1
|
Kumar B, Schulz SA, Sebbah P. Temperature-controlled spectral tuning of a single wavelength polymer-based solid-state random laser. OPTICS EXPRESS 2024; 32:4317-4326. [PMID: 38297635 DOI: 10.1364/oe.505162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/23/2023] [Indexed: 02/02/2024]
Abstract
We demonstrate temperature-controlled spectral tunability of a partially-pumped single-wavelength random laser in a solid-state random laser based on DCM [4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] doped PMMA (polymethyl methacrylate) dye. By carefully shaping the spatial profile of the pump, we first achieve a low-threshold, single-mode random lasing with an excellent side lobe rejection. Notably, we show how temperature-induced changes in the refractive index of the PMMA-DCM layer result in a blue shift of this single lasing mode. We demonstrate spectral tunability over an 8nm-wide bandwidth.
Collapse
|
2
|
Ni D, Späth M, Klämpfl F, Hohmann M. Properties and Applications of Random Lasers as Emerging Light Sources and Optical Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 23:247. [PMID: 36616846 PMCID: PMC9824070 DOI: 10.3390/s23010247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In a random laser (RL), optical feedback arises from multiple scattering instead of conventional mirrors. RLs generate a laser-like emission, and meanwhile take advantage of a simpler and more flexible laser configuration. The applicability of RLs as light sources and optical sensors has been proved. These applications have been extended to the biological field, with tissues as natural scattering materials. Herein, the current state of the RL properties and applications was reviewed.
Collapse
Affiliation(s)
- Dongqin Ni
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052 Erlangen, Germany
| | - Moritz Späth
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052 Erlangen, Germany
| | - Florian Klämpfl
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052 Erlangen, Germany
| | - Martin Hohmann
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052 Erlangen, Germany
| |
Collapse
|
3
|
Yang CY, Jian LY, Lee YT, Tseng ZL, Lin JH. Amplified spontaneous emission from all-inorganic perovskite on a flexible substrate with silk fibroin. Sci Rep 2022; 12:10102. [PMID: 35710555 PMCID: PMC9203528 DOI: 10.1038/s41598-022-12313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Stretchable microcavity lasers reveal potential application in flexible displays, biomedicine, and wearable devices in the near future. In this work, we investigated the characteristic of amplified spontaneous emission (ASE) from all inorganic CsPbBr3 QDs on a flexible PET substrate with the assistance of biocompatible silk fibroin (SF) film. In comparison with the sample on PET directly, the ASE of all-inorganic perovskite film revealed a lower threshold of 32.7 μJ/cm2, higher slope efficiency, and a larger gain coefficient of around 100.0 cm−1 owing to the better stack and good arrangement of the CsPbBr3 QDs on top of the SF film. For the temperature-dependent ASE measurement, the larger characteristic temperature of around 277 K is obtained from CsPbBr3 QD/SF film, and the emission peak reveals a slight shift with temperature variation, which indicates its temperature-insensitive property. As the curvature of flexible substrate increases under the mechanical bending, the lasing threshold of CsPbBr3 QD/SF film was reduced along with the increase in slope efficiency owing to the enhancement in the index guiding effect.
Collapse
Affiliation(s)
- Chin-Yi Yang
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.,Department of Dermatology, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Liang-Yu Jian
- Department of Electro-optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan
| | - Zong-Liang Tseng
- Department of Electronic Engineering and Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| | - Ja-Hon Lin
- Department of Electro-optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| |
Collapse
|
4
|
Gayathri R, Suchand Sandeep CS, Gummaluri VS, Asik RM, Padmanabhan P, Gulyás B, Vijayan C, Murukeshan VM. Plasmonic random laser enabled artefact-free wide-field fluorescence bioimaging: uncovering finer cellular features. NANOSCALE ADVANCES 2022; 4:2278-2287. [PMID: 36133703 PMCID: PMC9417316 DOI: 10.1039/d1na00866h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/31/2022] [Indexed: 06/16/2023]
Abstract
Narrow bandwidth, high brightness, and spectral tunability are the unique properties of lasers that make them extremely desirable for fluorescence imaging applications. However, due to the high spatial coherence, conventional lasers are often incompatible for wide-field fluorescence imaging. The presence of parasitic artefacts under coherent illumination causes uneven excitation of fluorophores, which has a critical impact on the reliability, resolution, and efficiency of fluorescence imaging. Here, we demonstrate artefact-free wide-field fluorescence imaging with a bright and low threshold silver nanorod based plasmonic random laser, offering the capability to image finer cellular features with sub-micrometer resolution even in highly diffusive biological samples. A spatial resolution of 454 nm and up to 23% enhancement in the image contrast in comparison to conventional laser illumination are attained. Based on the results presented in this paper, random lasers, with their laser-like properties and spatial incoherence are envisioned to be the next-generation sources for developing highly efficient wide-field fluorescence imaging systems having high spatial and temporal resolution for real-time, in vivo bioimaging.
Collapse
Affiliation(s)
- R Gayathri
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - C S Suchand Sandeep
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - V S Gummaluri
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - R Mohamed Asik
- Cognitive Neuroimaging Centre (CONIC), Nanyang Technological University 59 Nanyang Drive 636921 Singapore
- Department of Animal Science, Bharathidasan University Tiruchirappalli 620024 India
| | - Parasuraman Padmanabhan
- Cognitive Neuroimaging Centre (CONIC), Nanyang Technological University 59 Nanyang Drive 636921 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University 608232 Singapore
| | - Balázs Gulyás
- Cognitive Neuroimaging Centre (CONIC), Nanyang Technological University 59 Nanyang Drive 636921 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University 608232 Singapore
- Department of Clinical Neuroscience, Karolinska Institute 17176 Stockholm Sweden
| | - C Vijayan
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - V M Murukeshan
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
5
|
Gao W, Wang T, Xu J, Zeng P, Zhang W, Yao Y, Chen C, Li M, Yu SF. Robust and Flexible Random Lasers Using Perovskite Quantum Dots Coated Nickel Foam for Speckle-Free Laser Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103065. [PMID: 34410038 DOI: 10.1002/smll.202103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 06/13/2023]
Abstract
The advantage of using flexible metallic structures as the substrate of flexible lasers over plastic materials is its strong mechanical strength and high thermal conductivity. Here, it is proposed to deposit CsPbBr3 perovskite quantum dots onto Ni porous foam for the realization of flexible lasers. Under two-photon 800 nm excitation at room temperature, incoherent random lasing emission is observed at ≈537 nm. By external deformation of the Ni porous foam, incoherent random lasing can be tuned to amplified spontaneous emission as well as the corresponding lasing threshold be controlled. More importantly, it is demonstrated that the laser is robust to intensive bending (>1000 bending cycles) with minimum effect on the lasing intensity. This flexible laser is also shown to be an ideal light source to produce a "speckle" free micro-image.
Collapse
Affiliation(s)
- Wei Gao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518060, China
| | - Ting Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Jiangtao Xu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Ping Zeng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Wenfei Zhang
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yunduo Yao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Changsheng Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Siu Fung Yu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518060, China
| |
Collapse
|
6
|
Su CY, Hou CF, Hsu YT, Lin HY, Liao YM, Lin TY, Chen YF. Multifunctional Random-Laser Smart Inks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49122-49129. [PMID: 33058666 DOI: 10.1021/acsami.0c14875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the superiority of laser-level intensity, narrow spectral line width, and broad-angular emission, random lasers (RLs) have drawn considerable research interests for their potential to carry out a variety of applications. In this work, the applications associated with optical-encoded technologies, including security printing, military friend or foe identification (FFI), and anticounterfeiting of documents are highlighted, and the concept of a transient RL "smart ink" has been proposed. The proof-of-concept was demonstrated as invisible signatures, which encoded the messages through the spectral difference of spontaneous emission and RL under specified conditions. Next, the possibility of encoding the data with multibit signals was further confirmed by exploiting the threshold tunability of RLs. Moreover, the transient characteristic of this smart ink and its capability to be attached on freeform surfaces of different materials were also shown. With the advantages of a facile manufacturing process and multiple purposes, it is expected that this ink can soon be carried out in a variety of practical utilities.
Collapse
Affiliation(s)
- Chen-You Su
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Fu Hou
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Tzu Hsu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Hsia-Yu Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ming Liao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Tai-Yuan Lin
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Yang-Fang Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Chang SH, Wu JJ, Kuo CC, Tsay SY, Chen YH, Lin JH. Plasmonic random laser from dye-doped cholesteric liquid crystals incorporating silver nanoprisms. OPTICS LETTERS 2020; 45:5144-5147. [PMID: 32932473 DOI: 10.1364/ol.398793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Plasmonic random lasers have been demonstrated in combining dye-doped cholesteric liquid crystals (DD-CLCs) and silver nanoparticles (AgNPs). The DD-CLC laser reveals the lowest threshold and highest slope efficiency through the localized surface plasmon resonance of AgNPs with the best coupling of the emission spectrum of lasing dye and resonance of electron oscillation on the metal surface. Thermal control of the DD-CLC lasers has been achieved to simultaneously shift the long- and short-edge lasing peaks. By the α-stable analysis, the DD-CLC random laser (RL) reveals heavy tail distribution with relatively low α∼1.06 to show the Lévy behavior. Owing to its low spatial coherence, the DD-CLC RL has been demonstrated to produce a speckle-reduced image with a lower contrast of about 0.04.
Collapse
|
8
|
Ta VD, Saxena D, Caixeiro S, Sapienza R. Flexible and tensile microporous polymer fibers for wavelength-tunable random lasing. NANOSCALE 2020; 12:12357-12363. [PMID: 32490495 DOI: 10.1039/d0nr02484h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymer micro-/nanofibers, due to their low-cost and mechanical flexibility, are attractive building blocks for developing lightweight and flexible optical circuits. They are also versatile photonic materials for making various optical resonators and lasers, such as microrings, networks and random lasers. In particular, for random lasing architectures, the demonstrations to-date have mainly relied on fiber bundles whose properties are hard to tune post-fabrication. Here, we demonstrate the successful implementation of an inverted photonic glass structure with monodisperse pores of 1.28 μm into polymer fibers with diameter ranging from 10 to 60 μm. By doping organic dye molecules into this structure, individual fibers can sustain random lasing under optical pulse excitation. The dependence of lasing characteristics, including lasing spectrum and lasing threshold on fiber diameter are investigated. It is found that the lasing emission red-shifts and the threshold decreases with increasing fiber diameter. Furthermore, owing to the mechanical flexibility, the lasing properties can be dynamically changed upon stretching, leading to a wavelength-tunability of 5.5 nm. Our work provides a novel architecture for random lasers which has the potential for lasing tunability and optical sensing.
Collapse
Affiliation(s)
- Van Duong Ta
- Department of Optical Devices, Le Quy Don Technical University, Hanoi 100000, Vietnam.
| | | | | | | |
Collapse
|
9
|
Xu B, Gao Z, Wei Y, Liu Y, Sun X, Zhang W, Wang X, Wang Z, Meng X. Dynamically wavelength-tunable random lasers based on metal-organic framework particles. NANOSCALE 2020; 12:4833-4838. [PMID: 32065185 DOI: 10.1039/c9nr09644b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We propose a strategy to construct dynamically tunable random lasers by continuously adjusting the excited state of gain molecules spatially confined in the nanoporous channels of metal-organic framework particles. Wavelength-tunable random lasers are achieved by thermally manipulating the intramolecular charge transfer process of gain molecules. The wavelength-tunable response to thermal stimuli exhibits excellent reversible behavior. We envisage that such random lasers based on metal-organic frameworks will raise new fundamental issues regarding light-matter interactions in complex photonic media and open up a new avenue toward highly efficient light-emitting devices.
Collapse
Affiliation(s)
- Baoyuan Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Changqing District, Jinan 250353, Shandong Province, China.
| | - Zhenhua Gao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Changqing District, Jinan 250353, Shandong Province, China.
| | - Yanhui Wei
- College of Chemistry and Materials Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yang Liu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Changqing District, Jinan 250353, Shandong Province, China.
| | - Xun Sun
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Changqing District, Jinan 250353, Shandong Province, China.
| | - Weiguang Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Changqing District, Jinan 250353, Shandong Province, China.
| | - Xue Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Changqing District, Jinan 250353, Shandong Province, China.
| | - Zifei Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Changqing District, Jinan 250353, Shandong Province, China.
| | - Xiangeng Meng
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Changqing District, Jinan 250353, Shandong Province, China.
| |
Collapse
|
10
|
Li X, Liu H, Xu X, Yang B, Yuan H, Guo J, Sang F, Jin Y. Lotus-Leaf-Inspired Flexible and Tunable Random Laser. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10050-10057. [PMID: 31957437 DOI: 10.1021/acsami.9b23524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We describe herein a flexible and tunable random laser made from a flexible poly(dimethylsiloxane) substrate. The substrate is prepared by casting via soft lithography from a lotus leaf to produce a micropapilla surface structure similar to that of a lotus leaf. The micropapilla provides efficient multiple scattering for the photons generated in the gain medium, and random lasing emerges because photons undergo closed-loop paths by scattering from three equilaterally arranged micropapillae. Given the diverse distribution of microscale features on the soft substrate, the random laser spectrum can be tuned by as much as 26.0 nm by changing the pump position. Furthermore, the random laser can be easily tuned by about 14 nm by flexing it, which modifies the micropapilla density and thereby changes the reabsorption strength of the laser dye. The photostability of the random laser is ensured by sealing the gain medium (i.e., dye solution) in a closed system. The results provide a promising method to realize a variety of laser-based applications such as optical biosensors on chips, microscale structural alteration detectors, flexible wearable devices, and multicolor (even white) random lasers.
Collapse
Affiliation(s)
- Xueyang Li
- Key Laboratory of Chemical Lasers , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Hao Liu
- Key Laboratory of Chemical Lasers , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xiaoyan Xu
- Dalian National Laboratory for Clean Energy , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Bing Yang
- Dalian National Laboratory for Clean Energy , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Hong Yuan
- Key Laboratory of Chemical Lasers , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jingwei Guo
- Key Laboratory of Chemical Lasers , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Fengting Sang
- Key Laboratory of Chemical Lasers , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yuqi Jin
- Key Laboratory of Chemical Lasers , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| |
Collapse
|
11
|
Chen WC, Shiao JH, Tsai TL, Jiang DH, Chen LC, Chang CH, Lin BH, Lin JH, Kuo CC. Multiple Scattering from Electrospun Nanofibers with Embedded Silver Nanoparticles of Tunable Shape for Random Lasers and White-Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2783-2792. [PMID: 31869205 DOI: 10.1021/acsami.9b16059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Random lasers (RLs) are convenient, tunable, and widely applicable. However, the influence of fluorescence lifetime on the scattering and nanofiber distribution of nanofibers with various shapes of silver nanoparticles (Ag NPs) embedded within is unclear. We prepared poly(vinyl alcohol) (PVA) nanofibers with Ag NPs through electrospinning (ES) and pyrromethene 597 dye doping. We determined the influences of the particles on scattering enhancement and localized surface plasmon resonance (LSPR) in RLs. The distinct scattering rates and LSPR can be used to control optical properties for sensing devices and other applications. Compared with traditional films, the threshold of the nanofibers with Ag NPs is 35% lower. In addition to improved matching between the LSPR and emission spectra, enhanced coupling of the electric field with nonradiative energy amplifies the radiative emission. Furthermore, the luminescence lifetime shortened by increasing the scattering rate. An excessive scattering rate may accelerate radiative recombination and convert some recombination into nonradiative recombination to produce a more sensitive device. Finally, we applied the prepared nanofibers to a backlight display and fabricated a white-light-emitting diode (LED) with a distinct thickness of nanofibers. The fabricated device is suitable for application in other LEDs and RL devices.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology , National Taipei University of Technology , Taipei 106 , Taiwan
| | - Jia-Huei Shiao
- Institute of Electro-Optical Engineering , National Taipei University of Technology , Taipei 106 , Taiwan
| | - Tien-Liang Tsai
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology , National Taipei University of Technology , Taipei 106 , Taiwan
| | - Dai-Hua Jiang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology , National Taipei University of Technology , Taipei 106 , Taiwan
| | - Lung-Chin Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology , National Taipei University of Technology , Taipei 106 , Taiwan
| | - Cheng-Hao Chang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology , National Taipei University of Technology , Taipei 106 , Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center , Hsinchu 30076 , Taiwan
| | - Ja-Hon Lin
- Institute of Electro-Optical Engineering , National Taipei University of Technology , Taipei 106 , Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology , National Taipei University of Technology , Taipei 106 , Taiwan
| |
Collapse
|
12
|
da Silva-Neto ML, de Oliveira MCA, Dominguez CT, Lins REM, Rakov N, de Araújo CB, Menezes LDS, de Oliveira HP, Gomes ASL. UV random laser emission from flexible ZnO-Ag-enriched electrospun cellulose acetate fiber matrix. Sci Rep 2019; 9:11765. [PMID: 31409828 PMCID: PMC6692312 DOI: 10.1038/s41598-019-48056-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/26/2019] [Indexed: 02/02/2023] Open
Abstract
We report an alternative random laser (RL) architecture based on a flexible and ZnO-enriched cellulose acetate (CA) fiber matrix prepared by electrospinning. The electrospun fibers, mechanically reinforced by polyethylene oxide and impregnated with zinc oxide powder, were applied as an adsorbent surface to incorporate plasmonic centers (silver nanoprisms). The resulting structures - prepared in the absence (CA-ZnO) and in the presence of silver nanoparticles (CA-ZnO-Ag) - were developed to support light excitation, guiding and scattering prototypes of a RL. Both materials were excited by a pulsed (5 Hz, 5 ns) source at 355 nm and their fluorescence emission monitored at 387 nm. The results suggest that the addition of silver nanoprisms to the ZnO- enriched fiber matrix allows large improvement of the RL performance due to the plasmon resonance of the silver nanoprisms, with ~80% reduction in threshold energy. Besides the intensity and spectral analysis, the RL characterization included its spectral and intensity angular dependences. Bending the flexible RL did not affect the spectral characteristics of the device. No degradation was observed in the random laser emission for more than 10,000 shots of the pump laser.
Collapse
Affiliation(s)
- Manoel L da Silva-Neto
- Programa de Pós-Graduação em Ciências de Materiais, Universidade Federal de Pernambuco, Recife, 50670-901, PE, Brazil
| | - Mário C A de Oliveira
- Pós-Graduação em Ciência dos Materiais, Universidade Federal do Vale do São Francisco, 48902-300, Juazeiro, BA, Brazil
| | - Christian T Dominguez
- Departamento de Física/CCEN, Universidade Federal da Paraíba, João Pessoa, 58051-900, PB, Brazil
| | - Raquel E M Lins
- Pós-Graduação em Ciência dos Materiais, Universidade Federal do Vale do São Francisco, 48902-300, Juazeiro, BA, Brazil
| | - Nikifor Rakov
- Pós-Graduação em Ciência dos Materiais, Universidade Federal do Vale do São Francisco, 48902-300, Juazeiro, BA, Brazil
| | - Cid B de Araújo
- Departamento de Física, Universidade Federal de Pernambuco, Recife, 50670-901, PE, Brazil
| | | | - Helinando P de Oliveira
- Pós-Graduação em Ciência dos Materiais, Universidade Federal do Vale do São Francisco, 48902-300, Juazeiro, BA, Brazil.
| | - Anderson S L Gomes
- Pós-Graduação em Ciência dos Materiais, Universidade Federal do Vale do São Francisco, 48902-300, Juazeiro, BA, Brazil
- Departamento de Física, Universidade Federal de Pernambuco, Recife, 50670-901, PE, Brazil
| |
Collapse
|
13
|
Flexible Random Laser Using Silver Nanoflowers. Polymers (Basel) 2019; 11:polym11040619. [PMID: 30960602 PMCID: PMC6523250 DOI: 10.3390/polym11040619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/23/2019] [Accepted: 04/02/2019] [Indexed: 11/24/2022] Open
Abstract
A random laser was achieved in a polymer membrane with silver nanoflowers on a flexible substrate. The strong confinement of the polymer waveguide and the localized field enhancement of silver nanoflowers were essential for the low-threshold random lasing action. The lasing wavelength can be tuned by bending the flexible substrate. The solution phase synthesis of the silver nanoflowers enables easy realization of this type of random lasers. The flexible and high-efficiency random lasers provide favorable factors for the development of imaging and sensing devices.
Collapse
|
14
|
Lee YJ, Yeh TW, Yang ZP, Yao YC, Chang CY, Tsai MT, Sheu JK. A curvature-tunable random laser. NANOSCALE 2019; 11:3534-3545. [PMID: 30569051 DOI: 10.1039/c8nr09153f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The application of random lasers has been restricted due to the absence of a well-defined resonant cavity, as the lasing action mainly depends on multiple light scattering induced by intrinsic disorders of the laser medium to establish the required optical feedback that hence increases the difficulty in efficiently tuning and modulating random lasing emissions. This study investigated whether the transport mean free path of emitted photons within disordered scatterers composed of ZnO nanowires is tunable by a curvature bending applied to the flexible polyethylene terephthalate (PET) substrate underneath, thereby creating a unique light source that can be operated above and below the lasing threshold for desirable spectral emissions. For the first time, the developed curvature-tunable random laser is implemented for in vivo biological imaging with much lower speckle noise compared to the non-lasing situation through simple mechanical bending, which is of great potential for studying the fast-moving physiological phenomenon such as blood flow patterns in mouse ear skin. It is expected that the experimental demonstration of the curvature-tunable random laser can provide a new route to develop disorder-based optoelectronic devices.
Collapse
Affiliation(s)
- Ya-Ju Lee
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, 88, Sec.4, Ting-Chou Road, Taipei 116, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Albuquerque de Oliveira MC, de Souza Menezes L, Pincheira PIR, Rojas-Ulloa C, Gomez NR, de Oliveira HP, Leônidas Gomes AS. A random laser based on electrospun polymeric composite nanofibers with dual-size distribution. NANOSCALE ADVANCES 2019; 1:728-734. [PMID: 36132269 PMCID: PMC9473278 DOI: 10.1039/c8na00277k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/03/2018] [Indexed: 05/12/2023]
Abstract
Electrospun fiber-based random lasers are environment-friendly flexible systems in which waveguiding/scattering processes provided by their structure with a broad distribution of diameters are essential elements to generate a suitable lasing mechanism. In this work, we prepared electrospun fibers with dual-size diameter distribution (above and below the critical value for waveguiding), allowing that both optical processes can be established in the polymer network. As a result, random laser emission was observed for the electrospun fibers presenting dual-size diameters with rhodamine 6G as the gain medium, characterizing the combination of waveguiding/scattering as an adequate condition for development of organic nanofibrous random lasers. Degradation assays were also performed in order to evaluate the prolonged use of such random laser systems.
Collapse
Affiliation(s)
| | - Leonardo de Souza Menezes
- Departamento de Física, Universidade Federal de Pernambuco Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife PE 50670-901 Brazil
| | | | - Carlos Rojas-Ulloa
- Departamento de Ingeniería Mecánica, Universidad de La Frontera Temuco Chile
| | - Nikifor Rakov Gomez
- Graduate Program in Materials Science, Universidade Federal do Vale do São Francisco Juazeiro BA 48902-310 Brazil
| | | | - Anderson Stevens Leônidas Gomes
- Departamento de Física, Universidade Federal de Pernambuco Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife PE 50670-901 Brazil
- Graduate Program in Materials Science, Universidade Federal do Vale do São Francisco Juazeiro BA 48902-310 Brazil
| |
Collapse
|