1
|
Gu W, Kong R, Qi S, Cheng X, Cai X, Zhou Z, Zhang S, Zhao H, Song J, Hu Q, Yu H, Tong H, Wang Y, Lu T. Sono-assembly of ellagic acid into nanostructures significantly enhances aqueous solubility and bioavailability. Food Chem 2024; 442:138485. [PMID: 38278106 DOI: 10.1016/j.foodchem.2024.138485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Ellagic acid (EA), commonly found in foods, offers significant health benefits in combating chronic diseases. However, its therapeutic potential is hindered by its extremely poor solubility and bioavailability. METHOD In this study, EA nanoparticles (EA NPs) were produced using a sono-assembly method, without additional agents. RESULTS EA NPs exhibited stick-like nanoparticle structures with an average size of 147.3 ± 0.73 nm. EA NPs likely adopt a tunnel-type solvate structure, with 4 water participating in disruption of intramolecular hydrogen bonds in EA and establishment of intermolecular hydrogen bonds between EAs. Importantly, EA NPs exhibited remarkable enhancements in water solubility, with 120.7-fold increase in water, and 97.8-fold increase in pH 6.8 buffer. Moreover, ex vivo intestinal permeability studies demonstrated significant improvements (P < 0.5). These findings were further supported by in vivo pharmacokinetic studies, where EA NPs significantly enhanced the relative bioavailability of EA by 4.69 times.
Collapse
Affiliation(s)
- Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Faculty of Pharmacy, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Ruolin Kong
- Department of Science & Technology Studies, University College London, London, England, United Kingdom
| | - Shuyang Qi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Xuxi Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Xuyi Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziyun Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Shunan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyu Zhao
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Jinyun Song
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Qinglian Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiwen Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huangjin Tong
- Faculty of Pharmacy, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Yiwei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China.
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China.
| |
Collapse
|
2
|
Allemailem KS. Enhanced activity of Ellagic acid in lipid nanoparticles (EA-liposomes) against Acinetobacter baumannii in immunosuppressed mice. Saudi J Biol Sci 2023; 30:103707. [PMID: 37415860 PMCID: PMC10319833 DOI: 10.1016/j.sjbs.2023.103707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Acinetobacter baumannii infections have come to the surface in huge numbers in the recent decades. Furthermore, A. baumannii has adopted great ability to nullify the majority of currently available antibiotics. With the purpose of finding a nontoxic and efficient therapeutic agent, we analyzed the activity of Ellagic acid (EA) against the multidrug-resistant A. baumannii. EA not only demonstrated its activity against A. baumannii, but also inhibited the biofilm formation. Since EA shows poor solubility in an aqueous environment, a lipid nanoparticle-based (liposomal) formulation of EA (EA-liposomes) was prepared and its effectiveness was assessed to treat bacterial infection in the immunocompromised murine model. Therapy with EA-liposomes imparted greater protection to infected mice by increasing the survival and decreasing the bacterial load in the lungs. A. baumannii infected mice treated with EA-liposomes (100 mg/kg) showed 60% survival rate as compared to 20% of those treated with free EA at the same dose. The bacterial load was found to be 32778 ± 12232 in the lungs of EA-liposomes (100 mg/kg)-treated mice, which was significantly lower to 165667 ± 53048 in the lung tissues of free EA treated mice. Likewise, EA-liposomes also restored the liver function (AST and ALT) and kidney function parameters (BUN and creatinine). The broncho-alveolar fluid (BALF) from infected mice contained greater quantities of IL-6, IL-1β and TNF-α, which were significantly alleviated in EA-liposomes treated mice. These findings together support the possible implication of EA-liposomes to treat A. baumannii infection, especially in immunocompromised mice.
Collapse
|
3
|
Zuccari G, Alfei S. Development of Phytochemical Delivery Systems by Nano-Suspension and Nano-Emulsion Techniques. Int J Mol Sci 2023; 24:9824. [PMID: 37372971 DOI: 10.3390/ijms24129824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The awareness of the existence of plant bioactive compounds, namely, phytochemicals (PHYs), with health properties is progressively expanding. Therefore, their massive introduction in the normal diet and in food supplements and their use as natural therapeutics to treat several diseases are increasingly emphasized by several sectors. In particular, most PHYs possessing antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant properties have been isolated from plants. Additionally, their secondary modification with new functionalities to further improve their intrinsic beneficial effects has been extensively investigated. Unfortunately, although the idea of exploiting PHYs as therapeutics is amazing, its realization is far from simple, and the possibility of employing them as efficient clinically administrable drugs is almost utopic. Most PHYs are insoluble in water, and, especially when introduced orally, they hardly manage to pass through physiological barriers and scarcely reach the site of action in therapeutic concentrations. Their degradation by enzymatic and microbial digestion, as well as their rapid metabolism and excretion, strongly limits their in vivo activity. To overcome these drawbacks, several nanotechnological approaches have been used, and many nanosized PHY-loaded delivery systems have been developed. This paper, by reporting various case studies, reviews the foremost nanosuspension- and nanoemulsion-based techniques developed for formulating the most relevant PHYs into more bioavailable nanoparticles (NPs) that are suitable or promising for clinical application, mainly by oral administration. In addition, the acute and chronic toxic effects due to exposure to NPs reported so far, the possible nanotoxicity that could result from their massive employment, and ongoing actions to improve knowledge in this field are discussed. The state of the art concerning the actual clinical application of both PHYs and the nanotechnologically engineered PHYs is also reviewed.
Collapse
Affiliation(s)
- Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| | - Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| |
Collapse
|
4
|
Banc R, Rusu ME, Filip L, Popa DS. The Impact of Ellagitannins and Their Metabolites through Gut Microbiome on the Gut Health and Brain Wellness within the Gut-Brain Axis. Foods 2023; 12:foods12020270. [PMID: 36673365 PMCID: PMC9858309 DOI: 10.3390/foods12020270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ellagitannins (ETs) are a large group of bioactive compounds found in plant-source foods, such as pomegranates, berries, and nuts. The consumption of ETs has often been associated with positive effects on many pathologies, including cardiovascular diseases, neurodegenerative syndromes, and cancer. Although multiple biological activities (antioxidant, anti-inflammatory, chemopreventive) have been discussed for ETs, their limited bioavailability prevents reaching significant concentrations in systemic circulation. Instead, urolithins, ET gut microbiota-derived metabolites, are better absorbed and could be the bioactive molecules responsible for the antioxidant and anti-inflammatory activities or anti-tumor cell progression. In this review, we examined the dietary sources, metabolism, and bioavailability of ETs, and analyzed the last recent findings on ETs, ellagic acid, and urolithins, their intestinal and brain activities, the potential mechanisms of action, and the connection between the ET microbiota metabolism and the consequences detected on the gut-brain axis. The current in vitro, in vivo, and clinical studies indicate that ET-rich foods, individual gut microbiomes, or urolithin types could modulate signaling pathways and promote beneficial health effects. A better understanding of the role of these metabolites in disease pathogenesis may assist in the prevention or treatment of pathologies targeting the gut-brain axis.
Collapse
Affiliation(s)
- Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-450-555
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Attenuation of Hyperlipidemia by Medicinal Formulations of Emblica officinalis Synergized with Nanotechnological Approaches. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010064. [PMID: 36671636 PMCID: PMC9854976 DOI: 10.3390/bioengineering10010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The ayurvedic herb Emblica officinalis (E. officinalis) is a gift to mankind to acquire a healthy lifestyle. It has great therapeutic and nutritional importance. Emblica officinalis, also known as Indian gooseberry or Amla, is a member of the Euphorbiaceae family. Amla is beneficial for treating illnesses in all its forms. The most crucial component is a fruit, which is also the most common. It is used frequently in Indian medicine as a restorative, diuretic, liver tonic, refrigerant, stomachic, laxative, antipyretic, hair tonic, ulcer preventive, and for the common cold and fever. Hyperlipidemia is also known as high cholesterol or an increase in one or more lipid-containing blood proteins. Various phytocompounds, including polyphenols, vitamins, amino acids, fixed oils, and flavonoids, are present in the various parts of E. officinalis. E. officinalis has been linked to a variety of pharmacological effects in earlier studies, including hepatoprotective, immunomodulatory, antimicrobial, radioprotective, and hyperlipidemic effects. The amla-derived active ingredients and food products nevertheless encounter challenges such as instability and interactions with other food matrices. Considering the issue from this perspective, food component nanoencapsulation is a young and cutting-edge field for controlled and targeted delivery with a range of preventative activities. The nanoformulation of E. officinalis facilitates the release of active components or food ingredients, increased bioaccessibility, enhanced therapeutic activities, and digestion in the human body. Accordingly, the current review provides a summary of the phytoconstituents of E. officinalis, pharmacological actions detailing the plant E. officinalis's traditional uses, and especially hyperlipidemic activity. Correspondingly, the article describes the uses of nanotechnology in amla therapeutics and functional ingredients.
Collapse
|
6
|
The Influence of Solvents and Colloidal Particles on the Efficiency of Molecular Antioxidants. Antioxidants (Basel) 2022; 12:antiox12010099. [PMID: 36670961 PMCID: PMC9855148 DOI: 10.3390/antiox12010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The radical scavenging activity of three molecular antioxidants (trolox, rutin and ellagic acid) was investigated in different solvents with and without added polymer-based colloidal particles (SL-IP-2). Rutin and ellagic acid showed poor solubility in water, preventing the accurate measurement of the effective antioxidant concentration values, which were determined in ethanol/water (EtOH/H2O) mixtures. The presence of trolox and rutin changed neither the surface charge properties nor the size of SL-IP-2 in these solvents, while significant adsorption on SL-IP-2 was observed for ellagic acid leading to overcharging and rapid particle aggregation at appropriately high antioxidant concentrations in EtOH/H2O. The differences in the radical scavenging capacity of trolox and ellagic acid that was observed in homogeneous solutions using water or EtOH/H2O as solvents vanished in the presence of the particles. Rutin lost its activity after addition of SL-IP-2 due to the larger molecular size and lower exposure of the functional groups to the substrate upon interaction with the particles. The obtained results shed light on the importance of the type of solvent and particle-antioxidant interfacial effects on the radical decomposition ability of molecular antioxidants, which is of crucial importance in industrial processes involving heterogeneous systems.
Collapse
|
7
|
Healthy Properties of a New Formulation of Pomegranate-Peel Extract in Mice Suffering from Experimental Autoimmune Encephalomyelitis. Molecules 2022; 27:molecules27030914. [PMID: 35164175 PMCID: PMC8838218 DOI: 10.3390/molecules27030914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
A new formulation of a pomegranate-peel extract (PEm) obtained by PUAE (Pulsed Ultrasound-Assisted Extraction) and titrated in both ellagic acid (EA) and punicalagin is proposed, characterized and then analyzed for potential health properties in mice suffering from the experimental autoimmune encephalomyelitis (EAE). PEm effects were compared to those elicited by a formulation containing EA (EAm). Control and EAE mice were chronically administered EAm and Pem dissolved in the drinking water, starting from the day 10 post-immunization (d.p.i.), with a “therapeutic” protocol to deliver daily 50 mg/kg of EA. Treated EAE mice did not limit their daily access to the beverage, nor did they show changes in body weight, but they displayed a significant amelioration of “in vivo” clinical symptoms. “Ex vivo” histochemical analysis showed that spinal-cord demyelination and inflammation in PEm and EAm-treated EAE mice at 23 ± 1 d.p.i. were comparable to those in the untreated EAE animals, while microglia activation (measured as Ionized Calcium Binding Adaptor 1, Iba1 staining) and astrocytosis (quantified as glial fibrillar acid protein, GFAP immunopositivity) significantly recovered, particularly in the gray matter. EAm and PEm displayed comparable efficiencies in controlling the spinal pathological cellular hallmarks in EAE mice, and this would support their delivery as dietary supplementation in patients suffering from multiple sclerosis (MS).
Collapse
|
8
|
Alfei S, Spallarossa A, Lusardi M, Zuccari G. Successful Dendrimer and Liposome-Based Strategies to Solubilize an Antiproliferative Pyrazole Otherwise Not Clinically Applicable. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:233. [PMID: 35055251 PMCID: PMC8780786 DOI: 10.3390/nano12020233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Water-soluble formulations of the pyrazole derivative 3-(4-chlorophenyl)-5-(4-nitrophenylamino)-1H-pyrazole-4-carbonitrile (CR232), which were proven to have in vitro antiproliferative effects on different cancer cell lines, were prepared by two diverse nanotechnological approaches. Importantly, without using harmful organic solvents or additives potentially toxic to humans, CR232 was firstly entrapped in a biodegradable fifth-generation dendrimer containing lysine (G5K). CR232-G5K nanoparticles (CR232-G5K NPs) were obtained with high loading (DL%) and encapsulation efficiency (EE%), which showed a complex but quantitative release profile governed by Weibull kinetics. Secondly, starting from hydrogenated soy phosphatidylcholine and cholesterol, we prepared biocompatible CR232-loaded liposomes (CR232-SUVs), which displayed DL% and EE% values increasing with the increase in the lipids/CR232 ratio initially adopted and showed a constant prolonged release profile ruled by zero-order kinetics. When relevant, attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM) and dynamic light scattering (DLS) experiments, as well as potentiometric titrations completed the characterization of the prepared NPs. CR232-G5K NPs were 2311-fold more water-soluble than the pristine CR232, and the CR232-SUVs with the highest DL% were 1764-fold more soluble than the untreated CR232, thus establishing the success of both our strategies.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (A.S.); (M.L.); (G.Z.)
| | | | | | | |
Collapse
|
9
|
Alfei S, Brullo C, Caviglia D, Piatti G, Zorzoli A, Marimpietri D, Zuccari G, Schito AM. Pyrazole-Based Water-Soluble Dendrimer Nanoparticles as a Potential New Agent against Staphylococci. Biomedicines 2021; 10:17. [PMID: 35052697 PMCID: PMC8773120 DOI: 10.3390/biomedicines10010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/18/2022] Open
Abstract
Although the antimicrobial potency of the pyrazole nucleus is widely reported, the antimicrobial effects of the 2-(4-bromo-3,5-diphenyl-pyrazol-1-yl)-ethanol (BBB4), found to be active against several other conditions, have never been investigated. Considering the worldwide need for new antimicrobial agents, we thought it noteworthy to assess the minimum inhibitory concentration (MICs) of BBB4 but, due to its scarce water-solubility, unequivocal determinations were tricky. To obtain more reliable MICs and to obtain a substance also potentially applicable in vivo, we recently prepared water-soluble, BBB4-loaded dendrimer nanoparticles (BBB4-G4K NPs), which proved to have physicochemical properties suitable for clinical application. Here, with the aim of developing a new antibacterial agent based on BBB4, the BBB4-G4K NPs were tested on several strains of different species of the Staphylococcus genus. Very low MICs (1.5-3.0 µM), 15.5-124.3-fold lower than those of the free BBB4, were observed against several isolates of S. aureus and S. epidermidis, the most pathogenic species of this genus, regardless of their resistance patterns to antibiotics. Aiming at hypothesizing a clinical use of BBB4-G4K NPs for staphylococcal skin infections, cytotoxicity experiments on human keratinocytes were performed; it was found that the nano-manipulated BBB4 released from BBB4-G4K NPs (LD50 138.6 µM) was 2.5-fold less cytotoxic than the untreated BBB4 (55.9 µM). Due to its physicochemical and biological properties, BBB4-G4K NPs could be considered as a promising novel therapeutic option against the very frequent staphylococcal skin infections.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| | - Chiara Brullo
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (D.C.); (G.P.); (A.M.S.)
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (D.C.); (G.P.); (A.M.S.)
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (D.C.); (G.P.); (A.M.S.)
| |
Collapse
|
10
|
Thalji MR, Ibrahim AA, Ali GA. Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Alfei S, Schito AM, Zuccari G. Considerable Improvement of Ursolic Acid Water Solubility by Its Encapsulation in Dendrimer Nanoparticles: Design, Synthesis and Physicochemical Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2196. [PMID: 34578512 PMCID: PMC8464973 DOI: 10.3390/nano11092196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid found in many medicinal plants and aromas endowed with numerous in vitro pharmacological activities, including antibacterial effects. Unfortunately, UA is poorly administered in vivo, due to its water insolubility, low bioavailability, and residual systemic toxicity, thus making urgent the development of water-soluble UA formulations. Dendrimers are nonpareil macromolecules possessing highly controlled size, shape, and architecture. In dendrimers with cationic surface, the contemporary presence of inner cavities and of hydrophilic peripheral functions, allows to encapsulate hydrophobic non-water-soluble drugs as UA, to enhance their water-solubility and stability, and to promote their protracted release, thus decreasing their systemic toxicity. In this paper, aiming at developing a new UA-based antibacterial agent administrable in vivo, we reported the physical entrapment of UA in a biodegradable not cytotoxic cationic dendrimer (G4K). UA-loaded dendrimer nanoparticles (UA-G4K) were obtained, which showed a drug loading (DL%) much higher than those previously reported, a protracted release profile governed by diffusion mechanisms, and no cytotoxicity. Also, UA-G4K was characterized by principal components analysis (PCA)-processed FTIR spectroscopy, by NMR and elemental analyses, and by dynamic light scattering experiments (DLS). The water solubility of UA-G4K was found to be 1868-fold times higher than that of pristine UA, thus making its clinical application feasible.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6-16132 Genova, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148 Genoa, Italy;
| |
Collapse
|
12
|
Alfei S, Schito AM, Zuccari G. Nanotechnological Manipulation of Nutraceuticals and Phytochemicals for Healthy Purposes: Established Advantages vs. Still Undefined Risks. Polymers (Basel) 2021; 13:2262. [PMID: 34301020 PMCID: PMC8309409 DOI: 10.3390/polym13142262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous foods, plants, and their bioactive constituents (BACs), named nutraceuticals and phytochemicals by experts, have shown many beneficial effects including antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant activities. Producers, consumers, and the market of food- and plant-related compounds are increasingly attracted by health-promoting foods and plants, thus requiring a wider and more fruitful exploitation of the healthy properties of their BACs. The demand for new BACs and for the development of novel functional foods and BACs-based food additives is pressing from various sectors. Unfortunately, low stability, poor water solubility, opsonization, and fast metabolism in vivo hinder the effective exploitation of the potential of BACs. To overcome these issues, researchers have engineered nanomaterials, obtaining food-grade delivery systems, and edible food- and plant-related nanoparticles (NPs) acting as color, flavor, and preservative additives and natural therapeutics. Here, we have reviewed the nanotechnological transformations of several BACs implemented to increase their bioavailability, to mask any unpleasant taste and flavors, to be included as active ingredients in food or food packaging, to improve food appearance, quality, and resistance to deterioration due to storage. The pending issue regarding the possible toxic effect of NPs, whose knowledge is still limited, has also been discussed.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 6, I-16132 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| |
Collapse
|
13
|
Felhofer M, Bock P, Xiao N, Preimesberger C, Lindemann M, Hansmann C, Gierlinger N. Oak wood drying: precipitation of crystalline ellagic acid leads to discoloration. HOLZFORSCHUNG 2021; 75:712-720. [PMID: 34776529 PMCID: PMC7611979 DOI: 10.1515/hf-2020-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Oak heartwood usually darkens during and after drying. This darkening can be heterogeneous, leaving noncolored areas in the wood board. These light discolorations have been linked to heterogeneous distribution of tannins, but compelling evidence on the microscale is lacking. In this study Raman and fluorescence microscopy revealed precipitations of crystalline ellagic acid, especially in the ray cells but also in lumina, cell corners and cell walls in the non-colored areas (NCA), which also had higher density. In these denser areas free water is longer present during drying and leads to accumulation of hydrolyzed tannins. When eventually falling dry, these tannins precipitate irreversible as non-colored ellagic acid and are not available for chemical reactions leading to darkening of the wood. Therefore, pronounced density fluctuations in wood boards require adjusting the drying and processing parameters so that water domains and ellagic acid precipitations are avoided during drying.
Collapse
Affiliation(s)
- Martin Felhofer
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences, Muthgasse 11-II, 1190 Vienna, Austria
| | | | - Nannan Xiao
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences, Muthgasse 11-II, 1190 Vienna, Austria
| | - Christoph Preimesberger
- Institute of Wood Technology and Renewable Materials, Konrad Lorenz-Straße 24,3430 Tulln, Austria; Wood K plus – Competence Centre for Wood Composites and Wood Chemistry, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Martin Lindemann
- Environmental and Bioscience Engineering, Institute of Chemical, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Christian Hansmann
- Institute of Wood Technology and Renewable Materials, Konrad Lorenz-Straße 24,3430 Tulln, Austria; Wood K plus - Competence Centre for Wood Composites and Wood Chemistry, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences, Muthgasse 11-II, 1190 Vienna, Austria
| |
Collapse
|
14
|
Physical formulation approaches for improving aqueous solubility and bioavailability of ellagic acid: A review. Eur J Pharm Biopharm 2020; 159:198-210. [PMID: 33197529 DOI: 10.1016/j.ejpb.2020.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/10/2020] [Accepted: 11/07/2020] [Indexed: 01/16/2023]
Abstract
Ellagic acid (EA) is a polyphenolic active compound with antimalarial and other promising therapeutic activities. However, its solubility and its permeability are both low (BCS IV). These properties greatly compromise its oral bioavailability and clinical utilizations. To overcome these limitations of the physicochemical parameters, several formulation approaches, including particle size reduction, amorphization and lipid-based formulations, have been used. Although these strategies have not yet led to a clinical application, some of them have resulted in significant improvements in the solubility and bioavailability of EA. This critical review reports and analyses the different formulation approaches used by scientists to improve both the biopharmaceutical properties and the clinical use of EA.
Collapse
|
15
|
Cunha M, Lourenço A, Barreiros S, Paiva A, Simões P. Valorization of Cork Using Subcritical Water. Molecules 2020; 25:molecules25204695. [PMID: 33066478 PMCID: PMC7587334 DOI: 10.3390/molecules25204695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/25/2022] Open
Abstract
Granulated cork was submitted to subcritical water extraction/hydrolysis in a semi-continuous reactor at temperatures in the range of 120–200 °C and with a constant pressure of 100 bar. The influence of temperature on the composition of the cork extracts obtained was assessed—namely, their content of carbohydrates and phenolics. The extraction yield increased with the temperature, and this was associated with the decrease in the dielectric constant of water and the increase in its ionic product. Extracts composed of up to 36% phenolics were obtained at temperatures of up to 120 °C, with an antioxidant activity only two times lower than that of pure gallic acid, but in low amounts. Assays at higher temperatures generated extracts richer in carbohydrates and with a phenolics content of ca. 20 wt.% in comparatively far higher amounts. Neither the amount of suberin nor its structure were affected by the subcritical water treatment.
Collapse
Affiliation(s)
- Mónica Cunha
- Correspondence: (M.C.); (P.S.); Fax: +351-212-948-385 (P.S.)
| | | | | | | | - Pedro Simões
- Correspondence: (M.C.); (P.S.); Fax: +351-212-948-385 (P.S.)
| |
Collapse
|
16
|
Alfei S, Catena S, Turrini F. Biodegradable and biocompatible spherical dendrimer nanoparticles with a gallic acid shell and a double-acting strong antioxidant activity as potential device to fight diseases from "oxidative stress". Drug Deliv Transl Res 2020; 10:259-270. [PMID: 31628606 DOI: 10.1007/s13346-019-00681-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gallic acid (GA) is a natural polyphenol with remarkable antioxidant power present in several vegetables and fruits. A normal feeding regime leads to a daily intake of GA which is reasonably regarded as "natural" and "safe" for humans. It owns strong potentials as alternative to traditional drugs to treat several diseases triggered by oxidative stress (OS), but poor gastrointestinal absorbability, pharmacokinetic drawbacks, and fast metabolism limit its clinical application. In this work, a fifth-generation polyester-based dendrimer was firstly prepared as a better absorbable carrier to protect and deliver GA. Then, by its peripheral esterification with GA units, a GA-enriched delivering system (GAD) with remarkable antioxidant power and high potential against diseases from OS was achieved. Scanning electron microscopy results and dynamic light scattering analysis revealed particles with an average size around 387 and 375 nm, respectively, and an extraordinarily spherical morphology. These properties, by determining a large particles surface area, typically favour higher systemic residence time and bio-efficiency. Z-potential of - 25 mV suggests satisfactory stability in solution with tendency to form megamers and low polydispersity index. GAD showed intrinsic antioxidant power, higher than GA by 4 times and like prodrugs, and it can carry contemporary several bioactive GA units versus cells. In physiological condition, the action of pig liver esterase (PLE), selected as a model of cells esterase, hydrolyses GAD to non-cytotoxic small molecules, thus setting free the bioactive GA units, for further antioxidant effects. Cytotoxicity studies performed on two cell lines demonstrated a high cell viability. Graphical Abstract Graphical Abstract.
Collapse
Affiliation(s)
- Silvana Alfei
- Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari, Università di Genova, Viale Cembrano 4, I-16148, Genova, Italy.
| | - Silvia Catena
- Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari, Università di Genova, Viale Cembrano 4, I-16148, Genova, Italy
| | - Federica Turrini
- Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari, Università di Genova, Viale Cembrano 4, I-16148, Genova, Italy
| |
Collapse
|
17
|
Alfei S, Marengo B, Zuccari G. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Res Int 2020; 137:109664. [PMID: 33233243 DOI: 10.1016/j.foodres.2020.109664] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Environmental factors, oxidation and microorganisms contamination, are the major causes for food spoilage, which leads to sensory features alteration, loss of quality, production of harmful chemicals and growth of foodborne pathogens capable to cause severe illness. Synthetic preservatives, traditional conserving methods and food packaging (FP), although effective in counteracting food spoilage, do not allow the real-time monitoring of food quality during storage and transportation and assent a relatively short shelf life. In addition, FP may protect food by the spoilage caused by external contaminations, but is ineffective against foodborne microorganisms. FP preservative functionalities could be improved adding edible natural antioxidants and antimicrobials, but such chemicals are easily degradable. Nowadays, thanks to nanotechnology techniques, it is possible to improve the FP performances, formulating and inserting more stable antioxidant/antimicrobial ingredients, improving mechanical properties and introducing intelligent functions. The state-of-the-art in the field of nanomaterial-based improved FP, the advantages that might derive from their extensive introduction on the market and the main concerns associated to the possible migration and toxicity of nanomaterials, frequently neglected in existing reviews, have been herein discussed.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Genova (GE), Viale Cembrano, 4, I-16148, Italy.
| | - Barbara Marengo
- Department of Experimental Medicine - DIMES, University of Genoa, Genova (GE), Via Alberti L.B. 2, I- 16132, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Genova (GE), Viale Cembrano, 4, I-16148, Italy
| |
Collapse
|
18
|
Ceci C, Graziani G, Faraoni I, Cacciotti I. Strategies to improve ellagic acid bioavailability: from natural or semisynthetic derivatives to nanotechnological approaches based on innovative carriers. NANOTECHNOLOGY 2020; 31:382001. [PMID: 32380485 DOI: 10.1088/1361-6528/ab912c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ellagic acid (EA) is a polyphenolic compound whose dietary consumption is mainly associated with the intake of red fruits, including pomegranates, strawberries, blackberries, blackcurrants, raspberries, grapes or dried fruits, like walnuts and almonds. A number of studies indicate that EA exerts health-beneficial effects against several chronic pathologies associated with oxidative damage, including different kinds of cancer, cardiovascular and neurodegenerative diseases. Furthermore, EA possesses wound-healing properties, antibacterial and antiviral effects, and acts as a systemic antioxidant. However, clinical applications of this polyphenol have been hampered and prevented by its poor water solubility (9.7 ± 3.2 μg ml-1 in water) and pharmacokinetic profile (limited absorption rate and plasma half-life <1 h after ingestion of pomegranate juice), properties due to the chemical nature of the organic heterotetracyclic compound. Little has been reported on efficient strategies to enhance EA poor oral bioavailability, including chemical structure modifications, encapsulation within nano-microspheres to be used as carriers, and molecular dispersion in polymer matrices. In this review we summarize the experimental approaches investigated so far in order to improve EA pharmacokinetics, supporting the hypothesis that enhancement in EA solubility is a feasible route for increasing its oral absorption.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1 00133, Rome, Italy
| | | | | | | |
Collapse
|
19
|
Mejlsøe S, Kakkar A. Telodendrimers: Promising Architectural Polymers for Drug Delivery. Molecules 2020; 25:E3995. [PMID: 32887285 PMCID: PMC7504730 DOI: 10.3390/molecules25173995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Architectural complexity has played a key role in enhancing the efficacy of nanocarriers for a variety of applications, including those in the biomedical field. With the continued evolution in designing macromolecules-based nanoparticles for drug delivery, the combination approach of using important features of linear polymers with dendrimers has offered an advantageous and viable platform. Such nanostructures, which are commonly referred to as telodendrimers, are hybrids of linear polymers covalently linked with different dendrimer generations and backbones. There is considerable variety in selection from widely studied linear polymers and dendrimers, which can help tune the overall composition of the resulting hybrid structures. This review highlights the advances in articulating syntheses of these macromolecules, and the contributions these are making in facilitating therapeutic administration. Limited progress has been made in the design and synthesis of these hybrid macromolecules, and it is through an understanding of their physicochemical properties and aqueous self-assembly that one can expect to fully exploit their potential in drug delivery.
Collapse
Affiliation(s)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| |
Collapse
|
20
|
Alfei S, Marengo B, Zuccari G. Oxidative Stress, Antioxidant Capabilities, and Bioavailability: Ellagic Acid or Urolithins? Antioxidants (Basel) 2020; 9:E707. [PMID: 32759749 PMCID: PMC7465258 DOI: 10.3390/antiox9080707] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS), triggered by overproduction of reactive oxygen and nitrogen species, is the main mechanism responsible for several human diseases. The available one-target drugs often face such illnesses, by softening symptoms without eradicating the cause. Differently, natural polyphenols from fruits and vegetables possess multi-target abilities for counteracting OS, thus representing promising therapeutic alternatives and adjuvants. Although in several in vitro experiments, ellagitannins (ETs), ellagic acid (EA), and its metabolites urolithins (UROs) have shown similar great potential for the treatment of OS-mediated human diseases, only UROs have demonstrated in vivo the ability to reach tissues to a greater extent, thus appearing as the main molecules responsible for beneficial activities. Unfortunately, UROs production depends on individual metabotypes, and the consequent extreme variability limits their potentiality as novel therapeutics, as well as dietary assumption of EA, EA-enriched functional foods, and food supplements. This review focuses on the pathophysiology of OS; on EA and UROs chemical features and on the mechanisms of their antioxidant activity. A discussion on the clinical applicability of the debated UROs in place of EA and on the effectiveness of EA-enriched products is also included.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, I-16148 Genoa, Italy;
| | - Barbara Marengo
- Department of Experimental Medicine—DIMES, Via Alberti L.B. 2, I-16132 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, I-16148 Genoa, Italy;
| |
Collapse
|
21
|
Alfei S, Marengo B, Zuccari G, Turrini F, Domenicotti C. Dendrimer Nanodevices and Gallic Acid as Novel Strategies to Fight Chemoresistance in Neuroblastoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1243. [PMID: 32604768 PMCID: PMC7353457 DOI: 10.3390/nano10061243] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 01/15/2023]
Abstract
Human neuroblastoma (NB), a pediatric tumor inclined to relapse, after an initial response to therapy, usually develops resistance. Since several chemotherapeutics exert anticancer effect by increasing reactive oxygen species (ROS), NB cells overproduce antioxidant compounds becoming drugs-resistant. A strategy to sensitize NB cells to chemotherapy involves reducing their antioxidant defenses and inducing ROS overproduction. Concerning this, although affected by several issues that limit their clinical application, antioxidant/pro-oxidant polyphenols, such as gallic acid (GA), showed pro-oxidant anti-cancer effects and low toxicity for healthy cells, in several kind of tumors, not including NB. Herein, for the first time, free GA, two GA-dendrimers, and the dendrimer adopted as GA reservoir were tested on both sensitive and chemoresistant NB cells. The dendrimer device, administered at the dose previously found active versus sensitive NB cells, induced ROS-mediated death also in chemoresistant cells. Free GA proved a dose-dependent ROS-mediated cytotoxicity on both cell populations. Intriguingly, when administered in dendrimer formulations at a dose not cytotoxic for NB cells, GA nullified any pro-oxidant activity of dendrimer. Unfortunately, due to GA, nanoformulations were inactive on NB cells, but GA resized in nanoparticles showed considerable ability in counteracting, at low dose, ROS production and oxidative stress, herein induced by the dendrimer.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (G.Z.); (F.T.)
| | - Barbara Marengo
- Department of Experimental Medicine—DIMES, University of Genoa, Via Alberti L.B., 16132 Genoa, Italy; (B.M.); (C.D.)
| | - Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (G.Z.); (F.T.)
| | - Federica Turrini
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (G.Z.); (F.T.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine—DIMES, University of Genoa, Via Alberti L.B., 16132 Genoa, Italy; (B.M.); (C.D.)
| |
Collapse
|
22
|
Neuroinflammation in Aged Brain: Impact of the Oral Administration of Ellagic Acid Microdispersion. Int J Mol Sci 2020; 21:ijms21103631. [PMID: 32455600 PMCID: PMC7279224 DOI: 10.3390/ijms21103631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The immune system and the central nervous system message each other to preserving central homeostasis. Both systems undergo changes during aging that determine central age-related defects. Ellagic acid (EA) is a natural product which is beneficial in both peripheral and central diseases, including aging. We analyzed the impact of the oral administration of a new oral ellagic acid micro-dispersion (EAm), that largely increased the EA solubility, in young and old mice. Oral EAm did not modify animal weight and behavioral skills in young and old mice, but significantly recovered changes in "ex-vivo, in vitro" parameters in old animals. Cortical noradrenaline exocytosis decreased in aged mice. EAm administration did not modify noradrenaline overflow in young animals, but recovered it in old mice. Furthermore, GFAP staining was increased in the cortex of aged mice, while IBA-1 and CD45 immunopositivities were unchanged when compared to young ones. EAm treatment significantly reduced CD45 signal in both young and old cortical lysates; it diminished GFAP immunopositivity in young mice, but failed to affect IBA-1 expression in both young and old animals. Finally, EAm treatment significantly reduced IL1beta expression in old mice. These results suggest that EAm is beneficial to aging and represents a nutraceutical ingredient for elders.
Collapse
|
23
|
Formulation Strategies to Improve Oral Bioavailability of Ellagic Acid. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103353] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ellagic acid, a polyphenolic compound present in fruit and berries, has recently been the object of extensive research for its antioxidant activity, which might be useful for the prevention and treatment of cancer, cardiovascular pathologies, and neurodegenerative disorders. Its protective role justifies numerous attempts to include it in functional food preparations and in dietary supplements, and not only to limit the unpleasant collateral effects of chemotherapy. However, ellagic acid use as a chemopreventive agent has been debated because of its poor bioavailability associated with low solubility, limited permeability, first pass effect, and interindividual variability in gut microbial transformations. To overcome these drawbacks, various strategies for oral administration including solid dispersions, micro and nanoparticles, inclusion complexes, self-emulsifying systems, and polymorphs were proposed. Here, we listed an updated description of pursued micro and nanotechnological approaches focusing on the fabrication processes and the features of the obtained products, as well as on the positive results yielded by in vitro and in vivo studies in comparison to the raw material. The micro and nanosized formulations here described might be exploited for pharmaceutical delivery of this active, as well as for the production of nutritional supplements or for the enrichment of novel foods.
Collapse
|
24
|
Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci 2020; 278:102125. [PMID: 32109595 DOI: 10.1016/j.cis.2020.102125] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/09/2023]
Abstract
The genesis of dendrimers can be considered as a revolution in nano-scaled bioactive delivery systems. These structures possess a unique potential in encapsulating/entrapping bioactive ingredients due to their tree-like nature. Therefore, they could swiftly obtain a valuable statue in nutraceutical, pharmaceutical and medical sciences. Phytochemicals, as a large proportion of bioactives, have been studied and used by scholars in several fields of pharmacology, medical, food, and cosmetic for many years. But, the solubility, stability, and bioavailability issues have always been recognized as limiting factors in their application. Therefore, the main aim of this study is representing the use of dendrimers as novel nanocarriers for phytochemical bioactive compounds to deal with these problems. Hence, after a brief review of phytochemical ingredients, the text is commenced with a detailed explanation of dendrimers, including definitions, types, generations, synthesizing methods, and safety issues; then is continued with demonstration of their applications in encapsulation of phytochemical bioactive compounds and their active/passive delivery by dendrimers. Dendrimers provide a vast and appropriate surface to entrap the targeted phytochemical bioactive ingredients. Several parameters can affect the yield of nanoencapsulation by dendrimers, including their generation, type of end groups, surface charge, core structure, pH, and ambient factors. Another important issue of dendrimers is related to their toxicity. Cationic dendrimers, particularly PAMAM can be toxic to body cells through attaching to the cell membranes and disturbing their functions. However, a number of solutions have been suggested to decrease their toxicity.
Collapse
|
25
|
Muráth S, Szerlauth A, Sebők D, Szilágyi I. Layered Double Hydroxide Nanoparticles to Overcome the Hydrophobicity of Ellagic Acid: An Antioxidant Hybrid Material. Antioxidants (Basel) 2020; 9:E153. [PMID: 32069950 PMCID: PMC7070634 DOI: 10.3390/antiox9020153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ellagic acid (EA), a polyphenolic antioxidant of poor water solubility, was intercalated into biocompatible layered double hydroxide (LDH) nanoparticles by the coprecipitation method. Structural investigation of the composite revealed that the lactone bonds split under the synthetic experimental conditions, and EA was transformed to 4,4',5,5',6,6'-hexahydroxydiphenic acid during intercalation. To improve the surface properties of the EA-LDH composite, the samples were treated with different organic solvents. The antioxidant activity of the LDH hybrids was assessed in test reactions. Most of the obtained hybrids showed antioxidant activity comparable to the one of the free EA indicating that the spontaneous structural transformation upon immobilization did not change the efficiency in radical scavenging. Treatments with organic solvents influenced the activities of the materials remarkably. The main advantage of the immobilization procedure is that the products can be applied in aqueous samples in high concentrations overcoming the problem related to the low solubility of EA in water. The developed composites of high antioxidant content can be applied as efficient reactive oxygen species scavenging materials during biomedical treatments or industrial manufacturing processes.
Collapse
Affiliation(s)
- Szabolcs Muráth
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary; (S.M.); (A.S.)
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
| | - Adél Szerlauth
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary; (S.M.); (A.S.)
| | - Dániel Sebők
- Department of Applied and Environmental Chemistry, Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary;
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary; (S.M.); (A.S.)
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
26
|
Alfei S, Marengo B, Domenicotti C. Polyester-Based Dendrimer Nanoparticles Combined with Etoposide Have an Improved Cytotoxic and Pro-Oxidant Effect on Human Neuroblastoma Cells. Antioxidants (Basel) 2020; 9:E50. [PMID: 31935872 PMCID: PMC7022520 DOI: 10.3390/antiox9010050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Etoposide (ETO) is a cytotoxic drug that exerts its effect by increasing reactive oxygen species (ROS) production. Although ETO is widely used, fast metabolism, poor solubility, systemic toxicity, and multi-drug resistance induction all limit its administration dosage and its therapeutic efficiency. In order to address these issues, a biodegradable dendrimer was prepared for entrapping and protecting ETO and for enhancing its solubility and effectiveness. The achieved dendrimer complex with ETO (CPX 5) showed the typical properties of a well-functioning delivery system, i.e., nanospherical morphology (70 nm), optimal Z-potential (-45 mV), good drug loading (37%), very satisfying entrapment efficiency (53%), and a remarkably improved solubility in biocompatible solvents. In regards to its cytotoxic activity, CPX 5 was tested on neuroblastoma (NB) cells with very promising results. In fact, the dendrimer scaffold and ETO are able to exert per se a cytotoxic and pro-oxidant activity on human NB cells. When CPX 5 is combined with ETO, it shows a synergistic action, slowly releasing the drug over time and significantly improving and protracting bioactivity. On the basis of these findings, the prepared ETO reservoir represents a novel biodegradable and promising device for the delivery of ETO into NB cells.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
| |
Collapse
|
27
|
Alfei S, Turrini F, Catena S, Zunin P, Grilli M, Pittaluga AM, Boggia R. Ellagic acid a multi-target bioactive compound for drug discovery in CNS? A narrative review. Eur J Med Chem 2019; 183:111724. [DOI: 10.1016/j.ejmech.2019.111724] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022]
|
28
|
Alfei S, Signorello MG, Schito A, Catena S, Turrini F. Reshaped as polyester-based nanoparticles, gallic acid inhibits platelet aggregation, reactive oxygen species production and multi-resistant Gram-positive bacteria with an efficiency never obtained. NANOSCALE ADVANCES 2019; 1:4148-4157. [PMID: 36132112 PMCID: PMC9419547 DOI: 10.1039/c9na00441f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/12/2019] [Indexed: 05/14/2023]
Abstract
Natural polyphenols such as Gallic Acid (GA) form an important class of bioactive chemical entities that, having innumerable biological properties, could represent a safer alternative to common drugs against several disorders, including platelet aggregation, radical oxygen species (ROS) hyperproduction, oxidative stress (OS) and bacterial infections. Unfortunately, their clinical uses are limited by pharmacokinetics drawbacks and high sensitivity to environmental factors. In order to overcome these problems and to exploit the GA curative potentials, it has been linked to a biodegradable nanospherical dendrimer matrix, capable of protecting it, thus obtaining a GA-enriched nanosized dendrimer (GAD) endowed with a strong antioxidant capacity. GAD activity as an inhibitor of platelet aggregation and ROS accumulation and its antibacterial efficiency are evaluated here and compared to those of free GA, obtaining outcomes never achieved. Regarding platelet aggregation induced by thrombin and collagen, the GAD proved to be stronger by 7.1 and 7.3 times, respectively. Furthermore, the GAD showed a ROS inhibitory activity higher than that of GA by 8.1 (thrombin) and 6.9 (collagen) times. Concerning the antibacterial activities, evaluated on eleven multi-resistant Gram-positive strains of clinical relevance, the GAD is far more potent than GA, by exerting a growth inhibitory activity at MIC (μM) concentrations lower by factors in the range 12-50.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa Viale Cembrano 4 I-16148 Genova Italy
| | | | - Anna Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa Viale Benedetto XV, 6 I-16132 Genova Italy
| | - Silvia Catena
- Department of Pharmacy (DiFAR), University of Genoa Viale Cembrano 4 I-16148 Genova Italy
| | - Federica Turrini
- Department of Pharmacy (DiFAR), University of Genoa Viale Cembrano 4 I-16148 Genova Italy
| |
Collapse
|
29
|
Alfei S, Oliveri P, Malegori C. Assessment of the Efficiency of a Nanospherical Gallic Acid Dendrimer for Long‐Term Preservation of Essential Oils: An Integrated Chemometric‐Assisted FTIR Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201902339] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR)University of Genoa, Viale Cembrano 4 - I-16148 - Genova GE
| | - Paolo Oliveri
- Department of Pharmacy (DiFAR)University of Genoa, Viale Cembrano 4 - I-16148 - Genova GE
| | - Cristina Malegori
- Department of Pharmacy (DiFAR)University of Genoa, Viale Cembrano 4 - I-16148 - Genova GE
| |
Collapse
|
30
|
From pomegranate marcs to a potential bioactive ingredient: a recycling proposal for pomegranate-squeezed marcs. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|