymers with the capability for fertilizer controlled release has attracted much interest. In the current research, a novel nanocomposite hydrogel based on gelatin and carboxymethyl cellulose polymers enriched with an iron based metal- organic framework (MIL-53 (Iron)) was prepared. The prepared nanocomposite hydrogel was loaded with NPK fertilizer to obtain a slow release fertilizer system. The structural properties of the nanocomposite hydrogel were investigated using FTIR, XRD, and SEM techniques. The swelling and fertilizer release behavior of the nanocomposite hydrogel were evaluated in conditions. Results showed that by adding iron-based metal organic framework to the hydrogel matrix, the water absorption capacity of the hydrogel system was increased to 345.8 (g/g). Fertilizer release studies revealed that the release of fertilizer from the nanocomposite matrix has a slow and continuous release pattern. Therefore, the synthesized nanocomposite has an appropriate strength and high potential to be used as a slow-release fertilizer system.
Collapse
Affiliation(s)
- Mina Akbarzadeh
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Dariush Salari
- Laboratory of Petroleum Technology, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Abdolreza Mirmohseni
- Polymer Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Yin X, Xu P, Wang H. Efficient and Selective Removal of Heavy Metals and Dyes from Aqueous Solutions Using Guipi Residue-Based Hydrogel. Gels 2024; 10:142. [PMID: 38391472 PMCID: PMC10887816 DOI: 10.3390/gels10020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The presence of organic dyes and heavy metal ions in water sources poses a significant threat to human health and the ecosystem. In this study, hydrogel adsorbents for water pollution remediation were synthesized using Guipi residue (GP), a cellulose material from Chinese herbal medicine, and chitosan (CTS) through radical polymerization with acrylamide (AM) and acrylic acid (AA). The characteristics of the hydrogels were analyzed from a physicochemical perspective, and their ability to adsorb was tested using model pollutants such as Pb2+, Cd2+, Rhodamine B (RhB), and methyl orange (MO). The outcomes revealed that GP/CTS/AA-co-AM, which has improved mechanical attributes, effectively eliminated these pollutants. At a pH of 4.0, a contact duration of 120 min, and an initial concentration of 600 mg/L for Pb2+ and 500 mg/L for Cd2+, the highest adsorption capabilities were 314.6 mg/g for Pb2+ and 289.1 mg/g for Cd2+. Regarding the dyes, the GP/CTS/AA-co-AM hydrogel displayed adsorption capacities of 106.4 mg/g for RhB and 94.8 mg/g for MO, maintaining a stable adsorption capacity at different pHs. Compared with other competitive pollutants, GP/CTS/AA-co-AM demonstrated a higher absorption capability, mainly targeted toward Pb2+. The adsorption processes for the pollutants conformed to pseudo-second-order kinetics models and adhered to the Langmuir models. Even after undergoing five consecutive adsorption and desorption cycles, the adsorption capacities for heavy metals and dyes remained above 70% and 80%. In summary, this study effectively suggested the potential of the innovative GP/CTS/AA-co-AM hydrogel as a practical and feasible approach for eliminating heavy metals and dyes from water solutions.
Collapse
Affiliation(s)
- Xiaochun Yin
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
4
|
Bora A, Sarmah D, Karak N. Cellulosic wastepaper modified starch/ itaconic acid/ acrylic acid-based biodegradable hydrogel as a sustain release of NPK fertilizer vehicle for agricultural applications. Int J Biol Macromol 2023; 253:126555. [PMID: 37659498 DOI: 10.1016/j.ijbiomac.2023.126555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
In this work, wastepaper powder was used as a modifying agent for a biodegradable hydrogel composite of starch, itaconic acid, and acrylic acid. After the addition of an optimum amount of the modifying agent, the swelling ability of the hydrogel was enhanced from 503 g/g to 647 g/g. Further, the hydrogel was also used for sustained release of NPK fertilizer and subsequent effect of the fertilizer loaded hydrogel in okra seed germination was also studied. The NPK loaded-hydrogel showed good sustained-release behavior and 98 % of N, 81 % of P and 95 % of K release were observed after 20th day of incubation. Moreover, the release study was explained by using different kinetic models. In seed germination study, a higher and faster germination rate for okra seeds was observed in case of NPK loaded hydrogel compared to the control system, which was attributed to the synergistic effect of essential macronutrients (N, P, and K) and water that were inside the hydrogel. Most importantly, the hydrogel was found to be biodegradable by using soil burial method and further confirmed by FTIR and SEM analyses. Thus, this work provides an efficient way for utilization of wastepaper in the production of a biodegradable hydrogel for agricultural applications.
Collapse
Affiliation(s)
- Ashok Bora
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, 784028 Tezpur, Assam, India
| | - Dimpee Sarmah
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, 784028 Tezpur, Assam, India
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, 784028 Tezpur, Assam, India.
| |
Collapse
|
5
|
Chakraborty R, Mukhopadhyay A, Paul S, Sarkar S, Mukhopadhyay R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160859. [PMID: 36526196 DOI: 10.1016/j.scitotenv.2022.160859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Fertilizers are indispensable agri-inputs to accomplish the growing food demand. The injudicious use of conventional fertilizer products has resulted in several environmental and human health complications. To mitigate these problems, nanocomposite-based fertilizers are viable alternative options. Nanocomposites, a novel class of materials having improved mechanical strength, barrier properties, and mechanical and thermal stability, are suitable candidates to develop eco-friendly slow/controlled release fertilizer formulations. In this review, the use of different nanocomposite materials developed for nutrient management in agriculture has been summarized with a major focus on their synthesis and characterization techniques, and application aspects in plant nutrition, along with addressing constraints and future opportunities of this domain. Further detailed studies on nanocomposite-based fertilizers are required to evaluate the cost-effective synthesis methods, in-depth field efficacy, environmental fate, stability, etc. before commercialization in the field of agriculture. The present review is expected to help the policy makers and all the stakeholders in the large-scale commercialization and application of nanocomposite-based smart fertilizer products with greater societal acceptance and environmental sustainability in near future.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Arkadeb Mukhopadhyay
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhadip Paul
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhasis Sarkar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
6
|
Shoaib A, Darraj A, Khan ME, Azmi L, Alalwan A, Alamri O, Tabish M, Khan AU. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:867. [PMID: 36903746 PMCID: PMC10005622 DOI: 10.3390/nano13050867] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Diabetes mellitus is linked to both short-term and long-term health problems. Therefore, its detection at a very basic stage is of utmost importance. Research institutes and medical organizations are increasingly using cost-effective biosensors to monitor human biological processes and provide precise health diagnoses. Biosensors aid in accurate diabetes diagnosis and monitoring for efficient treatment and management. Recent attention to nanotechnology in the fast-evolving area of biosensing has facilitated the advancement of new sensors and sensing processes and improved the performance and sensitivity of current biosensors. Nanotechnology biosensors detect disease and track therapy response. Clinically efficient biosensors are user-friendly, efficient, cheap, and scalable in nanomaterial-based production processes and thus can transform diabetes outcomes. This article is more focused on biosensors and their substantial medical applications. The highlights of the article consist of the different types of biosensing units, the role of biosensors in diabetes, the evolution of glucose sensors, and printed biosensors and biosensing systems. Later on, we were engrossed in the glucose sensors based on biofluids, employing minimally invasive, invasive, and noninvasive technologies to find out the impact of nanotechnology on the biosensors to produce a novel device as a nano-biosensor. In this approach, this article documents major advances in nanotechnology-based biosensors for medical applications, as well as the hurdles they must overcome in clinical practice.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ali Darraj
- Department of Medicine, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226025, India
| | - Abdulaziz Alalwan
- University Family Medicine Center, Department of Family and Community Medicine, College of Medicine, King Saud University Medical City, Riyadh 2925, Saudi Arabia
| | - Osamah Alamri
- Consultant of Family Medicine, Ministry of Health, Second Health Cluster, Riyadh 2925, Saudi Arabia
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Anwar Ulla Khan
- Department of Electrical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Olad A, Aghayan J, Gharekhani H, Akbarzadeh M. Carboxymethyl cellulose-based semi-IPN hydrogel nanocomposite with improved physicochemical and mechanical properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
8
|
Yang Y, Zheng W, Xie H, Ren L, Xu X, Liang Y. Theoretical study on adiabatic electron affinity of fatty acids. NEW J CHEM 2021. [DOI: 10.1039/d1nj02456f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The AEA of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids with typical substituents were calculated by the ωB97X method.
Collapse
Affiliation(s)
- Yaxin Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Hongyun Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Lufei Ren
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xiaofei Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yingning Liang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
9
|
Fabrication and characterization of a starch-based superabsorbent hydrogel composite reinforced with cellulose nanocrystals from potato peel waste. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124962] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Guha T, Gopal G, Kundu R, Mukherjee A. Nanocomposites for Delivering Agrochemicals: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3691-3702. [PMID: 32129992 DOI: 10.1021/acs.jafc.9b06982] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Excessive application of fertilizers negatively affects soil health, causes low nutrient utilization efficiency in plants, and leads to environmental pollution. The application of controlled-release fertilizer is gaining momentum to overcome this crisis. Engineered nanocomposites (ENCs) have shown tremendous promise for need-based delivery of agrochemicals (macro- and micronutrients, pesticides, and other agrochemicals). This review provides comprehensive coverage of synthesis of nanocomposites, their physical-chemical characterization, and techniques to achieve sustained release and targeted delivery to the crops, emphasizing their beneficial role in plant production and protection. Related aspects like feasibility of the application, commercialization of the nanoformulations, and biosafety concerns are also highlighted. This will be helpful to develop a critical understanding of the current state of the art in the controlled release of agrochemicals through nanocomposites. The pressing issues like scale up production, cost analyses, field-based trials, and environmental safety concerns should be given greater attention in future studies.
Collapse
Affiliation(s)
- Titir Guha
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Geetha Gopal
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
11
|
Abstract
Slow release fertilizer hydrogels combine fertilizer and hydrogel into one system.
Collapse
Affiliation(s)
- Ros Azlinawati Ramli
- Material Technology Program
- Faculty of Industrial Sciences and Technology
- Universiti Malaysia Pahang (UMP)
- Kuantan
- Malaysia
| |
Collapse
|
12
|
Andelkovic IB, Kabiri S, da Silva RC, Tavakkoli E, Kirby JK, Losic D, McLaughlin MJ. Optimisation of phosphate loading on graphene oxide–Fe(iii) composites – possibilities for engineering slow release fertilisers. NEW J CHEM 2019. [DOI: 10.1039/c9nj01641d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineering of a graphene-oxide based slow release P composite as an efficient, environmental friendly fertiliser.
Collapse
Affiliation(s)
- Ivan B. Andelkovic
- School of Agriculture, Food and Wine
- The University of Adelaide
- Glen Osmond
- Australia
- School of Chemical Engineering
| | - Shervin Kabiri
- School of Chemical Engineering
- The University of Adelaide
- Australia
| | - Rodrigo C. da Silva
- School of Agriculture, Food and Wine
- The University of Adelaide
- Glen Osmond
- Australia
| | - Ehsan Tavakkoli
- School of Agriculture, Food and Wine
- The University of Adelaide
- Glen Osmond
- Australia
- NSW Department of Primary Industries
| | - Jason K. Kirby
- CSIRO Land and Water, Environmental Contaminant Mitigation and Biotechnology Program
- Glen Osmond
- Australia
| | - Dusan Losic
- School of Chemical Engineering
- The University of Adelaide
- Australia
| | | |
Collapse
|