1
|
Wang CY, Ndraha N, Wu RS, Liu HY, Lin SW, Yang KM, Lin HY. An Overview of the Potential of Food-Based Carbon Dots for Biomedical Applications. Int J Mol Sci 2023; 24:16579. [PMID: 38068902 PMCID: PMC10706188 DOI: 10.3390/ijms242316579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Food-based carbon dots (CDs) hold significant importance across various fields, ranging from biomedical applications to environmental and food industries. These CDs offer unique advantages over traditional carbon nanomaterials, including affordability, biodegradability, ease of operation, and multiple bioactivities. This work aims to provide a comprehensive overview of recent developments in food-based CDs, focusing on their characteristics, properties, therapeutic applications in biomedicine, and safety assessment methods. The review highlights the potential of food-based CDs in biomedical applications, including antibacterial, antifungal, antivirus, anticancer, and anti-immune hyperactivity. Furthermore, current strategies employed for evaluating the safety of food-based CDs have also been reported. In conclusion, this review offers valuable insights into their potential across diverse sectors and underscores the significance of safety assessment measures to facilitate their continued advancement and application.
Collapse
Affiliation(s)
- Chen-Yow Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Nodali Ndraha
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ren-Siang Wu
- Division of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
| | - Hsin-Yun Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Sin-Wei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Kuang-Min Yang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Hung-Yun Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| |
Collapse
|
2
|
Dohendou M, Dekamin MG, Namaki D. Pd@l-asparagine-EDTA-chitosan: a highly effective and reusable bio-based and biodegradable catalyst for the Heck cross-coupling reaction under mild conditions. NANOSCALE ADVANCES 2023; 5:2621-2638. [PMID: 37143802 PMCID: PMC10153479 DOI: 10.1039/d3na00058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/17/2023] [Indexed: 05/06/2023]
Abstract
In this research, a novel supramolecular Pd(ii) catalyst supported on chitosan grafted by l-asparagine and an EDTA linker, named Pd@ASP-EDTA-CS, was prepared for the first time. The structure of the obtained multifunctional Pd@ASP-EDTA-CS nanocomposite was appropriately characterized by various spectroscopic, microscopic, and analytical techniques, including FTIR, EDX, XRD, FESEM, TGA, DRS, and BET. The Pd@ASP-EDTA-CS nanomaterial was successfully employed, as a heterogeneous catalytic system, in the Heck cross-coupling reaction (HCR) to afford various valuable biologically-active cinnamic acid derivatives in good to excellent yields. Different aryl halides containing I, Br and even Cl were used in HCR with various acrylates for the synthesis of corresponding cinnamic acid ester derivatives. The catalyst shows a variety of advantages including high catalytic activity, excellent thermal stability, easy recovery by simple filtration, more than five cycles of reusability with no significant decrease in its efficacy, biodegradability, and excellent results in the HCR using low-loaded Pd on the support. In addition, no leaching of Pd into the reaction medium and the final products was observed.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Department of Chemistry, Pharmaceutical and Heterocyclic Compounds Research Laboratory, Iran University of Science and Technology Iran
| | - Mohammad G Dekamin
- Department of Chemistry, Pharmaceutical and Heterocyclic Compounds Research Laboratory, Iran University of Science and Technology Iran
| | - Danial Namaki
- Department of Chemistry, Pharmaceutical and Heterocyclic Compounds Research Laboratory, Iran University of Science and Technology Iran
| |
Collapse
|
3
|
Goren AY, Recepoglu YK, Vatanpour V, Yoon Y, Khataee A. Insights into engineered graphitic carbon nitride quantum dots for hazardous contaminants degradation in wastewater. ENVIRONMENTAL RESEARCH 2023; 223:115408. [PMID: 36740151 DOI: 10.1016/j.envres.2023.115408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/07/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Increased environmental pollution is a critical issue that must be addressed. Photocatalytic, adsorption, and membrane filtration methods are suitable in environmental governance because of their high selectivity, low cost, environment-friendly nature, and excellent treatment efficiency. Graphitic carbon nitride (g-C3N4) quantum dots (QDs) have been considered as photocatalysts, adsorbents, and membrane materials for wastewater treatments, owing to their stability, adsorption capacity, photochemical properties, and low toxicity and cost. This review summarizes g-C3N4 QD synthesis techniques, operating parameters affecting the removal performance in the treatment process, modification effects with other semiconductors, and benefits and drawbacks of g-C3N4 QD-based materials. Furthermore, this review discusses the practical applications of g-C3N4 QDs as adsorbents, photocatalysts, and membrane materials for organic and inorganic contaminant treatments and their value-added product formation potential. Modified g-C3N4 QD-based material adsorbents, photocatalysts, and membranes present potentially applicable effects, such as removal of most waterborne contaminants. Excellent results were obtained for the reduction of methyl orange, bisphenol A, tetracycline, ciprofloxacin, phenol, rhodamine B, E. coli, and Hg. Overall, this paper provides comprehensive background on g-C3N4 QD-based materials and their diverse applications in wastewater treatment, and it presents a foundation for the enhancement of similar unique materials in the future.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Yasar K Recepoglu
- Department of Chemical Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, 1, Yonseidae-gil, Wonju-si, 26493, Gangwon-do, Republic of Korea.
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
4
|
Devi N, Wangoo N. Tuning the Luminescence of Microwave-Assisted N-Doped Fluorescent Carbon Dots: Bioimaging Applications and Label-Free Anti-Cancer Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:999-1010. [PMID: 36872820 DOI: 10.1021/acsabm.2c00850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Nanosized fluorescent carbon dots (Cdots) have gained a lot of attention in the recent years because of their superior properties, such as good biocompatibility, low toxicity, excellent chemical stability, resistance to photobleaching, and ease of chemical modification. Cdots are promising candidates for considerable applications in various fields: sensors, bioimaging, and drug delivery. Specifically, nitrogen-doped Cdots have attracted a huge interest because of their applicability in bioimaging and drug delivery. Conventional methods for the synthesis of Cdots have drawbacks, such as the use of organic solvents, the presence of side products, and the time required for synthesis. Keeping all these points in mind, herein, we report green methodology for the synthesis of water-soluble, blue-emitting, nitrogen-doped multifunctional Cdots under microwave irradiation within 3 min. The Cdots were prepared using citric acid and arginine as source materials and were characterized using various physicochemical techniques. A pH-responsive drug delivery system was then designed using anticancer drug doxorubicin and the synthesized Cdots. The biocompatibility of synthesized Cdots was analyzed against L929 normal cell line. The Cdots-DOX conjugates exhibited efficient anticancer activity against HeLa cells and also acted as excellent bioimaging agents.
Collapse
Affiliation(s)
- Neha Devi
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh-160014, India
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh-160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh-160014, India
| |
Collapse
|
5
|
Zulfajri M, Sudewi S, Damayanti R, Huang GG. Rambutan seed waste-derived nitrogen-doped carbon dots with l-aspartic acid for the sensing of Congo red dye. RSC Adv 2023; 13:6422-6432. [PMID: 36845584 PMCID: PMC9944313 DOI: 10.1039/d2ra07620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
In this study, new nitrogen-doped carbon dots (N-CDs) were prepared by utilizing rambutan seed waste and l-aspartic acid as dual precursors (carbon and nitrogen sources) through a hydrothermal treatment method. The N-CDs showed blue emission in solution under UV light irradiation. Their optical and physicochemical properties were examined via UV-vis, TEM, FTIR spectroscopy, SEM, DSC, DTA, TGA, XRD, XPS, Raman spectroscopy, and zeta potential analyses. They showed a strong emission peak at 435 nm and excitation-dependent emission behavior with strong electronic transitions of C[double bond, length as m-dash]C/C[double bond, length as m-dash]O bonds. The N-CDs exhibited high water dispersibility and great optical properties in response to some environmental conditions such as heating temperature, light irradiation, ionic strength, and storage time. They have an average size of 3.07 nm and good thermal stability. Owing to their great properties, they have been used as a fluorescent sensor for Congo red dye. The N-CDs selectively and sensitively detected Congo red dye with a detection limit of 0.035 μM. Moreover, the N-CDs were utilized to detect Congo red in tap and lake water samples. Thus, rambutan seed waste was successfully converted into N-CDs and these functional nanomaterials are promising for use in important applications.
Collapse
Affiliation(s)
- Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah Banda Aceh Aceh 23245 Indonesia
| | - Sri Sudewi
- Department of Pharmacy, Universitas Sam Ratulangi Manado 95115 Indonesia
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| | - Rizki Damayanti
- Department of Chemistry Education, Universitas Serambi Mekkah Banda Aceh Aceh 23245 Indonesia
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| |
Collapse
|
6
|
Yu Y, Zhang L, Gao X, Feng Y, Wang H, Lei C, Yan Y, Liu S. Research Progress in the Synthesis of Carbon Dots and Their Application in Food Analysis. BIOSENSORS 2022; 12:1158. [PMID: 36551125 PMCID: PMC9775108 DOI: 10.3390/bios12121158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Food safety is connected to public health, making it crucial to protecting people's health. Food analysis and detection can assure food quality and effectively reduce the entry of harmful foods into the market. Carbon dots (CDs) are an excellent choice for food analysis and detection attributable to their advantages of good optical properties, water solubility, high chemical stability, easy functionalization, excellent bleaching resistance, low toxicity, and good biocompatibility. This paper focuses on the optical properties, synthesis methods, and applications of CDs in food analysis and detection, including the recent advances in food nutritional composition analysis and food quality detection, such as food additives, heavy metal ions, foodborne pathogens, harmful organic pollutants, and pH value. Moreover, this review also discusses the potentially toxic effects, current challenges, and prospects of CDs in basic research and applications. We hope that this review can provide valuable information to lay a foundation for subsequent research on CDs and promote the exploration of CDs-based sensing for future food detection.
Collapse
Affiliation(s)
- Yuan Yu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Lili Zhang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Gao
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuanmiao Feng
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongyuan Wang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caihong Lei
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Yanhong Yan
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuiping Liu
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
7
|
Rostami N, Dekamin MG, Valiey E, FaniMoghadam H. l-Asparagine-EDTA-amide silica-coated MNPs: a highly efficient and nano-ordered multifunctional core-shell organocatalyst for green synthesis of 3,4-dihydropyrimidin-2(1 H)-one compounds. RSC Adv 2022; 12:21742-21759. [PMID: 36091190 PMCID: PMC9386691 DOI: 10.1039/d2ra02935a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/03/2022] [Indexed: 02/02/2023] Open
Abstract
In this study, new l-asparagine grafted on 3-aminopropyl-modified Fe3O4@SiO2 core-shell magnetic nanoparticles using the EDTA linker (Fe3O4@SiO2-APTS-EDTA-asparagine) was prepared and its structures properly confirmed using different spectroscopic, microscopic and magnetic methods or techniques including FT-IR, EDX, XRD, FESEM, TEM, TGA and VSM. The Fe3O4@SiO2-APTS-EDTA-asparagine core-shell nanomaterial was found, as a highly efficient multifunctional and recoverable organocatalyst, to promote the efficient synthesis of a wide range of biologically-active 3,4-dihydropyrimidin-2(1H)-one derivatives under solvent-free conditions. It was proved that Fe3O4@SiO2-APTS-EDTA-asparagine MNPs, as a catalyst having excellent thermal and magnetic stability, specific morphology and acidic sites with appropriate geometry, can activate the Biginelli reaction components. Moreover, the environmental-friendliness and nontoxic nature of the catalyst, cost effectiveness, low catalyst loading, easy separation of the catalyst from the reaction mixture and short reaction time are some of the remarkable advantages of this green protocol.
Collapse
Affiliation(s)
- Negin Rostami
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Mohammad G Dekamin
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Ehsan Valiey
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Hamidreza FaniMoghadam
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| |
Collapse
|
8
|
Khan SA, Abbasi N, Hussain D, Khan TA. Sustainable Mitigation of Paracetamol with a Novel Dual-Functionalized Pullulan/Kaolin Hydrogel Nanocomposite from Simulated Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8280-8295. [PMID: 35758902 DOI: 10.1021/acs.langmuir.2c00702] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present investigation, a novel, green, and economical dual-functionalized pullulan/kaolin hydrogel nanocomposite (f-PKHN) was fabricated and subsequently applied for the liquid-phase decontamination of paracetamol (PCT), a pharmaceutical pollutant. Pullulan and kaolin were functionalized with l-asparagine and gallic acid, respectively. The physicochemical facets of the functionalized pullulan/kaolin hydrogel nanocomposite and its interactive behavior with PCT were elucidated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and elemental mapping. The process parameters along with the isotherm, kinetics, and thermodynamics were methodically appraised via a batch technique to unveil the adsorption performance of the as-fabricated hydrogel nanocomposite. The adsorption isotherm and kinetics of PCT uptake by f-PKHN conform well to Freundlich and pseudo-second-order models, respectively. Relying on hydrogen bonding, n-π, and van der Waals interactions, the maximum adsorption capacity was 332.54 mg g-1, higher than for most of the previous adsorbents reported in the literature for PCT removal. Thermodynamic calculations corroborated endothermic, spontaneous, and feasible adsorption phenomena. The maintenance of a high uptake percentage (69.11%) in the fifth consecutive adsorption-desorption cycle implied the significant reusable potential of f-PKHN. Swelling studies exhibited 90% swelling within 200 min, indicating the successful fabrication of a cross-linked hydrogel network. The real water (distilled water, tap water, and river water) samples spiked with PCT specified a significant uptake of PCT (>85%), and the minor influence of ionic strength on the adsorptive potential of f-PKHN validated its potentiality for the decontamination of real effluents. In conclusion, f-PKHN with substantial adsorption capacity, green characteristics, and excellent reusability can be reckoned with as a promising adsorbent for the de-escalation of PCT from aquatic sources as well as at the industrial level.
Collapse
Affiliation(s)
- Suhail Ayoub Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Neha Abbasi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Daud Hussain
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| |
Collapse
|
9
|
Bhatt S, Vyas G, Paul P. Solvent Assisted Synthesis of Nitrogen and Sulfur Doped Blue and Yellow Emissive Carbon Dots and Their Applications as a Selective Cr(VI) Sensor and Patterning Agent. ChemistrySelect 2022. [DOI: 10.1002/slct.202200242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shreya Bhatt
- Analytical and Environmental Science Division & Centralized Instrument Facility CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg Bhavnagar 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Gaurav Vyas
- Analytical and Environmental Science Division & Centralized Instrument Facility CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg Bhavnagar 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Parimal Paul
- Analytical and Environmental Science Division & Centralized Instrument Facility CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg Bhavnagar 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
10
|
Phan LMT, Cho S. Fluorescent Carbon Dot-Supported Imaging-Based Biomedicine: A Comprehensive Review. Bioinorg Chem Appl 2022; 2022:9303703. [PMID: 35440939 PMCID: PMC9013550 DOI: 10.1155/2022/9303703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
Carbon dots (CDs) provide distinctive advantages of strong fluorescence, good photostability, high water solubility, and outstanding biocompatibility, and thus are widely exploited as potential imaging agents for in vitro and in vivo bioimaging. Imaging is absolutely necessary when discovering the structure and function of cells, detecting biomarkers in diagnosis, tracking the progress of ongoing disease, treating various tumors, and monitoring therapeutic efficacy, making it an important approach in modern biomedicine. Numerous investigations of CDs have been intensively studied for utilization in bioimaging-supported medical sciences. However, there is still no article highlighting the potential importance of CD-based bioimaging to support various biomedical applications. Herein, we summarize the development of CDs as fluorescence (FL) nanoprobes with different FL colors for potential bioimaging-based applications in living cells, tissue, and organisms, including the bioimaging of various cell types and targets, bioimaging-supported sensing of metal ions and biomolecules, and FL imaging-guided tumor therapy. Current CD-based microscopic techniques and their advantages are also highlighted. This review discusses the significance of advanced CD-supported imaging-based in vitro and in vivo investigations, suggests the potential of CD-based imaging for biomedicine, and encourages the effective selection and development of superior probes and platforms for further biomedical applications.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
11
|
Wu MS, Zhou ZR, Wang XY, Chen BB, Hafez ME, Shi JF, Li DW, Qian RC. Dynamic Visualization of Endoplasmic Reticulum Stress in Living Cells via a Two-Stage Cascade Recognition Process. Anal Chem 2022; 94:2882-2890. [PMID: 35112843 DOI: 10.1021/acs.analchem.1c04764] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) is crucial for the regulation of multiple cellular processes, such as cellular responses to stress and protein synthesis, folding, and posttranslational modification. Nevertheless, monitoring ER physiological activity remains challenging due to the lack of powerful detection methods. Herein, we built a two-stage cascade recognition process to achieve dynamic visualization of ER stress in living cells based on a fluorescent carbon dot (CD) probe, which is synthesized by a facile one-pot hydrothermal method without additional modification. The fluorescent CD probe enables two-stage cascade ER recognition by first accumulating in the ER as the positively charged and lipophilic surface of the CD probe allows its fast crossing of multiple membrane barriers. Next, the CD probe can specifically anchor on the ER membrane via recognition between boronic acids and o-dihydroxy groups of mannose in the ER lumen. The two-stage cascade recognition process significantly increases the ER affinity of the CD probe, thus allowing the following evaluation of ER stress by tracking autophagy-induced mannose transfer from the ER to the cytoplasm. Thus, the boronic acid-functionalized cationic CD probe represents an attractive tool for targeted ER imaging and dynamic tracking of ER stress in living cells.
Collapse
Affiliation(s)
- Man-Sha Wu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Yuan Wang
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.,Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ji-Fen Shi
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
12
|
Bhatt S, Vyas G, Paul P. Microwave-assisted synthesis of nitrogen-doped carbon dots using prickly pear as the carbon source and its application as a highly selective sensor for Cr(VI) and as a patterning agent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:269-277. [PMID: 34985051 DOI: 10.1039/d1ay01274f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Preparation of water-dispersible carbon dots from inexpensive natural carbon precursors and its application for purposes such as sensing, bio-imaging and patterning agents is showing growing interest in recent years. In this study, we have reported the preparation of nitrogen-doped carbon dots (N-CDs) using prickly pear as the carbon source and m-xylylenediamine as the nitrogen source using a one-step microwave-assisted synthetic process. The N-CDs prepared were characterized on the basis of elemental analysis, XPS, powder-XRD, FT-IR, Raman, TEM, UV-vis and fluorescence spectroscopy. Doping of nitrogen in the N-CDs made them highly fluorescent and the study on their ion-recognition property revealed that they detect highly toxic Cr(VI) with high selectivity and sensitivity (LOD, 0.04 μM) and without interference from the other ions used in this study. By immobilizing these N-CDs onto filter paper, sensor strips were prepared for on-site monitoring/field applications and they were successfully used for the detection of Cr(VI) in water. Detailed spectral analysis revealed that the mechanism of Cr(VI) sensing involved a phenomenon called the "inner filter effect" and analysis of the fluorescence lifetime data suggested the "static quenching" of fluorescence intensity. These N-CDs were used to prepare fluorescent carbon ink and were successfully used as patterning agents.
Collapse
Affiliation(s)
- Shreya Bhatt
- Analytical and Environmental Science Division, Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gaurav Vyas
- Analytical and Environmental Science Division, Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parimal Paul
- Analytical and Environmental Science Division, Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
13
|
Blue-emitting carbon quantum dots: Ultrafast microwave synthesis, purification and strong fluorescence in organic solvents. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Aung YY, Wibrianto A, Sianturi JS, Ulfa DK, Sakti SCW, Irzaman I, Yuliarto B, Chang JY, Kwee Y, Fahmi MZ. Comparison Direct Synthesis of Hyaluronic Acid-Based Carbon Nanodots as Dual Active Targeting and Imaging of HeLa Cancer Cells. ACS OMEGA 2021; 6:13300-13309. [PMID: 34056478 PMCID: PMC8158841 DOI: 10.1021/acsomega.1c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The present study explores the potential of carbon nanodots (CDs) synthesized from hyaluronic acid using microwave-assisted and furnace-assisted methods as bioimaging agents for cancer cells. The investigation on the effect of microwave-assisted and furnace-assisted times (2 min and 2 h) on determining CD character is dominantly discussed. Various CDs, such as HA-P1 and HA-P2 were, respectively, synthesized through the furnace-assisted method at 270 °C for 2 min and 2 h, whereas HA-M1 and HA-M2 were synthesized with the microwave-assisted method for 2 min and 2 h, respectively. Overall, various CDs were produced with an average diameter, with the maximum absorption of HA-P1, HA-P2, HA-M1, and HA-M2 at 234, 238, 221, and 217 nm, respectively. The photoluminescence spectra of these CDs showed particular emissions at 320 nm and excitation wavelengths from 340 to 400 nm. Several characterizations such as X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy reveal the CD properties such as amorphous structures, existence of D bands and G bands, and hydrophilic property supported with hydroxyl and carboxyl groups. The quantum yields of HA-M1, HA-M2, HA-P1, and HA-P2 were 12, 7, 9, and 23%, respectively. The cytotoxicity and in vitro activity were verified by a cell counting kit-8 assay and confocal laser scanning microscopy, which show a low toxicity with the percentage of living cells above 80%.
Collapse
Affiliation(s)
- Yu-Yu Aung
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Aswandi Wibrianto
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jefry S. Sianturi
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Desita K. Ulfa
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Satya. C. W. Sakti
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
- Supra
Modification Nano-Micro Engineering Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Irzaman Irzaman
- Department
of Physics, IPB University, Bogor 16680, Indonesia
| | - Brian Yuliarto
- Department
of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40116, Indonesia
| | - Jia-yaw Chang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei, Taiwan 10607, Republic of China
| | - Yaung Kwee
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mochamad Z. Fahmi
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
- Supra
Modification Nano-Micro Engineering Group, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
15
|
Huang X, Liu H, Lu D, Lin Y, Liu J, Liu Q, Nie Z, Jiang G. Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale. Chem Soc Rev 2021; 50:5243-5280. [PMID: 33656017 DOI: 10.1039/d0cs00714e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of materials at the nanoscale plays a crucial role in in-depth understanding the nature and processes of the substances. Mass spectrometry (MS) has characterization capabilities for nanomaterials (NMs) and nanostructures by offering reliable multi-dimensional information consisting of accurate mass, isotopic, and molecular structural information. In the last decade, MS has emerged as a powerful nano-characterization technique. This review comprehensively summarizes the capabilities of MS in various aspects of nano-characterization that greatly enrich the toolbox of nano research. Compared with other characterization techniques, MS has unique capabilities for real-time monitoring and tracking reaction intermediates and by-products. Moreover, MS has shown application potential in some novel aspects, such as MS imaging of the biodistribution and fate of NMs in animals and humans, stable isotopic tracing of NMs, and risk assessment of NMs, which deserve update and integration into the current knowledge framework of nano-characterization.
Collapse
Affiliation(s)
- Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zongxiu Nie
- University of Chinese Academy of Sciences, Beijing 100049, China and Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Nair A, Haponiuk JT, Thomas S, Gopi S. Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomed Pharmacother 2020; 132:110834. [PMID: 33035830 PMCID: PMC7537666 DOI: 10.1016/j.biopha.2020.110834] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Natural carbon based quantum dots (NCDs) are an emerging class of nanomaterials in the carbon family. NCDs have gained immense acclamation among researchers because of their abundance, eco-friendly nature, aqueous solubility, the diverse functionality and biocompatibility when compared to other conventional carbon quantum dots (CDs).The presence of different functional groups on the surface of NCDs such as thiol, carboxyl, hydroxyl, etc., provides improved quantum yield, physicochemical and optical properties which promote bioimaging, sensing, and drug delivery. This review provides comprehensive knowledge about NCDs for drug delivery applications by outlining the source and rationale behind NCDs, different routes of synthesis of NCDs and the merits of adopting each method. Detailed information regarding the mechanism behind the optical properties, toxicological profile including biosafety and biodistribution of NCDs that are favourable for drug delivery are discussed. The drug delivery applications of NCDs particularly as sensing and real-time tracing probe, antimicrobial, anticancer, neurodegenerative agents are reviewed. The clinical aspects of NCDs are also reviewed as an initiative to strengthen the case of NCDs as potent drug delivery agents.
Collapse
Affiliation(s)
- Akhila Nair
- Department of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jozef T Haponiuk
- Department of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| | - Sreeraj Gopi
- Department of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| |
Collapse
|
17
|
Oliveira EGDL, de Oliveira HP, Gomes ASL. Metal nanoparticles/carbon dots nanocomposites for SERS devices: trends and perspectives. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03306-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
Yang S, Zhang Y, Xue Y, Lu S, Yang H, Yang L, Ding C, Yu S. Cross-Linked Polyamide Chains Enhanced the Fluorescence of Polymer Carbon Dots. ACS OMEGA 2020; 5:8219-8229. [PMID: 32309732 PMCID: PMC7161025 DOI: 10.1021/acsomega.0c00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 05/15/2023]
Abstract
Carbon dots (CDs) have attracted tremendous attention for their outstanding advantages in luminescence. Here, α-amino-substituted lysine derivatives with the determined chemical structure were employed as precursors to obtain bright and highly stable fluorescent CDs through a facile hydrothermal route. The relationships among the chemical structure of precursors, CD fluorescence, and particle size were investigated. The results indicated that increased numbers of functional groups in precursors could promote the degree of cross-linking and lead to a smaller size, better fluorescent properties, and stronger stability of CDs. The C-CDs that were prepared from lysine derivatives with most functional groups showed excitation-dependent dual excitation and dual emission (DE2), high-stability luminescence, strong resistance to photobleaching, and high selectivity to Fe3+ and could be used as a sensitive probe for Fe3+ detection.
Collapse
Affiliation(s)
- Shouning Yang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yanmin Zhang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuyan Xue
- Institute
of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sijia Lu
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huayan Yang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lin Yang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chuanfan Ding
- Institute
of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shaoning Yu
- Institute
of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
19
|
Christé S, Esteves da Silva JC, Pinto da Silva L. Evaluation of the Environmental Impact and Efficiency of N-Doping Strategies in the Synthesis of Carbon Dots. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E504. [PMID: 31973126 PMCID: PMC7040597 DOI: 10.3390/ma13030504] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
The efficiency and associated environmental impacts of different N-doping strategies of carbon dots (CDs) were evaluated. More specifically, N-doped CDs were prepared from citric acid via two main synthesis routes: Microwave-assisted hydrothermal treatment with addition of N-containing small organic molecules (urea and ethylenediamine (EDA)); and microwave-assisted solvothermal treatment in N-containing organic solvents (n,n-dimethylformamide (DMF), acetonitrile and pyridine). These syntheses produced CDs with similar blue emission. However, XPS analysis revealed that CDs synthesized via both hydrothermal routes presented a better N-doping efficiency (~15 at.%) than all three solvothermal-based strategies (0.6-7 at.%). However, from the former two hydrothermal strategies, only the one involving EDA as a nitrogen-source provided a non-negligible synthesis yield, which indicates that this should be the preferred strategy. This conclusion was supported by a subsequent life cycle assessment (LCA) study, which revealed that this strategy is clearly the most sustainable one from all five studied synthesis routes.
Collapse
Affiliation(s)
- Suzanne Christé
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.C.); (J.C.G.E.d.S.)
| | - Joaquim C.G. Esteves da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.C.); (J.C.G.E.d.S.)
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.C.); (J.C.G.E.d.S.)
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| |
Collapse
|
20
|
Wang BB, Wang YY, Zhang XY, Xu ZQ, Jiang P, Jiang FL, Liu Y. Bifunctional carbon dots for cell imaging and inhibition of human insulin fibrillation in the whole aggregation process. Int J Biol Macromol 2020; 147:453-462. [PMID: 31923519 DOI: 10.1016/j.ijbiomac.2019.12.267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Due to the favorable stability, water solubility and good biocompatibility, carbon dots have attracted much attention. Herein, a novel nitrogen-doping bifunctional carbon dots (N-BCDs) with ultra-highly quantum yield (QYabs = 70.4%) is prepared through microwave-assisted method. 50 μg/mL of N-BCDs emit intense fluorescence in HeLa and GES-1 cells with negligible cytotoxicity. In addition, effective inhibition of N-BCDs to human insulin (HI) fibrillation is observed even at 10:1 (mass ratio of HI: N-BCDs) by ThT fluorescence, CD assay and TEM. N-BCDs prevent HI from fibrillation with prolonged lag time and reduced fluorescent intensity at equilibrium, regardless of the addition time of N-BCDs (HI: N-BCDs = 1:1, mass ratio), which has been rarely reported before. Furthermore, the morphology of final HI fibrils is shorter and thinner in the presence of N-BCDs. Mechanism studies reveal that the enhanced hydrogen bond between HI monomers and N-BCDs inhibits nucleation during the lag stage (Ka: 1.54 × 104 L·mol-1, 298 K), while the accumulation of N-BCDs blocks the growth of profibrils in the elongation stage. To the best of our knowledge, it's the first time to observe the accumulation of N-BCDs around HI profibrils with TEM. Our study provides a new strategy for developing efficient nanoparticle inhibitors for protein fibrillation.
Collapse
Affiliation(s)
- Bei-Bei Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yu-Ying Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Yang Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zi-Qiang Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Peng Jiang
- Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, PR China
| | - Feng-Lei Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yi Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Guangxi Key Laboratory of Natural Polymer Chemistry, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
21
|
Cong S, Liu K, Qiao F, Song Y, Tan M. Biocompatible fluorescent carbon dots derived from roast duck for in vitro cellular and in vivo C. elegans bio-imaging. Methods 2019; 168:76-83. [DOI: 10.1016/j.ymeth.2019.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/30/2019] [Accepted: 07/06/2019] [Indexed: 01/24/2023] Open
|