1
|
Zago M, Branduardi P, Serra I. Towards biotechnological production of bio-based low molecular weight esters: a patent review. RSC Adv 2024; 14:29472-29489. [PMID: 39297040 PMCID: PMC11409443 DOI: 10.1039/d4ra04131c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024] Open
Abstract
Low molecular weight (LMW) esters, like ethyl acetate, methyl formate or butyl acetate, are widespread bulk chemicals in many industries. Each of them is currently produced in huge amounts (millions of tons per year scale) starting from fossil-based feedstock and they are used mainly because of their low toxicity and complete biodegradability. Energy transition is just half of the story on the path of fighting climate change: 45% of the global greenhouse gas emissions are caused by the production and use of all the products, materials and food necessary for modern human life. If the world is to reach its climate goals, there is the need to leave underground a significant proportion of the fossil feedstock and minimize environmental impacts of chemical manufacturing. This is the reason why a lot of efforts have been made to find novel routes for LMW esters production starting from renewable raw materials (e.g. biomasses or off-gases) and exploiting low-impact manufacturing, such as microbial fermentation or enzymatic reactions. This review reports the most significant patents, in the field of white biotechnology, that will hopefully lead to the commercialization of bio-based LMW esters as well as novel strategies, current problems to be solved, newer technologies, and some patent applications aiming at possible future developments.
Collapse
Affiliation(s)
- Mirko Zago
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza 2 Milano 20126 Italy +390264484140
- Soft Chemicals S.r.l., ASTROBIO™ Division Via Sandro Pertini 14, Arsago Seprio Varese 21010 Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza 2 Milano 20126 Italy +390264484140
| | - Immacolata Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza 2 Milano 20126 Italy +390264484140
| |
Collapse
|
2
|
Irie R, Hitora Y, Watanabe R, Clark H, Suyama Y, Sekiya S, Suzuki T, Takada K, Matsunaga S, Hosokawa S, Oikawa M. Stereochemical Assignment of the 36-Membered Macrolide Ring Portion of Poecillastrin C. Org Lett 2024; 26:5290-5294. [PMID: 38864719 DOI: 10.1021/acs.orglett.4c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Absolute configuration at 12 stereocenters in the 36-membered macrocyclic ring portion of poecillastrin C (1) was disclosed by chemical degradation and NMR analyses of 1, chemical synthesis, and molecular modeling techniques.
Collapse
Affiliation(s)
- Raku Irie
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yuki Hitora
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryuichi Watanabe
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan
| | - Hugh Clark
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yu Suyama
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shinji Sekiya
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Toshiyuki Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan
| | - Kentaro Takada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seijiro Hosokawa
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masato Oikawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
3
|
Wang CY, Hu JQ, Wang DG, Li YZ, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat Prod Rep 2024; 41:905-934. [PMID: 38390645 DOI: 10.1039/d3np00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.
Collapse
Affiliation(s)
- Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| |
Collapse
|
4
|
Chen L, Wang X, Zou Y, Tang MC. Genome Mining of a Fungal Polyketide Synthase-Nonribosomal Peptide Synthetase Hybrid Megasynthetase Pathway to Synthesize a Phytotoxic N-Acyl Amino Acid. Org Lett 2024; 26:3597-3601. [PMID: 38661293 DOI: 10.1021/acs.orglett.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Guided by the retrobiosynthesis hypothesis, we characterized a fungal polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) hybrid megasynthetase pathway to generate 2-trans-4-trans-2-methylsorbyl-d-leucine (1), a polyketide amino acid conjugate that inhibits Arabidopsis root growth. The biosynthesis of 1 includes a PKS-NRPS enzyme to assemble an N-acyl amino alcohol intermediate, which is further oxidized to an N-acyl amino acid (NAAA), demonstrating a new biosynthetic logic for synthesizing NAAAs and expanding the chemical space of products encoded by fungal PKS-NRPS clusters.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhang jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Xin Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Man-Cheng Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhang jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| |
Collapse
|
5
|
Bonhomme S, Contreras-Martel C, Dessen A, Macheboeuf P. Architecture of a PKS-NRPS hybrid megaenzyme involved in the biosynthesis of the genotoxin colibactin. Structure 2023:S0969-2126(23)00095-3. [PMID: 37059096 DOI: 10.1016/j.str.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/21/2022] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
The genotoxin colibactin produced by Escherichia coli is involved in the development of colorectal cancers. This secondary metabolite is synthesized by a multi-protein machinery, mainly composed of non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) enzymes. In order to decipher the function of a PKS-NRPS hybrid enzyme implicated in a key step of colibactin biosynthesis, we conducted an extensive structural characterization of the ClbK megaenzyme. Here we present the crystal structure of the complete trans-AT PKS module of ClbK showing structural specificities of hybrid enzymes. In addition, we report the SAXS solution structure of the full-length ClbK hybrid that reveals a dimeric organization as well as several catalytic chambers. These results provide a structural framework for the transfer of a colibactin precursor through a PKS-NRPS hybrid enzyme and can pave the way for re-engineering PKS-NRPS hybrid megaenzymes to generate diverse metabolites with many applications.
Collapse
Affiliation(s)
- Sarah Bonhomme
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Carlos Contreras-Martel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Andréa Dessen
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Pauline Macheboeuf
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France.
| |
Collapse
|
6
|
Hou A, Dickschat JS. Labelling studies in the biosynthesis of polyketides and non-ribosomal peptides. Nat Prod Rep 2023; 40:470-499. [PMID: 36484402 DOI: 10.1039/d2np00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2022In this review, we discuss the recent advances in the use of isotopically labelled compounds to investigate the biosynthesis of polyketides, non-ribosomally synthesised peptides, and their hybrids. Also, we highlight the use of isotopes in the elucidation of their structures and investigation of enzyme mechanisms. The biosynthetic pathways of selected examples are presented in detail to reveal the principles of the discussed labelling experiments. The presented examples demonstrate that the application of isotopically labelled compounds is still the state of the art and can provide valuable information for the biosynthesis of natural products.
Collapse
Affiliation(s)
- Anwei Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, West 7th Avenue No. 32, 300308 Tianjin, China.,Institute of Microbiology, Jiangxi Academy of Sciences, Changdong Road No. 7777, 330096 Nanchang, China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
7
|
Zhang L, Wang C, Chen K, Zhong W, Xu Y, Molnár I. Engineering the biosynthesis of fungal nonribosomal peptides. Nat Prod Rep 2023; 40:62-88. [PMID: 35796260 DOI: 10.1039/d2np00036a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2011 up to the end of 2021.Fungal nonribosomal peptides (NRPs) and the related polyketide-nonribosomal peptide hybrid products (PK-NRPs) are a prolific source of bioactive compounds, some of which have been developed into essential drugs. The synthesis of these complex natural products (NPs) utilizes nonribosomal peptide synthetases (NRPSs), multidomain megaenzymes that assemble specific peptide products by sequential condensation of amino acids and amino acid-like substances, independent of the ribosome. NRPSs, collaborating polyketide synthase modules, and their associated tailoring enzymes involved in product maturation represent promising targets for NP structure diversification and the generation of small molecule unnatural products (uNPs) with improved or novel bioactivities. Indeed, reprogramming of NRPSs and recruiting of novel tailoring enzymes is the strategy by which nature evolves NRP products. The recent years have witnessed a rapid development in the discovery and identification of novel NRPs and PK-NRPs, and significant advances have also been made towards the engineering of fungal NRP assembly lines to generate uNP peptides. However, the intrinsic complexities of fungal NRP and PK-NRP biosynthesis, and the large size of the NRPSs still present formidable conceptual and technical challenges for the rational and efficient reprogramming of these pathways. This review examines key examples for the successful (and for some less-successful) re-engineering of fungal NRPS assembly lines to inform future efforts towards generating novel, biologically active peptides and PK-NRPs.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Kang Chen
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Weimao Zhong
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.,VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| |
Collapse
|
8
|
Dissanayake GC, Ndi CN, Markley JL, Martinez JB, Hanson PR. Total Synthesis of Sanctolide A and Formal Synthesis of (2 S)-Sanctolide A. J Org Chem 2023; 88:805-817. [PMID: 36602547 DOI: 10.1021/acs.joc.2c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two synthetic strategies employing phosphate tether-mediated one-pot sequential protocols for the total synthesis of the polyketide nonribosomal peptide macrolide, sanctolide A, and the formal synthesis of the (2S)-epimer of sanctolide A are reported. In this work, a phosphate tether-mediated one-pot sequential ring-closing metathesis/cross metathesis/substrate-controlled "H2"/tether removal approach was developed to accomplish the total synthesis of the natural product sanctolide A.
Collapse
Affiliation(s)
- Gihan C Dissanayake
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Cornelius N Ndi
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Jana L Markley
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James B Martinez
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Paul R Hanson
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| |
Collapse
|
9
|
Singh HW, Creamer KE, Chase AB, Klau LJ, Podell S, Jensen PR. Metagenomic Data Reveal Type I Polyketide Synthase Distributions Across Biomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523365. [PMID: 36711755 PMCID: PMC9882069 DOI: 10.1101/2023.01.09.523365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microbial polyketide synthase (PKS) genes encode the biosynthesis of many biomedically important natural products, yet only a small fraction of nature's polyketide biosynthetic potential has been realized. Much of this potential originates from type I PKSs (T1PKSs), which can be delineated into different classes and subclasses based on domain organization and structural features of the compounds encoded. Notably, phylogenetic relationships among PKS ketosynthase (KS) domains provide a method to classify the larger and more complex genes in which they occur. Increased access to large metagenomic datasets from diverse habitats provides opportunities to assess T1PKS biosynthetic diversity and distributions through the analysis of KS domain sequences. Here, we used the webtool NaPDoS2 to detect and classify over 35,000 type I KS domains from 137 metagenomic data sets reported from eight diverse biomes. We found biome-specific separation with soils enriched in modular cis -AT and hybrid cis -AT KSs relative to other biomes and marine sediments enriched in KSs associated with PUFA and enediyne biosynthesis. By extracting full-length KS domains, we linked the phylum Actinobacteria to soil-specific enediyne and cis -AT clades and identified enediyne and monomodular KSs in phyla from which the associated compound classes have not been reported. These sequences were phylogenetically distinct from those associated with experimentally characterized PKSs suggesting novel structures or enzyme functions remain to be discovered. Lastly, we employed our metagenome-extracted KS domains to evaluate commonly used type I KS PCR primers and identified modifications that could increase the KS sequence diversity recovered from amplicon libraries. Importance Polyketides are a crucial source of medicines, agrichemicals, and other commercial products. Advances in our understanding of polyketide biosynthesis coupled with the accumulation of metagenomic sequence data provide new opportunities to assess polyketide biosynthetic potential across biomes. Here, we used the webtool NaPDoS2 to assess type I PKS diversity and distributions by detecting and classifying KS domains across 137 metagenomes. We show that biomes are differentially enriched in KS domain classes, providing a roadmap for future biodiscovery strategies. Further, KS phylogenies reveal both biome-specific clades that do not include biochemically characterized PKSs, highlighting the biosynthetic potential of poorly explored environments. The large metagenome-derived KS dataset allowed us to identify regions of commonly used type I KS PCR primers that could be modified to capture a larger extent of KS diversity. These results facilitate both the search for novel polyketides and our understanding of the biogeographical distribution of PKSs across earth's major biomes.
Collapse
|
10
|
Miyanaga A, Kudo F, Eguchi T. Cross-Linking of the Nonribosomal Peptide Synthetase Adenylation Domain with a Carrier Protein Using a Pantetheine-Type Probe. Methods Mol Biol 2023; 2670:207-217. [PMID: 37184706 DOI: 10.1007/978-1-0716-3214-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Adenylation domains (A-domains) are responsible for the selective incorporation of carboxylic acid substrates in the biosynthesis of nonribosomal peptides and related natural products. The A-domain transfers an acyl substrate onto its cognate carrier protein (CP). The proper interactions between an A-domain and the cognate CP are important for functional substrate transfer. To stabilize the transient interactions sufficiently for structural analysis of A-domain-CP complex, vinylsulfonamide adenosine inhibitors have been traditionally used as molecular probes. Recently, we have developed an alternative strategy using a synthetic pantetheine-type probe that enables site-specific cross-linking between an A-domain and a CP. In this chapter, we describe the laboratory protocols for this cross-linking reaction.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan.
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
11
|
Miyanaga A, Kudo F, Eguchi T. Recent advances in the structural analysis of adenylation domains in natural product biosynthesis. Curr Opin Chem Biol 2022; 71:102212. [PMID: 36116190 DOI: 10.1016/j.cbpa.2022.102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Adenylation (A) domains catalyze the biosynthetic incorporation of acyl building blocks into nonribosomal peptides and related natural products by selectively transferring acyl substrates onto cognate carrier proteins (CP). The use of noncanonical acyl units, such as nonproteinogenic amino acids and keto acids, by A domains expands the structural diversity of natural products. Furthermore, interrupted A domains, which have embedded auxiliary domains, are able to modify the incorporated acyl units. Structural information on A domains is important for rational protein engineering to generate unnatural compounds. In this review, we summarize recent advances in the structural analysis of A domains. First, we discuss the mechanisms by which A domains recognize noncanonical acyl units. We then focus on the interactions of A domains with CP domains and embedded auxiliary domains.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| |
Collapse
|
12
|
Recent advances in the structural biology of modular polyketide synthases and nonribosomal peptide synthetases. Curr Opin Chem Biol 2022; 71:102223. [PMID: 36265331 DOI: 10.1016/j.cbpa.2022.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
Polyketides and nonribosomal peptides are an important class of natural products with useful bioactivities. These compounds are similarly biosynthesized using enzymes with modular structures despite having different physicochemical properties. These enzymes are attractive targets for bioengineering to produce "unnatural" natural products owing to their modular structures. Therefore, their structures have been studied for a long time; however, the main focus was on truncated-single domains. Surprisingly, there is an increasing number of the structures of whole modules reported, most of which have been enabled through the recent advances in cryogenic electron microscopy technology. In this review, we have summarized the recent advances in the structural elucidation of whole modules.
Collapse
|
13
|
Rao L, Shi HC, Zou Y. A fungal nonribosomal peptide-polyketide hybrid synthase synthesizes 2-pyrrolidinone alkaloid. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Mózsik L, Iacovelli R, Bovenberg RAL, Driessen AJM. Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Front Bioeng Biotechnol 2022; 10:901037. [PMID: 35910033 PMCID: PMC9335490 DOI: 10.3389/fbioe.2022.901037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Filamentous fungi are highly productive cell factories, many of which are industrial producers of enzymes, organic acids, and secondary metabolites. The increasing number of sequenced fungal genomes revealed a vast and unexplored biosynthetic potential in the form of transcriptionally silent secondary metabolite biosynthetic gene clusters (BGCs). Various strategies have been carried out to explore and mine this untapped source of bioactive molecules, and with the advent of synthetic biology, novel applications, and tools have been developed for filamentous fungi. Here we summarize approaches aiming for the expression of endogenous or exogenous natural product BGCs, including synthetic transcription factors, assembly of artificial transcription units, gene cluster refactoring, fungal shuttle vectors, and platform strains.
Collapse
Affiliation(s)
- László Mózsik
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Roel A. L. Bovenberg
- DSM Biotechnology Center, Delft, Netherlands
- Department of Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Chen L, Tang JW, Liu YY, Matsuda Y. Aspcandine: A Pyrrolobenzazepine Alkaloid Synthesized by a Fungal Nonribosomal Peptide Synthetase-Polyketide Synthase Hybrid. Org Lett 2022; 24:4816-4819. [PMID: 35748771 DOI: 10.1021/acs.orglett.2c01918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Characterization of an orphan biosynthetic gene cluster found in the fungus Aspergillus candidus CBS 102.13 resulted in the discovery of a pyrrolobenzazepine alkaloid, aspcandine (1). The unique molecular scaffold of 1 is synthesized by the nonribosomal peptide synthetase-polyketide synthase hybrid AcdB, which unusually incorporates 3-hydroxy-l-kynurenine as a building block. AcdB subsequently performs one round of chain elongation using malonyl-CoA, which is followed by the chain release to furnish the tricyclic system of 1.
Collapse
Affiliation(s)
- Lin Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jian-Wei Tang
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yan Yee Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
16
|
Corpuz JC, Sanlley JO, Burkart MD. Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains. Synth Syst Biotechnol 2022; 7:677-688. [PMID: 35224236 PMCID: PMC8857579 DOI: 10.1016/j.synbio.2022.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are attractive targets for biosynthetic pathway engineering due to their modular architecture and the therapeutic relevance of their products. With catalysis mediated by specific protein-protein interactions formed between the peptidyl carrier protein (PCP) and its partner enzymes, NRPS enzymology and control remains fertile ground for discovery. This review focuses on the recent efforts within structural biology by compiling high-resolution structural data that shed light into the various protein-protein interfaces formed between the PCP and its partner enzymes, including the phosphopantetheinyl transferase (PPTase), adenylation (A) domain, condensation (C) domain, thioesterase (TE) domain and other tailoring enzymes within the synthetase. Integrating our understanding of how the PCP recognizes partner proteins with the potential to use directed evolution and combinatorial biosynthetic methods will enhance future efforts in discovery and production of new bioactive compounds.
Collapse
Affiliation(s)
- Joshua C. Corpuz
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Javier O. Sanlley
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
17
|
Pham MT, Chen SR, Liang SY, Cheng YB, Lin HC. Biosynthesis of Piperazine-Derived Diazabicyclic Alkaloids Involves a Nonribosomal Peptide Synthetase and Subsequent Tailoring by a Multifunctional Cytochrome P450 Enzyme. Org Lett 2022; 24:4064-4069. [PMID: 35617650 DOI: 10.1021/acs.orglett.2c01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Piperazine-derived diazabicycles are privileged structures found in natural products and synthetic chemical entities, including therapeutic agents. Herein, we deciphered the biosynthesis of two unique classes of diazabicyclic alkaloids, fischerazines A-C. Notably, we characterized a multifunctional P450 monooxygenase NfiC that installs ortho-dihydroxyl groups on the dibenzyl-piperazines, in turn triggering a range of NfiC-catalyzed and spontaneous cyclization events.
Collapse
Affiliation(s)
- Mai-Truc Pham
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan R.O.C
| | - Shu-Rong Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan R.O.C
| | - Suh-Yuen Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C
| |
Collapse
|
18
|
Brinkmann S, Spohn MS, Schäberle TF. Bioactive natural products from Bacteroidetes. Nat Prod Rep 2022; 39:1045-1065. [PMID: 35315462 DOI: 10.1039/d1np00072a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Covering: up to end of January 2022Bacteria representing the phylum Bacteroidetes produce a diverse range of natural products, including polyketides, peptides and lactams. Here, we discuss unique aspects of the bioactive compounds discovered thus far, and the corresponding biosynthetic pathways if known, providing a comprehensive overview of the Bacteroidetes as a natural product reservoir.
Collapse
Affiliation(s)
- Stephan Brinkmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Marius S Spohn
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Till F Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany. .,Institute for Insect Biotechnology, Justus Liebig University of Giessen, 35392 Giessen, Germany.,German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
19
|
Wenski SL, Thiengmag S, Helfrich EJ. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synth Syst Biotechnol 2022; 7:631-647. [PMID: 35224231 PMCID: PMC8842026 DOI: 10.1016/j.synbio.2022.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/03/2023] Open
Abstract
Complex peptide natural products exhibit diverse biological functions and a wide range of physico-chemical properties. As a result, many peptides have entered the clinics for various applications. Two main routes for the biosynthesis of complex peptides have evolved in nature: ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic pathways and non-ribosomal peptide synthetases (NRPSs). Insights into both bioorthogonal peptide biosynthetic strategies led to the establishment of universal principles for each of the two routes. These universal rules can be leveraged for the targeted identification of novel peptide biosynthetic blueprints in genome sequences and used for the rational engineering of biosynthetic pathways to produce non-natural peptides. In this review, we contrast the key principles of both biosynthetic routes and compare the different biochemical strategies to install the most frequently encountered peptide modifications. In addition, the influence of the fundamentally different biosynthetic principles on past, current and future engineering approaches is illustrated. Despite the different biosynthetic principles of both peptide biosynthetic routes, the arsenal of characterized peptide modifications encountered in RiPP and NRPS systems is largely overlapping. The continuous expansion of the biocatalytic toolbox of peptide modifying enzymes for both routes paves the way towards the production of complex tailor-made peptides and opens up the possibility to produce NRPS-derived peptides using the ribosomal route and vice versa.
Collapse
Affiliation(s)
- Sebastian L. Wenski
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Sirinthra Thiengmag
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Eric J.N. Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Abstract
![]()
Natural products
are the result of Nature’s exploration
of biologically relevant chemical space through evolution and an invaluable
source of bioactive small molecules for chemical biology and medicinal
chemistry. Novel concepts for the discovery of new bioactive compound
classes based on natural product structure may enable exploration
of wider biologically relevant chemical space. The pseudo-natural
product concept merges the relevance of natural product structure
with efficient exploration of chemical space by means of fragment-based
compound development to inspire the discovery of new bioactive chemical
matter through de novo combination of natural product
fragments in unprecedented arrangements. The novel scaffolds retain
the biological relevance of natural products but are not obtainable
through known biosynthetic pathways which can lead to new chemotypes
that may have unexpected or unprecedented bioactivities. Herein, we
cover the workflow of pseudo-natural product design and development,
highlight recent examples, and discuss a cheminformatic analysis in
which a significant portion of biologically active synthetic compounds
were found to be pseudo-natural products. We compare the concept to
natural evolution and discuss pseudo-natural products as the human-made
equivalent, i.e. the chemical evolution of natural product structure.
Collapse
Affiliation(s)
- Michael Grigalunas
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
21
|
Muñoz CY, Zhou L, Yi Y, Kuipers OP. Biocontrol properties from phyllospheric bacteria isolated from Solanum lycopersicum and Lactuca sativa and genome mining of antimicrobial gene clusters. BMC Genomics 2022; 23:152. [PMID: 35189837 PMCID: PMC8862347 DOI: 10.1186/s12864-022-08392-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Biocontrol agents are sustainable eco-friendly alternatives for chemical pesticides that cause adverse effects in the environment and toxicity in animals including humans. An improved understanding of the phyllosphere microbiology is of vital importance for biocontrol development. Most studies have been directed towards beneficial plant-microbe interactions and ignore the pathogens that might affect humans when consuming vegetables. In this study we extended this perspective and investigated potential biocontrol strains isolated from tomato and lettuce phyllosphere that can promote plant growth and potentially antagonize human pathogens as well as plant pathogens. Subsequently, we mined into their genomes for discovery of antimicrobial biosynthetic gene clusters (BGCs), that will be further characterized. RESULTS The antimicrobial activity of 69 newly isolated strains from a healthy tomato and lettuce phyllosphere against several plant and human pathogens was screened. Three strains with the highest antimicrobial activity were selected and characterized (Bacillus subtilis STRP31, Bacillus velezensis SPL51, and Paenibacillus sp. PL91). All three strains showed a plant growth promotion effect on tomato and lettuce. In addition, genome mining of the selected isolates showed the presence of a large variety of biosynthetic gene clusters. A total of 35 BGCs were identified, of which several are already known, but also some putative novel ones were identified. Further analysis revealed that among the novel BGCs, one previously unidentified NRPS and two bacteriocins are encoded, the gene clusters of which were analyzed in more depth. CONCLUSIONS Three recently isolated strains of the Bacillus genus were identified that have high antagonistic activity against lettuce and tomato plant pathogens. Known and unknown antimicrobial BGCs were identified in these antagonistic bacterial isolates, indicating their potential to be used as biocontrol agents. Our study serves as a strong incentive for subsequent purification and characterization of novel antimicrobial compounds that are important for biocontrol.
Collapse
Affiliation(s)
- Claudia Y Muñoz
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Lu Zhou
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Yunhai Yi
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
22
|
Takeuchi Y, Kawasaki S, Akagawa K, Kudo K. Iterative synthesis of nitrogen-containing polyketide via oxime intermediates. RSC Adv 2022; 12:5275-5279. [PMID: 35425541 PMCID: PMC8981394 DOI: 10.1039/d2ra00108j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/06/2022] [Indexed: 12/04/2022] Open
Abstract
Typical polyketides consist of C, H, and O atoms, whereas several types of N-containing polyketides are known to show intriguing properties. Because conventional synthetic approaches for such compounds focus on only specific structures, a more general method is desirable. Here, we have developed an iterative synthesis of nitrogen-containing polyketide. Chain elongation of carboxylic acid via decarboxylative Claisen condensation with malonic acid half thioester was iteratively performed to construct carbon frameworks. β-Keto groups formed by the chain elongation were appropriately converted to O-methyl oximes for incorporation of nitrogen atoms. Cyclization of the resulting oxime intermediates followed by reductive N-O cleavage afforded structurally diverse nitrogen-containing polyketides such as 2-pyridone, 4-aminopyrone, and 4-aminosalicylate. This method was finally applied to the synthesis of (R)-6-aminomellein, which is a nitrogen-substituted derivative of bioactive compound, (R)-6-methoxymellein. The versatility of the present method would enable the synthesis of diverse polyketides with nitrogen functional groups, which can be potentially utilized for the development of novel bioactive compounds.
Collapse
Affiliation(s)
- Yuta Takeuchi
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 1538505 Japan
| | - Shun Kawasaki
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 1538505 Japan
| | - Kengo Akagawa
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 1538505 Japan
| | - Kazuaki Kudo
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 1538505 Japan
| |
Collapse
|
23
|
Guo Y, Contesini FJ, Wang X, Ghidinelli S, Tornby DS, Andersen TE, Mortensen UH, Larsen TO. Biosynthesis of Calipyridone A Represents a Fungal 2-Pyridone Formation without Ring Expansion in Aspergillus californicus. Org Lett 2022; 24:804-808. [PMID: 35045257 DOI: 10.1021/acs.orglett.1c03792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A chemical investigation of the filamentous fungus Aspergillus californicus led to the isolation of a polyketide-nonribosomal peptide hybrid, calipyridone A (1). A putative biosynthetic gene cluster cpd for production of 1 was next identified by genome mining. The role of the cpd cluster in the production of 1 was confirmed by multiple gene deletion experiments in the host strain as well as by heterologous expression of the hybrid gene cpdA inAspergillus oryzae. Moreover, chemical analyses of the mutant strains allowed the biosynthesis of 1 to be elucidated. The results indicate that the generation of the 2-pyridone moiety of 1 via nucleophilic attack of the iminol nitrogen to the carbonyl carbon is different from the biosynthesis of other fungal 2-pyridone products through P450-catalyzed tetramic acid ring expansions. In addition, two biogenetic intermediates, calipyridones B and C, showed modest inhibition effects on the plaque-forming ability of SARS-CoV-2.
Collapse
Affiliation(s)
- Yaojie Guo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark.,Department of Microbiology, Zhejiang University School of Medicine, Yuhangtang Road 866, Hangzhou 310058, China
| | - Fabiano J Contesini
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Xinhui Wang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Simone Ghidinelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Ditte S Tornby
- Department of Clinical Research, University of Southern Denmark, Winløwsparken 21, 2. sal, 5000 Odense, Denmark
| | - Thomas E Andersen
- Department of Clinical Research, University of Southern Denmark, Winløwsparken 21, 2. sal, 5000 Odense, Denmark
| | - Uffe H Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Popoff A, Hug JJ, Walesch S, Garcia R, Keller L, Müller R. Structure and Biosynthesis of Myxofacyclines: Unique Myxobacterial Polyketides Featuring Varing and Rare Heterocycles [] *. Chemistry 2021; 27:16654-16661. [PMID: 34617331 PMCID: PMC9298251 DOI: 10.1002/chem.202103095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/06/2022]
Abstract
A metabolome-guided screening approach in the novel myxobacterium Corallococcus sp. MCy9072 resulted in the isolation of the unprecedented natural product myxofacycline A, which features a rare isoxazole substructure. Identification and genomic investigation of additional producers alongside targeted gene inactivation experiments and heterologous expression of the corresponding biosynthetic gene cluster in the host Myxococcus xanthus DK1622 confirmed a noncanonical megaenzyme complex as the biosynthetic origin of myxofacycline A. Induced expression of the respective genes led to significantly increased production titers enabling the identification of six further members of the myxofacycline natural product family. Whereas myxofacyclines A-D display an isoxazole substructure, intriguingly myxofacyclines E and F were found to contain 4-pyrimidinole, a heterocycle unprecedented in natural products. Lastly, myxofacycline G features another rare 1,2-dihydropyrol-3-one moiety. In addition to a full structure elucidation, we report the underlying biosynthetic machinery and present a rationale for the formation of all myxofacyclines. Unexpectedly, an extraordinary polyketide synthase-nonribosomal peptide synthetase hybrid was found to produce all three types of heterocycle in these natural products.
Collapse
Affiliation(s)
- Alexander Popoff
- Department of Microbial Natural ProductsHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover-Braunschweig (Germany)
| | - Joachim J. Hug
- Department of Microbial Natural ProductsHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover-Braunschweig (Germany)
| | - Sebastian Walesch
- Department of Microbial Natural ProductsHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover-Braunschweig (Germany)
| | - Ronald Garcia
- Department of Microbial Natural ProductsHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover-Braunschweig (Germany)
| | - Lena Keller
- Department of Microbial Natural ProductsHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover-Braunschweig (Germany)
| | - Rolf Müller
- Department of Microbial Natural ProductsHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover-Braunschweig (Germany)
| |
Collapse
|
25
|
Liu Z, Li W, Zhang P, Fan J, Zhang F, Wang C, Li S, Sun Y, Chen S, Yin W. Tricarbocyclic core formation of tyrosine-decahydrofluorenes implies a three-enzyme cascade with XenF-mediated sigmatropic rearrangement as a prerequisite. Acta Pharm Sin B 2021; 11:3655-3664. [PMID: 34900544 PMCID: PMC8642415 DOI: 10.1016/j.apsb.2021.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Tyrosine-decahydrofluorene derivatives feature a fused [6.5.6] tricarbocyclic core and a 13-membered para-cyclophane ether. Herein, we identified new xenoacremones A, B, and C (1-3) from the fungal strain Xenoacremonium sinensis ML-31 and elucidated their biosynthetic pathway using gene deletion in the native strain and heterologous expression in Aspergillus nidulans. The hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) XenE together with enoyl reductase XenG were confirmed to be responsible for the formation of the tyrosine-nonaketide skeleton. This skeleton was subsequently dehydrated by XenA to afford a pyrrolidinone moiety. XenF catalyzed a novel sigmatropic rearrangement to yield a key cyclohexane intermediate as a prerequisite for the formation of the multi-ring system. Subsequent oxidation catalyzed by XenD supplied the substrate for XenC to link the para-cyclophane ether, which underwent subsequent spontaneous Diels-Alder reaction to give the end products. Thus, the results indicated that three novel enzymes XenF, XenD, and XenC coordinate to assemble the [6.5.6] tricarbocyclic ring and para-cyclophane ether during biosynthesis of complex tyrosine-decahydrofluorene derivatives.
Collapse
Affiliation(s)
- Zhiguo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Li
- State Key Laboratory of Mycology, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- State Key Laboratory of Mycology, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Fan
- State Key Laboratory of Mycology, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Yi Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Corresponding author. Tel./fax: +86 10 64013996.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Corresponding author. Tel./fax: +86 10 64013996.
| | - Wenbing Yin
- State Key Laboratory of Mycology, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author. Tel./fax: +86 10 64013996.
| |
Collapse
|
26
|
Li Y, Zhuo L, Li X, Zhu Y, Wu S, Shen T, Hu W, Li YZ, Wu C. Myxadazoles, Myxobacterium-Derived Isoxazole-Benzimidazole Hybrids with Cardiovascular Activities. Angew Chem Int Ed Engl 2021; 60:21679-21684. [PMID: 34314077 DOI: 10.1002/anie.202106275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Indexed: 12/14/2022]
Abstract
There is a continuous need for novel microbial natural products to fill the drying-up drug development pipeline. Herein, we report myxadazoles from Myxococcus sp. SDU36, a family of novel chimeric small molecules that consist of N-ribityl 5,6-dimethylbenzimidazole and a linear fatty acid chain endowed with an isoxazole ring. The experiments of genome sequencing, gene insertion mutation, isotope labelling, and precursor feeding demonstrated that the fatty acid chain was encoded by a non-canonical PKS/NRPS gene cluster, whereas the origin of N-ribityl 5,6-dimethylbenzimidazole was related to the vitamin B12 metabolism. The convergence of these two distinct biosynthetic pathways through a C-N coupling led to the unique chemical framework of myxadazoles, which is an unprecedented hybridization mode in the paradigm of natural products. Myxadazoles exhibited potent vasculogenesis promotion effect and moderate antithrombotic activity, underscoring their potential usage for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yuelan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshi Dong Road, Jinan, 250103, P. R. China
| | - Yongqiang Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshi Dong Road, Jinan, 250103, P. R. China
| | - Shuge Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, 250012, P. R. China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| |
Collapse
|
27
|
Li Y, Zhuo L, Li X, Zhu Y, Wu S, Shen T, Hu W, Li Y, Wu C. Myxadazoles, Myxobacterium‐Derived Isoxazole–Benzimidazole Hybrids with Cardiovascular Activities. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuelan Li
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Xiaobin Li
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) No. 28789 Jingshi Dong Road Jinan 250103 P. R. China
| | - Yongqiang Zhu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) No. 28789 Jingshi Dong Road Jinan 250103 P. R. China
| | - Shuge Wu
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Wei Hu
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Yue‐Zhong Li
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| |
Collapse
|
28
|
Li W, Fan J, Liao G, Yin WB, Li SM. Precursor Supply Increases the Accumulation of 4-Hydroxy-6-(4-hydroxyphenyl)-α-pyrone after NRPS-PKS Gene Expression. JOURNAL OF NATURAL PRODUCTS 2021; 84:2380-2384. [PMID: 34286580 DOI: 10.1021/acs.jnatprod.1c00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Expression of a nonribosomal peptide synthetase-nonreducing polyketide synthase hybrid gene pcr10109 from Penicillium crustosum PRB-2 in Aspergillus nidulans led to the accumulation of 4-hydroxy-6-(4-hydroxyphenyl)-α-pyrone (1). Adding para-hydroxybenzoic acid into the medium in which the overexpressing mutant is growing increased the product yield up to 5-fold. This strategy could be helpful for heterologous gene expression experiments requiring special substrates for product formation.
Collapse
Affiliation(s)
- Wen Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Jie Fan
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
| | - Ge Liao
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| |
Collapse
|
29
|
Darcel L, Das S, Bonnard I, Banaigs B, Inguimbert N. Thirtieth Anniversary of the Discovery of Laxaphycins. Intriguing Peptides Keeping a Part of Their Mystery. Mar Drugs 2021; 19:md19090473. [PMID: 34564135 PMCID: PMC8471579 DOI: 10.3390/md19090473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Lipopeptides are a class of compounds generally produced by microorganisms through hybrid biosynthetic pathways involving non-ribosomal peptide synthase and a polyketyl synthase. Cyanobacterial-produced laxaphycins are examples of this family of compounds that have expanded over the past three decades. These compounds benefit from technological advances helping in their synthesis and characterization, as well as in deciphering their biosynthesis. The present article attempts to summarize most of the articles that have been published on laxaphycins. The current knowledge on the ecological role of these complex sets of compounds will also be examined.
Collapse
|
30
|
Tippelt A, Nett M. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microb Cell Fact 2021; 20:161. [PMID: 34412657 PMCID: PMC8374128 DOI: 10.1186/s12934-021-01650-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
As a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.
Collapse
Affiliation(s)
- Anna Tippelt
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| |
Collapse
|
31
|
Mapping the biosynthetic pathway of a hybrid polyketide-nonribosomal peptide in a metazoan. Nat Commun 2021; 12:4912. [PMID: 34389721 PMCID: PMC8363725 DOI: 10.1038/s41467-021-24682-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
Polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) hybrid systems typically use complex protein-protein interactions to facilitate direct transfer of intermediates between these multimodular megaenzymes. In the canal-associated neurons (CANs) of Caenorhabditis elegans, PKS-1 and NRPS-1 produce the nemamides, the only known hybrid polyketide-nonribosomal peptides biosynthesized by animals, through a poorly understood mechanism. Here, we use genome editing and mass spectrometry to map the roles of individual PKS-1 and NRPS-1 enzymatic domains in nemamide biosynthesis. Furthermore, we show that nemamide biosynthesis requires at least five additional enzymes expressed in the CANs that are encoded by genes distributed across the worm genome. We identify the roles of these enzymes and discover a mechanism for trafficking intermediates between a PKS and an NRPS. Specifically, the enzyme PKAL-1 activates an advanced polyketide intermediate as an adenylate and directly loads it onto a carrier protein in NRPS-1. This trafficking mechanism provides a means by which a PKS-NRPS system can expand its biosynthetic potential and is likely important for the regulation of nemamide biosynthesis. The only known animal polyketide-nonribosomal peptides, the nemamides, are biosynthesized by two megasynthetases in the canal-associated neurons (CANs) of C. elegans. Here, the authors map the biosynthetic roles of individual megasynthetase domains and identify additional enzymes in the CANs required for nemamide biosynthesis.
Collapse
|
32
|
Gao B, Yang B, Feng X, Li C. Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Nat Prod Rep 2021; 39:139-162. [PMID: 34374396 DOI: 10.1039/d1np00017a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: 2015 to 2020Nitrogen heterocyclic natural products (NHNPs) are primary or secondary metabolites containing nitrogen heterocyclic (N-heterocyclic) skeletons. Due to the existence of the N-heterocyclic structure, NHNPs exhibit various bioactivities such as anticancer and antibacterial, which makes them widely used in medicines, pesticides, and food additives. However, the low content of these NHNPs in native organisms severely restricts their commercial application. Although a variety of NHNPs have been produced through extraction or chemical synthesis strategies, these methods suffer from several problems. The development of biotechnology provides new options for the production of NHNPs. This review introduces the recent progress of two strategies for the biosynthesis of NHNPs: enzymatic biosynthesis and microbial cell factory. In the enzymatic biosynthesis part, the recent progress in the mining of enzymes that synthesize N-heterocyclic skeletons (e.g., pyrrole, piperidine, diketopiperazine, and isoquinoline), the engineering of tailoring enzymes, and enzyme cascades constructed to synthesize NHNPs are discussed. In the microbial cell factory part, with tropane alkaloids (TAs) and tetrahydroisoquinoline (THIQ) alkaloids as the representative compounds, the strategies of unraveling unknown natural biosynthesis pathways of NHNPs in plants are summarized, and various metabolic engineering strategies to enhance their production in microbes are introduced. Ultimately, future perspectives for accelerating the biosynthesis of NHNPs are discussed.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Bo Yang
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China. and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China and Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
33
|
Villariba-Tolentino C, Cariño AM, Notarte KI, Macaranas I, Fellizar A, Tomas RC, Angeles LM, Abanilla L, Lim A, Aguilar MKC, Albano PM. pks + Escherichia coli more prevalent in benign than malignant colorectal tumors. Mol Biol Rep 2021; 48:5451-5458. [PMID: 34297324 DOI: 10.1007/s11033-021-06552-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Some E. coli strains that synthesize the toxin colibactin within the 54-kb pks island are being implicated in colorectal cancer (CRC) development. Here, the prevalence of pks+ E. coli in malignant and benign colorectal tumors obtained from selected Filipino patients was compared to determine the association of pks+ E. coli with CRC in this population. METHODS AND RESULTS A realtime qPCR protocol was developed to quantify uidA, clbB, clbN, and clbA genes in formalin fixed paraffin embedded colorectal tissues. The number of malignant tumors (44/62; 71%) positive for the uidA gene was not significantly different (p = 0.3428) from benign (38/62; 61%) tumors. Significantly higher number of benign samples (p < 0.05) were positive for all three colibactin genes (clbB, clbN, and clbA) compared with malignant samples. There was also higher prevalence of pks+ E. coli among older females and in tissue samples taken from the rectum. CONCLUSION Hence, pks+ E. coli may not be associated with CRC development among Filipinos.
Collapse
Affiliation(s)
- Carmina Villariba-Tolentino
- The Graduate School, University of Santo Tomas, 1015, Manila, Philippines.,Research Center for the Natural and Applied Sciences, University of Santo Tomas, 1015, Manila, Philippines.,Manuel S. Enverga University Foundation, 4301, Lucena, Philippines
| | - Ana Maria Cariño
- The Graduate School, University of Santo Tomas, 1015, Manila, Philippines.,Research Center for the Natural and Applied Sciences, University of Santo Tomas, 1015, Manila, Philippines.,Quirino State University, 3401, Diffun, Philippines
| | - Kin Israel Notarte
- Faculty of Medicine and Surgery, University of Santo Tomas, 1015, Manila, Philippines
| | - Imee Macaranas
- Faculty of Medicine and Surgery, University of Santo Tomas, 1015, Manila, Philippines
| | - Allan Fellizar
- The Graduate School, University of Santo Tomas, 1015, Manila, Philippines.,Research Center for the Natural and Applied Sciences, University of Santo Tomas, 1015, Manila, Philippines.,Mariano Marcos Memorial Hospital and Medical Center, 2906, Batac, Philippines
| | | | - Lara Mae Angeles
- Faculty of Medicine and Surgery, University of Santo Tomas, 1015, Manila, Philippines.,University of Santo Tomas Hospital, 1015, Manila, Philippines
| | | | - Antonio Lim
- Divine Word Hospital, 6500, Tacloban, Philippines
| | - Ma Kristina Carmela Aguilar
- The Graduate School, University of Santo Tomas, 1015, Manila, Philippines.,Research Center for the Natural and Applied Sciences, University of Santo Tomas, 1015, Manila, Philippines
| | - Pia Marie Albano
- The Graduate School, University of Santo Tomas, 1015, Manila, Philippines. .,Research Center for the Natural and Applied Sciences, University of Santo Tomas, 1015, Manila, Philippines. .,College of Science, University of Santo Tomas, Manila, Philippines.
| |
Collapse
|
34
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
35
|
Amiri Moghaddam J, Jautzus T, Alanjary M, Beemelmanns C. Recent highlights of biosynthetic studies on marine natural products. Org Biomol Chem 2021; 19:123-140. [PMID: 33216100 DOI: 10.1039/d0ob01677b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Marine bacteria are excellent yet often underexplored sources of structurally unique bioactive natural products. In this review we cover the diversity of marine bacterial biomolecules and highlight recent studies on structurally novel natural products. We include different compound classes and discuss the latest progress related to their biosynthetic pathway analysis and engineering: examples range from fatty acids over terpenes to PKS, NRPS and hybrid PKS-NRPS biomolecules.
Collapse
Affiliation(s)
- Jamshid Amiri Moghaddam
- Junior Research Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
36
|
Bonhomme S, Dessen A, Macheboeuf P. The inherent flexibility of type I non-ribosomal peptide synthetase multienzymes drives their catalytic activities. Open Biol 2021; 11:200386. [PMID: 34034506 PMCID: PMC8150014 DOI: 10.1098/rsob.200386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are multienzymes that produce complex natural metabolites with many applications in medicine and agriculture. They are composed of numerous catalytic domains that elongate and chemically modify amino acid substrates or derivatives and of non-catalytic carrier protein domains that can tether and shuttle the growing products to the different catalytic domains. The intrinsic flexibility of NRPSs permits conformational rearrangements that are required to allow interactions between catalytic and carrier protein domains. Their large size coupled to this flexibility renders these multi-domain proteins very challenging for structural characterization. Here, we summarize recent studies that offer structural views of multi-domain NRPSs in various catalytically relevant conformations, thus providing an increased comprehension of their catalytic cycle. A better structural understanding of these multienzymes provides novel perspectives for their re-engineering to synthesize new bioactive metabolites.
Collapse
Affiliation(s)
- Sarah Bonhomme
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Andréa Dessen
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France.,Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | | |
Collapse
|
37
|
Strakova N, Korena K, Karpiskova R. Klebsiella pneumoniae producing bacterial toxin colibactin as a risk of colorectal cancer development - A systematic review. Toxicon 2021; 197:126-135. [PMID: 33901549 DOI: 10.1016/j.toxicon.2021.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
Microbiota can significantly contribute to colorectal cancer initiation and development. It was described that E. coli harbouring polyketide synthase (pks) genes can synthetize bacterial toxin colibactin, which was first described by Nougayrede's group in 2006. E. coli positive for pks genes were overrepresented in colorectal cancer biopsies and, therefore, prevalence and the effect of pks positive bacteria as a risk factor in colorectal cancer development is in our interest. Interestingly, pks gene cluster in E. coli shares a striking 100% sequence identity with K. pneumoniae, suggesting that their function and regulation are conserved. Moreover, K. pneumoniae can express a variety of virulence factors, including capsules, siderophores, iron-scavenging systems, adhesins and endotoxins. It was reported that pks cluster and thereby colibactin is also related to the hypervirulence of K. pneumoniae. Acquisition of the pks locus is associated with K. pneumoniae gut colonisation and mucosal invasion. Colibactin also increases the likelihood of serious complications of bacterial infections, such as development of meningitis and potentially tumorigenesis. Even though K. pneumoniae is undoubtedly a gut colonizer, the role of pks positive K. pneumoniae in GIT has not yet been investigated. It seems that CRC-distinctive microbiota is already present in the early stages of cancer development and, therefore, microbiome analysis could help to discover the early stages of cancer, which are crucial for effectiveness of anticancer therapy. We hypothesize, that pks positive K. pneumoniae can be a potential biomarker of tumour prevalence and anticancer therapy response.
Collapse
Affiliation(s)
- Nicol Strakova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Hudcova 296/70, Brno, Czech Republic.
| | - Kristyna Korena
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Hudcova 296/70, Brno, Czech Republic
| | - Renata Karpiskova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Hudcova 296/70, Brno, Czech Republic
| |
Collapse
|
38
|
Wang H, Liang J, Yue Q, Li L, Shi Y, Chen G, Li YZ, Bian X, Zhang Y, Zhao G, Ding X. Engineering the acyltransferase domain of epothilone polyketide synthase to alter the substrate specificity. Microb Cell Fact 2021; 20:86. [PMID: 33882930 PMCID: PMC8058987 DOI: 10.1186/s12934-021-01578-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Polyketide synthases (PKSs) include ketone synthase (KS), acyltransferase (AT) and acyl carrier protein (ACP) domains to catalyse the elongation of polyketide chains. Some PKSs also contain ketoreductase (KR), dehydratase (DH) and enoylreductase (ER) domains as modification domains. Insertion, deletion or substitution of the catalytic domains may lead to the production of novel polyketide derivatives or to the accumulation of desired products. Epothilones are 16-membered macrolides that have been used as anticancer drugs. The substrate promiscuity of the module 4 AT domain of the epothilone PKS (EPOAT4) results in production of epothilone mixtures; substitution of this domain may change the ratios of epothilones. In addition, there are two dormant domains in module 9 of the epothilone PKS. Removing these redundant domains to generate a simpler and more efficient assembly line is a desirable goal. Results The substitution of module 4 drastically diminished the activity of epothilone PKS. However, with careful design of the KS-AT linker and the post-AT linker, replacing EPOAT4 with EPOAT2, EPOAT6, EPOAT7 or EPOAT8 (specifically incorporating methylmalonyl-CoA (MMCoA)) significantly increased the ratio of epothilone D (4) to epothilone C (3) (the highest ratio of 4:3 = 4.6:1), whereas the ratio of 4:3 in the parental strain Schlegelella brevitalea 104-1 was 1.4:1. We also obtained three strains by swapping EPOAT4 with EPOAT3, EPOAT5, or EPOAT9, which specifically incorporate malonyl-CoA (MCoA). These strains produced only epothilone C, and the yield was increased by a factor of 1.8 compared to that of parental strain 104-1. Furthermore, mutations of five residues in the AT domain identified Ser310 as the critical factor for MMCoA recognition in EPOAT4. Then, the mutation of His308 to valine or tyrosine combined with the mutation of Phe310 to serine further altered the product ratios. At the same time, we successfully deleted the inactive module 9 DH and ER domains and fused the ΨKR domain with the KR domain through an ~ 25-residue linker to generate a productive and simplified epothilone PKS. Conclusions These results suggested that the substitution and deletion of catalytic domains effectively produces desirable compounds and that selection of the linkers between domains is crucial for maintaining intact PKS catalytic activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01578-3.
Collapse
Affiliation(s)
- Huimin Wang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Junheng Liang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Qianwen Yue
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yan Shi
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
39
|
Hewage RT, Huang RJ, Lai SJ, Lien YC, Weng SH, Li D, Chen YJ, Wu SH, Chein RJ, Lin HC. An Enzyme-Mediated Aza-Michael Addition Is Involved in the Biosynthesis of an Imidazoyl Hybrid Product of Conidiogenone B. Org Lett 2021; 23:1904-1909. [PMID: 33570417 DOI: 10.1021/acs.orglett.1c00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Meleagrin B is a terpene-alkaloid hybrid natural product that contains both the conidiogenone and meleagrin scaffold. Their derivatives show diverse biological activities. We characterized the biosynthesis of (-)-conidiogenone B (1), which involves a diterpene synthase and a P450 monooxygenase. In addition, an α,β-hydrolase (Con-ABH) was shown to catalyze an aza-Michael addition between 1 and imidazole to give 3S-imidazolyl conidiogenone B (6). Compound 6 was more potent than 1 against Staphylococcus aureus strains.
Collapse
Affiliation(s)
- Ranuka T Hewage
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C.,Department of Chemistry, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Rou-Jie Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Shu-Jung Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan R.O.C.,Research Center for Cancer Biology, China Medical University, Taichung 404, Taiwan R.O.C
| | - Ya-Chu Lien
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Shao-Hsing Weng
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P.R. China
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C.,Department of Chemistry, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Rong-Jie Chein
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C.,Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C
| |
Collapse
|
40
|
Smith HG, Beech MJ, Lewandowski JR, Challis GL, Jenner M. Docking domain-mediated subunit interactions in natural product megasynth(et)ases. J Ind Microbiol Biotechnol 2021; 48:6152290. [PMID: 33640957 PMCID: PMC9113145 DOI: 10.1093/jimb/kuab018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) multienzymes produce numerous high value metabolites. The protein subunits which constitute these megasynth(et)ases must undergo ordered self-assembly to ensure correct organisation of catalytic domains for the biosynthesis of a given natural product. Short amino acid regions at the N- and C-termini of each subunit, termed docking domains (DDs), often occur in complementary pairs, which interact to facilitate substrate transfer and maintain pathway fidelity. This review details all structurally characterised examples of NRPS and PKS DDs to date and summarises efforts to utilise DDs for the engineering of biosynthetic pathways.
Collapse
Affiliation(s)
- Helen G Smith
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Matthew J Beech
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC 3800, Australia
| | - Matthew Jenner
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
41
|
Bhattarai K, Bhattarai K, Kabir ME, Bastola R, Baral B. Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery. ADVANCES IN GENETICS 2021; 107:193-284. [PMID: 33641747 DOI: 10.1016/bs.adgen.2020.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.
Collapse
Affiliation(s)
- Keshab Bhattarai
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Keshab Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Md Ehsanul Kabir
- Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
42
|
Walker PD, Weir ANM, Willis CL, Crump MP. Polyketide β-branching: diversity, mechanism and selectivity. Nat Prod Rep 2021; 38:723-756. [PMID: 33057534 DOI: 10.1039/d0np00045k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to August 2020 Polyketides are a family of natural products constructed from simple building blocks to generate a diverse range of often complex chemical structures with biological activities of both pharmaceutical and agrochemical importance. Their biosynthesis is controlled by polyketide synthases (PKSs) which catalyse the condensation of thioesters to assemble a functionalised linear carbon chain. Alkyl-branches may be installed at the nucleophilic α- or electrophilic β-carbon of the growing chain. Polyketide β-branching is a fascinating biosynthetic modification that allows for the conversion of a β-ketone into a β-alkyl group or functionalised side-chain. The overall transformation is catalysed by a multi-protein 3-hydroxy-3-methylglutaryl synthase (HMGS) cassette and is reminiscent of the mevalonate pathway in terpene biosynthesis. The first step most commonly involves the aldol addition of acetate to the electrophilic carbon of the β-ketothioester catalysed by a 3-hydroxy-3-methylglutaryl synthase (HMGS). Subsequent dehydration and decarboxylation selectively generates either α,β- or β,γ-unsaturated β-alkyl branches which may be further modified. This review covers 2008 to August 2020 and summarises the diversity of β-branch incorporation and the mechanistic details of each catalytic step. This is extended to discussion of polyketides containing multiple β-branches and the selectivity exerted by the PKS to ensure β-branching fidelity. Finally, the application of HMGS in data mining, additional β-branching mechanisms and current knowledge of the role of β-branches in this important class of biologically active natural products is discussed.
Collapse
Affiliation(s)
- P D Walker
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - A N M Weir
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - C L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - M P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
43
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Jortikka A, Sivonen K. Shared PKS Module in Biosynthesis of Synergistic Laxaphycins. Front Microbiol 2020; 11:578878. [PMID: 33042096 PMCID: PMC7524897 DOI: 10.3389/fmicb.2020.578878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria produce a wide range of lipopeptides that exhibit potent membrane-disrupting activities. Laxaphycins consist of two families of structurally distinct macrocyclic lipopeptides that act in a synergistic manner to produce antifungal and antiproliferative activities. Laxaphycins are produced by range of cyanobacteria but their biosynthetic origins remain unclear. Here, we identified the biosynthetic pathways responsible for the biosynthesis of the laxaphycins produced by Scytonema hofmannii PCC 7110. We show that these laxaphycins, called scytocyclamides, are produced by this cyanobacterium and are encoded in a single biosynthetic gene cluster with shared polyketide synthase enzymes initiating two distinct non-ribosomal peptide synthetase pathways. The unusual mechanism of shared enzymes synthesizing two distinct types of products may aid future research in identifying and expressing natural product biosynthetic pathways and in expanding the known biosynthetic logic of this important family of natural products.
Collapse
Affiliation(s)
| | - David P Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Van Dolah FM, Morey JS, Milne S, Ung A, Anderson PE, Chinain M. Transcriptomic analysis of polyketide synthases in a highly ciguatoxic dinoflagellate, Gambierdiscus polynesiensis and low toxicity Gambierdiscus pacificus, from French Polynesia. PLoS One 2020; 15:e0231400. [PMID: 32294110 PMCID: PMC7159223 DOI: 10.1371/journal.pone.0231400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 11/18/2022] Open
Abstract
Marine dinoflagellates produce a diversity of polyketide toxins that are accumulated in marine food webs and are responsible for a variety of seafood poisonings. Reef-associated dinoflagellates of the genus Gambierdiscus produce toxins responsible for ciguatera poisoning (CP), which causes over 50,000 cases of illness annually worldwide. The biosynthetic machinery for dinoflagellate polyketides remains poorly understood. Recent transcriptomic and genomic sequencing projects have revealed the presence of Type I modular polyketide synthases in dinoflagellates, as well as a plethora of single domain transcripts with Type I sequence homology. The current transcriptome analysis compares polyketide synthase (PKS) gene transcripts expressed in two species of Gambierdiscus from French Polynesia: a highly toxic ciguatoxin producer, G. polynesiensis, versus a non-ciguatoxic species G. pacificus, each assembled from approximately 180 million Illumina 125 nt reads using Trinity, and compares their PKS content with previously published data from other Gambierdiscus species and more distantly related dinoflagellates. Both modular and single-domain PKS transcripts were present. Single domain β-ketoacyl synthase (KS) transcripts were highly amplified in both species (98 in G. polynesiensis, 99 in G. pacificus), with smaller numbers of standalone acyl transferase (AT), ketoacyl reductase (KR), dehydratase (DH), enoyl reductase (ER), and thioesterase (TE) domains. G. polynesiensis expressed both a larger number of multidomain PKSs, and larger numbers of modules per transcript, than the non-ciguatoxic G. pacificus. The largest PKS transcript in G. polynesiensis encoded a 10,516 aa, 7 module protein, predicted to synthesize part of the polyether backbone. Transcripts and gene models representing portions of this PKS are present in other species, suggesting that its function may be performed in those species by multiple interacting proteins. This study contributes to the building consensus that dinoflagellates utilize a combination of Type I modular and single domain PKS proteins, in an as yet undefined manner, to synthesize polyketides.
Collapse
Affiliation(s)
- Frances M. Van Dolah
- Marine Genomics Core, Hollings Marine Laboratory, Charleston, SC, United States of America
- * E-mail:
| | - Jeanine S. Morey
- Marine Genomics Core, Hollings Marine Laboratory, Charleston, SC, United States of America
| | - Shard Milne
- Charleston Computational Genomics Group, Department of Computer Science, College of Charleston, Charleston, SC, United States of America
| | - André Ung
- Laboratoire des Biotoxines Marines, Institut Louis Malardé—UMR 241 EIO, Papeete, Tahiti, French Polynesia
| | - Paul E. Anderson
- Charleston Computational Genomics Group, Department of Computer Science, College of Charleston, Charleston, SC, United States of America
| | - Mireille Chinain
- Laboratoire des Biotoxines Marines, Institut Louis Malardé—UMR 241 EIO, Papeete, Tahiti, French Polynesia
| |
Collapse
|
45
|
Jaremko MJ, Davis TD, Corpuz JC, Burkart MD. Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein-protein interactions. Nat Prod Rep 2020; 37:355-379. [PMID: 31593192 PMCID: PMC7101270 DOI: 10.1039/c9np00047j] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1990 to 2019 Many medicinally-relevant compounds are derived from non-ribosomal peptide synthetase (NRPS) products. Type I NRPSs are organized into large modular complexes, while type II NRPS systems contain standalone or minimal domains that often encompass specialized tailoring enzymes that produce bioactive metabolites. Protein-protein interactions and communication between the type II biosynthetic machinery and various downstream pathways are critical for efficient metabolite production. Importantly, the architecture of type II NRPS proteins makes them ideal targets for combinatorial biosynthesis and metabolic engineering. Future investigations exploring the molecular basis or protein-protein recognition in type II NRPS pathways will guide these engineering efforts. In this review, we consolidate the broad range of NRPS systems containing type II proteins and focus on structural investigations, enzymatic mechanisms, and protein-protein interactions important to unraveling pathways that produce unique metabolites, including dehydrogenated prolines, substituted benzoic acids, substituted amino acids, and cyclopropanes.
Collapse
Affiliation(s)
- Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Joshua C Corpuz
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| |
Collapse
|
46
|
Zhang JM, Wang HH, Liu X, Hu CH, Zou Y. Heterologous and Engineered Biosynthesis of Nematocidal Polyketide–Nonribosomal Peptide Hybrid Macrolactone from Extreme Thermophilic Fungi. J Am Chem Soc 2020; 142:1957-1965. [DOI: 10.1021/jacs.9b11410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Hang-Hang Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Xuan Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chang-Hua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
47
|
Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and Diversity of Assembly-Line Polyketide Synthases. Chem Rev 2019; 119:12524-12547. [PMID: 31838842 PMCID: PMC6935866 DOI: 10.1021/acs.chemrev.9b00525] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Assembly-line polyketide synthases (PKSs) are among the most complex protein machineries known in nature, responsible for the biosynthesis of numerous compounds used in the clinic. Their present-day diversity is the result of an evolutionary path that has involved the emergence of a multimodular architecture and further diversification of assembly-line PKSs. In this review, we provide an overview of previous studies that investigated PKS evolution and propose a model that challenges the currently prevailing view that gene duplication has played a major role in the emergence of multimodularity. We also analyze the ensemble of orphan PKS clusters sequenced so far to evaluate how large the entire diversity of assembly-line PKS clusters and their chemical products could be. Finally, we examine the existing techniques to access the natural PKS diversity in natural and heterologous hosts and describe approaches to further expand this diversity through engineering.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Kai P. Yuet
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Jake Hsu
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
48
|
Engineering enzymatic assembly lines to produce new antibiotics. Curr Opin Microbiol 2019; 51:88-96. [PMID: 31743841 PMCID: PMC6908967 DOI: 10.1016/j.mib.2019.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Many clinical antibiotics are natural products produced by thiotemplate-based assembly line biosynthetic pathways. Assembly line pathways provide an opportunity for rational bioengineering to modify complex natural product structures. New, rule-based mix and match strategies facilitate the engineering of non-ribosomal peptide assembly line synthetases. Evolutionary guided approaches highlight new avenues for polyketide synthase assembly line reprogramming.
Numerous important therapeutic agents, including widely-used antibiotics, anti-cancer drugs, immunosuppressants, agrochemicals and other valuable compounds, are produced by microorganisms. Many of these are biosynthesised by modular enzymatic assembly line polyketide synthases, non-ribosomal peptide synthetases, and hybrids thereof. To alter the backbone structure of these valuable but difficult to modify compounds, the respective enzymatic machineries can be engineered to create even more valuable molecules with improved properties and/or to bypass resistance mechanisms. In the past, many attempts to achieve assembly line pathway engineering failed or led to enzymes with compromised activity. Recently our understanding of assembly line structural biology, including an appreciation of the conformational changes that occur during the catalytic cycle, have improved hugely. This has proven to be a driving force for new approaches and several recent examples have demonstrated the production of new-to-nature molecules, including anti-infectives. We discuss the developments of the last few years and highlight selected, illuminating examples of assembly line engineering.
Collapse
|
49
|
Kawasaki D, Miyanaga A, Chisuga T, Kudo F, Eguchi T. Functional and Structural Analyses of the Split-Dehydratase Domain in the Biosynthesis of Macrolactam Polyketide Cremimycin. Biochemistry 2019; 58:4799-4803. [DOI: 10.1021/acs.biochem.9b00897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daisuke Kawasaki
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
50
|
Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry. Biomolecules 2019; 9:biom9110733. [PMID: 31766233 PMCID: PMC6920838 DOI: 10.3390/biom9110733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Short oligopeptides are some of the most promising and functionally important amide bond-containing components, with widespread applications. Biosynthesis of these oligopeptides may potentially become the ultimate strategy because it has better cost efficiency and environmental-friendliness than conventional solid phase peptide synthesis and chemo-enzymatic synthesis. To successfully apply this strategy for the biosynthesis of structurally diverse amide bond-containing components, the identification and selection of specific biocatalysts is extremely important. Given that perspective, this review focuses on the current knowledge about the typical enzymes that might be potentially used for the synthesis of short oligopeptides. Moreover, novel enzymatic methods of producing desired peptides via metabolic engineering are highlighted. It is believed that this review will be helpful for technological innovation in the production of desired peptides.
Collapse
|