1
|
Mawlong LPL, Hoang AT, Chintalapalli J, Ji S, Lee K, Kim K, Ahn JH. Reduced Defect Density in MOCVD-Grown MoS 2 by Manipulating the Precursor Phase. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47359-47367. [PMID: 37756669 DOI: 10.1021/acsami.3c09027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Advancements in the synthesis of large-area, high-quality two-dimensional transition metal dichalcogenides such as MoS2 play a crucial role in the development of future electronic and optoelectronic devices. The presence of defects formed by sulfur vacancies in MoS2 results in low photoluminescence emission and imparts high n-type doping behavior, thus substantially affecting material quality. Herein, we report a new method in which single-phase (liquid) precursors are used for the metal-organic chemical vapor deposition (MOCVD) growth of a MoS2 film. Furthermore, we fabricated a high-performance photodetector (PD) and achieved improved photoresponsivity and faster photoresponse in the spectral range 405-637 nm compared to those of PDs fabricated by the conventional MOCVD method. In addition, the fabricated MoS2 thin film showed a threshold voltage shift in the positive gate bias direction owing to the reduced number of S vacancy defects in the MoS2 lattice. Thus, our method significantly improved the synthesis of monolayer MoS2 and can expand the application scope of high-quality, atomically thin materials in large-scale electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Larionette P L Mawlong
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Jyothi Chintalapalli
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Kihyun Lee
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Kiriya D, Lien DH. Superacid Treatment on Transition Metal Dichalcogenides. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac87c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Superacids are strong acids with an acidity higher than pure sulfuric acid. Recently, superacid treatment of monolayer transition metal dichalcogenide (TMDC) flakes, such as MoS2 and WS2, has shown a dramatic enhancement of optical properties, such as photoluminescence (PL) intensity. The superacid molecule is bis(trifluoromethane)sulfonimide (TFSI). In this review paper, we summarize and discuss the recent works and the current understanding of the TFSI treatment, and finally, we describe the outlook of the treatment on monolayer TMDCs.
Collapse
|
3
|
Chou HC, Zhang XQ, Shiau SY, Chien CH, Tang PW, Sung CT, Chang YC, Lee YH, Chen C. Near-field spectroscopic imaging of exciton quenching at atomically sharp MoS 2/WS 2 lateral heterojunctions. NANOSCALE 2022; 14:6323-6330. [PMID: 35297443 DOI: 10.1039/d2nr00216g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterojunctions made by laterally stitching two different transition metal dichalcogenide monolayers create a unique one-dimensional boundary with intriguing local optical properties that can only be characterized by nanoscale-spatial-resolution spectral tools. Here, we use near-field photoluminescence (NF-PL) to reveal the narrowest region (105 nm) ever reported of photoluminescence quenching at the junction of a laterally stitched WS2/MoS2 monolayer. We attribute this quenching to the atomically sharp band offset that generates a strong electric force at the junction to easily dissociate excitons. Besides the sharp heterojunction, a model considering various widths of the alloying interfacial region under low or high optical pumping is presented. With a spatial resolution six times better than that of confocal microscopy, NF-PL provides an unprecedented spectral tool for non-scalable 1D lateral heterojunctions.
Collapse
Affiliation(s)
- He-Chun Chou
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan.
| | - Xin-Quan Zhang
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300, Taiwan.
| | - Shiue-Yuan Shiau
- Physics Division, National Center for Theoretical Sciences, Taipei, 106, Taiwan
| | - Ching-Hang Chien
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan.
| | - Po-Wen Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan.
| | - Chun-Te Sung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan.
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300, Taiwan.
| | - Yia-Chung Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan.
| | - Yi-Hsien Lee
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300, Taiwan.
| | - Chi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
4
|
Pain SL, Grant NE, Murphy JD. Room Temperature Enhancement of Electronic Materials by Superacid Analogues. ACS NANO 2022; 16:1260-1270. [PMID: 34978794 DOI: 10.1021/acsnano.1c09085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Treatment with the superacid bis(trifluoromethanesulfonyl)amide (sometimes known as TFSA, TFSI, or HNTf2) enhances the properties of a wide range of optoelectronic materials, resulting in longer effective carrier lifetimes and higher photoluminescence quantum yields. We have conducted a multimaterial study treating both crystalline silicon and transition metal dichalcogenide (TMDC) monolayers and few-layer flakes with solutions formed from TFSA and a range of compounds with related chemical structures with different Lewis acidities, in order to elucidate the factors underpinning the TFSA-related class of enhancement treatments. We adopt dichloromethane (DCM) as a common solvent as it provides good results at room temperature and is potentially less hazardous than TFSA-dichloroethane (DCE) heated to ∼100 °C, which has been used previously. Kelvin probe experiments on silicon demonstrate that structurally similar chemicals give passivating films with substantially different charge levels, with the higher levels of charge associated with the presence of CF3SO2 groups resulting in longer effective lifetimes due to an enhancement in field-effect passivation. Treatment with all analogue solutions used results in enhanced photoluminescence in MoS2 and WS2 compared to untreated controls. Importantly we find that MoS2 and WS2 can be enhanced by analogues to TFSA that lack sulfonyl groups, meaning an alternative mechanism to that proposed in computational reports for TFSA enhancement must apply.
Collapse
Affiliation(s)
- Sophie L Pain
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Nicholas E Grant
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - John D Murphy
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
5
|
Bretscher H, Li Z, Xiao J, Qiu DY, Refaely-Abramson S, Alexander-Webber JA, Tanoh A, Fan Y, Delport G, Williams CA, Stranks SD, Hofmann S, Neaton JB, Louie SG, Rao A. Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides. ACS NANO 2021; 15:8780-8789. [PMID: 33983711 PMCID: PMC8158852 DOI: 10.1021/acsnano.1c01220] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/07/2021] [Indexed: 06/01/2023]
Abstract
Structural defects vary the optoelectronic properties of monolayer transition metal dichalcogenides, leading to concerted efforts to control defect type and density via materials growth or postgrowth passivation. Here, we explore a simple chemical treatment that allows on-off switching of low-lying, defect-localized exciton states, leading to tunable emission properties. Using steady-state and ultrafast optical spectroscopy, supported by ab initio calculations, we show that passivation of sulfur vacancy defects, which act as exciton traps in monolayer MoS2 and WS2, allows for controllable and improved mobilities and an increase in photoluminescence up to 275-fold, more than twice the value achieved by other chemical treatments. Our findings suggest a route for simple and rational defect engineering strategies for tunable and switchable electronic and excitonic properties through passivation.
Collapse
Affiliation(s)
| | - Zhaojun Li
- University
of Cambridge, Cambridge, CB2 1TN, U.K.
- Uppsala
University, Uppsala, 751 20, Sweden
| | - James Xiao
- University
of Cambridge, Cambridge, CB2 1TN, U.K.
| | - Diana Yuan Qiu
- Yale
University, New Haven, Connecticut 06520, United States
| | | | | | - Arelo Tanoh
- University
of Cambridge, Cambridge, CB2 1TN, U.K.
| | - Ye Fan
- University
of Cambridge, Cambridge, CB2 1TN, U.K.
| | | | | | | | | | - Jeffrey B. Neaton
- University
of California Berkeley, Berkeley, California 94720, United States
- Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Steven G. Louie
- University
of California Berkeley, Berkeley, California 94720, United States
- Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Akshay Rao
- University
of Cambridge, Cambridge, CB2 1TN, U.K.
| |
Collapse
|
6
|
Luo P, Zhuge F, Zhang Q, Chen Y, Lv L, Huang Y, Li H, Zhai T. Doping engineering and functionalization of two-dimensional metal chalcogenides. NANOSCALE HORIZONS 2019; 4:26-51. [PMID: 32254144 DOI: 10.1039/c8nh00150b] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two-dimensional (2D) layered metal chalcogenides (MXs) have significant potential for use in flexible transistors, optoelectronics, sensing and memory devices beyond the state-of-the-art technology. To pursue ultimate performance, precisely controlled doping engineering of 2D MXs is desired for tailoring their physical and chemical properties in functional devices. In this review, we highlight the recent progress in the doping engineering of 2D MXs, covering that enabled by substitution, exterior charge transfer, intercalation and the electrostatic doping mechanism. A variety of novel doping engineering examples leading to Janus structures, defect curing effects, zero-valent intercalation and deliberately devised floating gate modulation will be discussed together with their intriguing application prospects. The choice of doping strategies and sources for functionalizing MXs will be provided to facilitate ongoing research in this field toward multifunctional applications.
Collapse
Affiliation(s)
- Peng Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang J, Verzhbitskiy I, Eda G. Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802687. [PMID: 30118543 DOI: 10.1002/adma.201802687] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/09/2018] [Indexed: 05/08/2023]
Abstract
Ultrathin layers of van der Waals inorganic semiconductors represent a new class of excitonic materials with attractive light-emitting properties. Recent observation of valley polarization, optically pumped lasing, exciton-polaritons, and single-photon emission highlights the exciting prospects for two-dimensional (2D) semiconductors for applications in novel photonic devices. Development of efficient and reliable light sources based on excitonic electroluminescence in 2D semiconductors is of fundamental importance toward the practical implementation of photonic devices. Achieving electroluminescence in these atomically thin layers requires unconventional device designs and in-depth understanding of the carrier injection and transport mechanisms. Herein, various strategies for electrically generating excitons in 2D semiconducting transition metal dichalcogenides such as monolayer MoS2 are reviewed and challenges and opportunities are outlined. Furthermore, novel device concepts such as tunable chiral emission, electrically driven quantum emission, and high-frequency modulation are highlighted.
Collapse
Affiliation(s)
- Junyong Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| | - Ivan Verzhbitskiy
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| | - Goki Eda
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
- Department of Chemistry, National University of Singapore, 2 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
8
|
Roy S, Choi W, Jeon S, Kim DH, Kim H, Yun SJ, Lee Y, Lee J, Kim YM, Kim J. Atomic Observation of Filling Vacancies in Monolayer Transition Metal Sulfides by Chemically Sourced Sulfur Atoms. NANO LETTERS 2018; 18:4523-4530. [PMID: 29921125 DOI: 10.1021/acs.nanolett.8b01714] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chemical treatment using bis(trifluoromethane) sulfonimide (TFSI) was shown to be particularly effective for increasing the photoluminescence (PL) of monolayer (1L) MoS2, suggesting a convenient method for overcoming the intrinsically low quantum yield of this material. However, the underlying atomic mechanism of the PL enhancement has remained elusive. Here, we report the microscopic origin of the defect healing observed in TFSI-treated 1L-MoS2 through a correlative combination of optical characterization and atomic-scale scanning transmission electron microscopy, which showed that most of the sulfur vacancies were directly repaired by the extrinsic sulfur atoms produced from the dissociation of TFSI, concurrently resulting in a significant PL enhancement. Density functional theory calculations confirmed that the reactive sulfur dioxide molecules that dissociated from TFSI can be reduced to sulfur and oxygen gas at the vacancy site to form strongly bound S-Mo. Our results reveal how defect-mediated nonradiative recombination can be effectively eliminated by a simple chemical treatment method, thereby advancing the practical applications of monolayer semiconductors.
Collapse
Affiliation(s)
- Shrawan Roy
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- IBS Center for Integrated Nanostructure Physics , Institute for Basic Science , Suwon 16419 , Republic of Korea
| | - Wooseon Choi
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sera Jeon
- Department of Physics , Pusan National University , Busan 46241 , Republic of Korea
| | - Do-Hwan Kim
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Hyun Kim
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- IBS Center for Integrated Nanostructure Physics , Institute for Basic Science , Suwon 16419 , Republic of Korea
| | - Seok Joon Yun
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- IBS Center for Integrated Nanostructure Physics , Institute for Basic Science , Suwon 16419 , Republic of Korea
| | - Yongjun Lee
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- IBS Center for Integrated Nanostructure Physics , Institute for Basic Science , Suwon 16419 , Republic of Korea
| | - Jaekwang Lee
- Department of Physics , Pusan National University , Busan 46241 , Republic of Korea
| | - Young-Min Kim
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- IBS Center for Integrated Nanostructure Physics , Institute for Basic Science , Suwon 16419 , Republic of Korea
| | - Jeongyong Kim
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- IBS Center for Integrated Nanostructure Physics , Institute for Basic Science , Suwon 16419 , Republic of Korea
| |
Collapse
|