1
|
Liu S, Zhou J, Yuan X, Xiong J, Zong MH, Wu X, Lou WY. A dual-mode sensing platform based on metal-organic framework for colorimetric and ratiometric fluorescent detection of organophosphorus pesticide. Food Chem 2024; 432:137272. [PMID: 37657347 DOI: 10.1016/j.foodchem.2023.137272] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Pesticide residues have raised considerable concern about environmental health and food safety. Despite a great advance in enzymatic sensors for pesticide detection, the intrinsic fragility of native enzyme and possible fake results due to single mode signal have hindered its wide application. Here, a novel dual-mode sensor is reported for organophosphorus pesticide detection by using metal-organic framework (MOF) nanozyme NH2-CuBDC as sensing element. The intrinsic peroxidase-mimicking activity and fluorescence property of NH2-CuBDC enable both colorimetric and fluorescent detection of chlorpyrifos. Compared with previously reported chlorpyrifos sensors, our sensor exhibits outstanding sensitivity, and the limits of detection (LOD, S/N = 3) in colorimetric and fluorescent modes are 1.57 ng/mL and 2.33 ng/mL, respectively. No obvious interferences from other substances were measured and chlorpyrifos analysis in real samples presented good reliability, showing practical potential. This work is anticipated to provide new insights to develop multifunctional nanozymes and integrated multi-mode sensing platforms.
Collapse
Affiliation(s)
- Shuli Liu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Jintao Zhou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Xin Yuan
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Jun Xiong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China.
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
2
|
Kong Y, Li Z, Liu Q, Song J, Zhu Y, Lin J, Song L, Li X. Artificial neural network-facilitated V 2C MNs-based colorimetric/fluorescence dual-channel biosensor for highly sensitive detection of AFB 1 in peanut. Talanta 2024; 266:125056. [PMID: 37567121 DOI: 10.1016/j.talanta.2023.125056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
In this work, V2C Mxene nano-enzyme materials (V2C MNs) with excellent peroxidase-like activity and fluorescence quenching performance were prepared, and it was modified using 6-carboxyfluorescein-labelled aptamers (ssDNA-FAM) to construct a novel dual-mode sensor V2C@ssDNA-FAM, with detection limits of 0.0477 ng mL-1 and 0.2789 ng mL-1 of fluorescence (linear range of 0.1-550 ng mL-1) and colorimetric (linear range of 1-1000 ng mL-1) modes, respectively. Meanwhile, an ANN intelligent detection platform has been constructed, which could automatically track and analyze the fluorescence and colorimetric signal of the detection system through machine learning and immediately obtain the AFB1 concentration, and the detection limits of the fluorescence (linear range of 0.1-500 ng mL-1) and colorimetric (linear range of 1-800 ng mL-1) channels of it were 0.0905 ng mL-1 and 0.6845 ng mL-1, respectively. The recovery rates of fluorescence, colorimetric sensing detection and ANN-assisted fluorescence and colorimetric sensing detection of real samples ranged from 95.40% to 101.76%. The method constructed in this work was superior to most existing literature reports and had great potential for application in the field of food quality testing.
Collapse
Affiliation(s)
- Yiqian Kong
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Zongyi Li
- School of Management, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
| | - Qi Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Juncheng Song
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Yinghua Zhu
- School of Information and Electrical Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Jinping Lin
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Lili Song
- Shandong Jinsheng Grain, Oil and Food Co., Ltd, Linyi, Shandong, 276629, PR China
| | - Xiangyang Li
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China.
| |
Collapse
|
3
|
Boumeriame H, Cherevan A, Eder D, Apaydin DH, Chafik T, Da Silva ES, Faria JL. Engineering g-C 3N 4 with CuAl-layered double hydroxide in 2D/2D heterostructures for visible-light water splitting. J Colloid Interface Sci 2023; 652:2147-2158. [PMID: 37703684 DOI: 10.1016/j.jcis.2023.08.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
CuAl layered double hydroxide (LDH) and polymeric carbon nitride (g-C3N4, GCNN) were assembled to construct a set of novel 2D/2D CuAl-LDH/GCNN heterostructures. These materials were tested towards H2 and O2 generation from water splitting using visible-light irradiation. Compared to pristine materials, the heterostructures displayed strongly enhanced visible-light H2 evolution, dependent on the LDH content, which acts as a cocatalyst, replacing the benchmark Pt. The optimal LDH loading was achieved for 0.2CuAl-LDH/GCNN that exhibited an increased number of active sites and showed a trade-off between charge separation efficiency and light shading, resulting in a 32-fold increase in the amount of evolved H2 compared with GCNN. In addition, the 0.2CuAl-LDH/GCNN heterostructure generated 1.5 times more O2 than GCNN. The higher photocatalytic performance was due to efficient charge carriers' separation at the heterojunction interface via an S-scheme (corroborated by work function, steady-state and time-resolved photoluminescence studies), enhanced utilisation of longer-wavelength photons (>460 nm) and higher surface area available for the catalytic reactions.
Collapse
Affiliation(s)
- Hanane Boumeriame
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Laboratory of Chemical Engineering and Valorization of Resources (LGCVR-UAE/L01FST), Faculty of Sciences and Techniques, University Abdelmalek Essaadi, Tangier, Morocco; Institute of Materials Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria
| | - Alexey Cherevan
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria.
| | - Dominik Eder
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria
| | - Dogukan H Apaydin
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria
| | - Tarik Chafik
- Laboratory of Chemical Engineering and Valorization of Resources (LGCVR-UAE/L01FST), Faculty of Sciences and Techniques, University Abdelmalek Essaadi, Tangier, Morocco
| | - Eliana S Da Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joaquim L Faria
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
4
|
Dong Y, Zhang Y, Xu Y. Corrosion-assisted in situ growth of NiCoFe-layered double hydroxides on Fe foam for sensitive non-enzymatic glucose detection. Dalton Trans 2023; 52:16661-16669. [PMID: 37910402 DOI: 10.1039/d3dt02622a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Because of their remarkable qualities including changeable chemical composition, good redox characteristics, and ease of manufacture, non-enzymatic glucose sensors based on metallic hydroxides have attracted much interest. However, enhancement of their peroxidase-like catalytic activity is challenging due to their poor substrate affinity and low electrical conductivity, affecting electron transfer. Herein, a three-dimensional hierarchical architecture of Ni/Co-decorated-Fe layered double hydroxide (NiCoFe-LDH) was straightforwardly constructed on Fe foam (FF) via a feasible corrosion strategy, and the non-enzymatic glucose sensing properties of the NiCoFe-LDH/FF electrode were investigated. In the linear detection range of 0.010-0.1 mM, the electrode exhibits an extreme sensitivity of 5717 μA mM-1 cm-2 with a low threshold for glucose determination of 2.61 μM (S/N = 3) and a short reaction time (∼2 s), which is ascribed to its specific intertwined nanosheet-like morphology with rich electron transfer passages that enhance conductivity and improve the accessibility to more active catalytic sites for glucose oxidation. Moreover, the electrode shows excellent selectivity, good stability, and promising practicality for glucose detection in actual serum samples. These results indicate that the feasible corrosion approach towards the simple synthesis of trimetallic layered double hydroxide electrodes results in improved affinity and stability, holding new prospects for achieving reliable, cost-efficient, and eco-friendly non-enzymatic glucose detection.
Collapse
Affiliation(s)
- Yi Dong
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
| | - Yuchi Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
| |
Collapse
|
5
|
Huang Y, Zhang Y, Lv J, Shao Y, Yang D, Cong Y. Direct fabrication of NbS 2 nanoflakes on carbon fibers by atomic layer deposition for ultrasensitive cardiac troponin I detection. NANOSCALE ADVANCES 2023; 5:830-839. [PMID: 36756515 PMCID: PMC9890598 DOI: 10.1039/d2na00827k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
The sensitive detection of cardiac troponin I (cTnI) is of great significance for the early diagnosis of acute myocardial infarction (AMI). Herein, in order to fabricate an electrochemical biosensor for ultrasensitive cTnI detection, atomic layer deposition (ALD) was employed to directly deposit NbS2 nanoflakes (NFs) on carbon fiber paper (CFP). Due to the self-limiting reaction of ALD, NbS2NFs were deposited uniformly and accurately on the surface of carbon fibers by controlling the number of ALD cycles, which ensured ultrasensitive detection. Precise regulation of the nanoscale morphology and electrochemical performance of NbS2 nanoflakes via ALD cycles was observed in depth. Owing to the high surface area and conductivity, an anodic/cathodic current of ∼3.01 mA of NbS2NFs/CFP can be obtained. Subsequently, an electrochemical biosensor based on the excellent performance of NbS2NFs/CFP was fabricated. The ultrasensitive detection of cTnI in a linear range of 1 fM to 0.1 nM with a detection limit of 0.32 fM was achieved.
Collapse
Affiliation(s)
- Yazhou Huang
- Industrial Center, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| | - Yunfei Zhang
- Industrial Center, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| | - Junyan Lv
- Industrial Center, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| | - Yinfeng Shao
- Industrial Center, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| | - Dongfang Yang
- School of Energy and Power Engineering, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| | - Yuan Cong
- School of Materials Science and Engineering, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| |
Collapse
|
6
|
Mao H, Wen Y, Yu Y, Li H, Wang J, Sun B. Bioinspired nanocatalytic tumor therapy by simultaneous reactive oxygen species generation enhancement and glutamine pathway-mediated glutathione depletion. J Mater Chem B 2022; 11:131-143. [PMID: 36484247 DOI: 10.1039/d2tb02194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An insufficient intracellular H2O2 level and overexpressed glutathione (GSH) are still the major challenges for effective chemodynamic therapy (CDT). Inspired by the unique glutamine metabolism pathway in cancer cells, herein, intelligent nanocatalytic theranostics is used to enhance intracellular reactive oxygen species (ROS) accumulation via the production of H2O2 by a biomimetic nanozyme, and simultaneously reduce ROS consumption via the depression of GSH synthesis by the glutamine metabolic inhibitor. In this reactor, nano-sized Au and Fe3O4 coloaded dendritic mesoporous silica nanoparticles (DMSN-Au-Fe3O4) serve as the bifunctional nanozyme, where intracellular glucose is catalyzed into H2O2 by the glucose oxidase-mimicking Au nanoparticles and then immediately transformed into ˙OH by the peroxidase-like Fe3O4 nanoparticles. Then, CB839, the glutaminase (GLS) inhibitor, is grafted on the nanozyme, blocking the glutamine pathway and GSH biosynthesis. As a result, the as-designed nanoplatform with a three-pronged integration of Au-mediated H2O2 self-supply, Fe3O4-triggered Fenton-like reaction, and glutamine pathway-mediated GSH depletion significantly boosts the CDT efficacy, achieving remarkable and specific antitumor properties both in vitro and in vivo. This work not only paves a new way for rationally designing multi-functional nanozymes for achieving high therapeutic efficacy, but also provides new insights into the construction of bioinspired synergetic therapy by combining CDT and a key anticancer pathway.
Collapse
Affiliation(s)
- Huijia Mao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
7
|
Das P, Boruah PK, Sarmah P, Dutta R, Boukherroub R, Das MR. A Facile Preparation of Reduced Graphene Oxide Capped AuAg Bimetallic Nanoparticles: A Selective Nanozyme for Glutathione Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202203415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Punamshree Das
- Advanced Materials Group Materials Sciences and Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Purna K. Boruah
- Advanced Materials Group Materials Sciences and Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 Assam India
| | - Priyakhee Sarmah
- Advanced Materials Group Materials Sciences and Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 Assam India
| | - Rupjyoti Dutta
- Advanced Materials Group Materials Sciences and Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 Assam India
| | - Rabah Boukherroub
- Univ. Lille CNRS Centrale Lille Univ. Polytechnique Hauts-de-France UMR 8520 – IEMN F-59000 Lille France
| | - Manash R. Das
- Advanced Materials Group Materials Sciences and Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
8
|
Jouyban A, Amini R. Layered double hydroxides as an efficient nanozyme for analytical applications. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Xu X, Shi S, Tang Y, Wang G, Zhou M, Zhao G, Zhou X, Lin S, Meng F. Growth of NiAl-Layered Double Hydroxide on Graphene toward Excellent Anticorrosive Microwave Absorption Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002658. [PMID: 33717840 PMCID: PMC7927622 DOI: 10.1002/advs.202002658] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/01/2020] [Indexed: 05/17/2023]
Abstract
High-performance microwave absorbers with special features are desired to meet the requirements of more complex modern service environments, especially corrosive environments. Therefore, high-efficiency microwave absorbers with corrosion resistance should be developed urgently. Herein, a 3D NiAl-layered double hydroxide/graphene (NiAl-LDH/G) composite synthesized by atomic-layer-deposition-assisted in situ growth is presented as an anticorrosive microwave absorber. The content of NiAl-LDH in the composite is optimized to achieve impedance matching. Furthermore, under the cooperative effects of the interface polarization loss, conduction loss, and 3D porous sandwich-like structure, the optimal NiAl-LDH/G shows excellent microwave absorption performance with a minimum reflection loss of -41.5 dB and a maximum effective absorption bandwidth of 4.4 GHz at a loading of only 7 wt% in epoxy. Remarkably, the encapsulation effect of NiAl-LDH can restrain the galvanic corrosion owing to graphene. The epoxy coating with the NiAl-LDH/G microwave absorber on carbon steel exhibits long-term corrosion resistance, owing to the synergetic effect of the superior impermeability of graphene and the chloridion-capture capacity of the NiAl-LDH. The NiAl-LDH/G composite is a promising anticorrosive microwave absorber, and the findings of this study may motivate the development of functional microwave absorbers that meet the demands of anticorrosive performance of coatings.
Collapse
Affiliation(s)
- Xuefei Xu
- State Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education)Hainan UniversityHaikouHainan570228P. R. China
| | - Shaohua Shi
- State Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education)Hainan UniversityHaikouHainan570228P. R. China
| | - Yulin Tang
- State Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education)Hainan UniversityHaikouHainan570228P. R. China
| | - Guizhen Wang
- State Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education)Hainan UniversityHaikouHainan570228P. R. China
| | - Maofan Zhou
- State Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education)Hainan UniversityHaikouHainan570228P. R. China
| | - Guoqing Zhao
- State Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education)Hainan UniversityHaikouHainan570228P. R. China
| | - Xuechun Zhou
- State Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education)Hainan UniversityHaikouHainan570228P. R. China
| | - Shiwei Lin
- State Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education)Hainan UniversityHaikouHainan570228P. R. China
| | - Fanbin Meng
- State Key Laboratory of Advanced Technologies of Materials (Ministry of Education)School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031P. R. China
| |
Collapse
|
10
|
Munyemana JC, Chen J, Han Y, Zhang S, Qiu H. A review on optical sensors based on layered double hydroxides nanoplatforms. Mikrochim Acta 2021; 188:80. [PMID: 33576899 DOI: 10.1007/s00604-021-04739-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In recent years, significant efforts have been devoted towards the fabrication and application of layered double hydroxides (LDHs) due to their tremendous features such as excellent biocompatibility with negligible toxicity, large surface area, high conductivity, excellent solubility, and ion exchange properties. Most impressive, LDHs offer a favorable environment to attach several substances such as quantum dots, fluorescein dyes, proteins, and enzymes, which leads to strengthening the catalytic properties or increasing the sensing selectivity and sensitivity of the resulted hybrids. With the extensive ongoing research on the application of nanomaterials, many studies have led to remarkable achievements in exploring LDHs as sensing nanoplatforms. In optical sensors, for instance, many sensing strategies were tailored based on the enzyme-mimicking properties of LDHs, including colorimetric and chemiluminescence procedures. Meanwhile, others were designed based on intercalating some fluorogenic substrates on the LDHs, whereby the sensing signal can be acquired by quenching or enhancing their fluorescence after the addition of analytes. In this review, we aim to summarize the recent advances in optical sensors that use layered double hydroxides as sensing platforms for the determination of various analytes. By outlining some representative examples, we accentuate the change of spectral absorbance, chemiluminescence, and photoluminescence phenomena triggered by the interaction of LDH or functionalized-LDH with the indicators and analytes in the system. And finally, current limitations and possible future orientation in designing further LDHs-based optical sensors are presented. It is hoped that this review will be helpful in assisting the establishment of more improved sensors based on LDHs features. Optical sensors based on layered double hydroxides (LDHs) nanoplatforms were reviewed. The sensing system and detection approaches were rationally reviewed. Possible future orientations were highlighted.
Collapse
Affiliation(s)
- Jean Claude Munyemana
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China.
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Wu L, Zhou X, Wan G, Tang Y, Shi S, Xu X, Wang G. Novel hierarchical CuNiAl LDH nanotubes with excellent peroxidase-like activity for wide-range detection of glucose. Dalton Trans 2021; 50:95-102. [PMID: 33284937 DOI: 10.1039/d0dt03288c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel hierarchical CuNiAl layered double hydroxide (CuNiAl LDH) nanotubes were prepared with in situ transformation of Al2O3 produced using the atomic layer deposition (ALD) method. Based on the characterizations using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR spectrometry, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), CuNiAl LDH displays a typical nanotube-like structure consisting of uniform ultrathin nanoflakes. It is also confirmed that nitrate precursors play a crucial role in the formation of the LDH hierarchical structure. The unique hierarchical tube-like structure for CuNiAl LDH can supply more active sites and higher surface areas, leading to outstanding peroxidase mimicking property. The kinetic analyses indicate that the catalytic behavior of CuNiAl LDH follows classic Michaelis-Menten models and the affinity of CuNiAl LDH to the substrate is significantly higher than horseradish peroxidase. A simple and label-free method was developed for the colorimetric detection of glucose. As low as 2.9 μM of glucose can be detected with a broad linear range from 10 to 200 μM. The established method is also proved to be suitable for glucose detection in juice samples.
Collapse
Affiliation(s)
- Lihong Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Haikou 570228, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen Y, Jiao L, Yan H, Xu W, Wu Y, Wang H, Gu W, Zhu C. Hierarchically Porous S/N Codoped Carbon Nanozymes with Enhanced Peroxidase-like Activity for Total Antioxidant Capacity Biosensing. Anal Chem 2020; 92:13518-13524. [PMID: 32869631 DOI: 10.1021/acs.analchem.0c02982] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Design of highly active carbon nanozymes and further establishment of ultrasensitive biosensors remain a challenge. Herein, hierarchically porous carbon nanozymes with sulfur (S)/nitrogen (N) codoping (SNC) were developed. Compared with N-doped carbon (NC) nanozymes, SNC nanozymes have a smaller Michaelis-Menten constant and higher specific activities, demonstrating that the S-doping in SNC nanozymes could not only enhance their affinity toward substrates but also improve their catalytic performance. These results may be caused by the synergistic effect of heteroatoms (S and N). Because of the good enzyme-like activity, the proposed SNC nanozymes were exploited to the colorimetric detection of the total antioxidant capacity (TAC) using ascorbic acid as a typical model with a limit of detection of 0.08 mM. Because of its high sensitivity and selectivity and encouraging performance, the detection method presented practical feasibility for the TAC assay in commercial beverages. This work paves a way to design the highly active carbon nanozymes and expand their applications in the construction of high-performance biosensors.
Collapse
Affiliation(s)
- Yifeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hengjia Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
13
|
Stasyuk N, Smutok O, Demkiv O, Prokopiv T, Gayda G, Nisnevitch M, Gonchar M. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4509. [PMID: 32806607 PMCID: PMC7472306 DOI: 10.3390/s20164509] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The current review is devoted to nanozymes, i.e., nanostructured artificial enzymes which mimic the catalytic properties of natural enzymes. Use of the term "nanozyme" in the literature as indicating an enzyme is not always justified. For example, it is used inappropriately for nanomaterials bound with electrodes that possess catalytic activity only when applying an electric potential. If the enzyme-like activity of such a material is not proven in solution (without applying the potential), such a catalyst should be named an "electronanocatalyst", not a nanozyme. This paper presents a review of the classification of the nanozymes, their advantages vs. natural enzymes, and potential practical applications. Special attention is paid to nanozyme synthesis methods (hydrothermal and solvothermal, chemical reduction, sol-gel method, co-precipitation, polymerization/polycondensation, electrochemical deposition). The catalytic performance of nanozymes is characterized, a critical point of view on catalytic parameters of nanozymes described in scientific papers is presented and typical mistakes are analyzed. The central part of the review relates to characterization of nanozymes which mimic natural enzymes with analytical importance ("nanoperoxidase", "nanooxidases", "nanolaccase") and their use in the construction of electro-chemical (bio)sensors ("nanosensors").
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Oleh Smutok
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| | - Olha Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Faculty of Veterinary Hygiene, Ecology and Law, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79000 Lviv, Ukraine
| | - Tetiana Prokopiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Galina Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel;
| | - Mykhailo Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| |
Collapse
|
14
|
Amini R, Rahimpour E, Jouyban A. An optical sensing platform based on hexacyanoferrate intercalated layered double hydroxide nanozyme for determination of chromium in water. Anal Chim Acta 2020; 1117:9-17. [PMID: 32408958 DOI: 10.1016/j.aca.2020.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/27/2022]
Abstract
In this work, hexacyanoferrate intercalated Ni/Al LDH (Ni/Al-Fe(CN)6 LDH) nanozyme was synthesized by one-pot co-precipitation method and used for determination of chromium in water samples by employing its peroxidase mimicking activity. The synthesized nanozyme can effectively catalyze the oxidation of fluorometric peroxidase substrate terephthalic acid by H2O2 to produce a highly fluorescent product. It was found that Cr(VI) promotes the peroxidase-like activity of Ni/Al-Fe(CN)6 LDH and this effect was intensified by increasing the Cr(VI) concentration. Several variables affecting the fluorescence intensity including the concentration of nanoparticles and reagents as well as reaction time were investigated and optimized. Under the optimal conditions, good linearity was observed in the range of 0.067-10 μM Cr(VI), and limit of detection and quantification were found to be 0.039 and 0.131 μM, respectively. Furthermore, the developed method showed good applicability for the determination of total Cr based on the oxidation of Cr (III) to Cr (VI). The applicability of the proposed method was demonstrated by analyzing various environmental water samples. The presented nanozyme displayed superior benefits in terms of reusability, repeatability, cost and environment-friendly features. The present work aims to expand LDHs based enzyme mimics to optical sensor fields.
Collapse
Affiliation(s)
- Roghayeh Amini
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Abstract
Counteracting reactive oxygen species (ROS, e.g., superoxide radical ion, H2O2 and hydroxyl radical) is an important task in fighting against oxidative stress-related illnesses and in improving product quality in industrial manufacturing processes. This review focuses on the recent advances on two-dimensional (2D) nanomaterials of antioxidant activity, which are designed for effective decomposition of ROS and thus, for reduction of oxidative stress. Some materials featured in this paper are of uni- or multi-lamellar structures modified with small molecular or enzymatic antioxidants. Others are enzyme-mimicking synthetic compounds (the so-called nanozymes) prepared without antioxidant additives. However, carbon-based materials will not be included, as they were extensively reviewed in the recent past from similar aspects. Given the landmark development around the 2D materials used in various bio-applications, sheet-like antioxidant compounds are of great interest in the scientific and technological communities. Therefore, the authors hope that this review on the recent progresses will be helpful especially for researchers working on novel developments to substantially reduce oxidative stress either in biological systems or industrial liquors.
Collapse
|
16
|
Guo L, Zheng H, Zhang C, Qu L, Yu L. A novel molecularly imprinted sensor based on PtCu bimetallic nanoparticle deposited on PSS functionalized graphene with peroxidase-like activity for selective determination of puerarin. Talanta 2019; 210:120621. [PMID: 31987162 DOI: 10.1016/j.talanta.2019.120621] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/28/2022]
Abstract
In this work, PtCu bimetallic nanoparticle was deposited on poly (styrene sulfonate) (PSS) functionalized graphene (Gr) to form a nanocomposite PtCu/PSS-Gr and its enzyme-like activity was investigated. Benefiting from the synergistic effect from Pt and Cu monometal as well as the superior properties of PSS-Gr, such as large surface area, good dispersity, strong adsorption of substrate and additional peroxidase-like activity, the PtCu/PSS-Gr nanocomposite was demonstrated as an excellent peroxidase mimic to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Combined with molecularly imprinted polymer (MIP), a new colorimetric approach for puerarin detection was proposed with the linear range of 2 × 10-5-6 × 10-4 mol L-1 and LOD of 1 × 10-5 mol L-1. The combination of MIP with PtCu/PSS-Gr nanocomposite not only endowed the determination of puerarin with high selectivity, but also realized the detection of small molecules which are neither substrate of the nanozyme nor substances with strong oxidizing or reducing activity by using peroxidase-like catalytic activity of nanozyme, expanding the application of nanozyme.
Collapse
Affiliation(s)
- Lili Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Huijun Zheng
- North China University of Water Resources and Electric Power, Zhengzhou, 450045, PR China
| | - Cuijie Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lanlan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|