1
|
Codesal MD, David AHG, Santos CIM, Álvaro-Martins MJ, Maçôas E, Campaña AG, Blanco V. Curved Nanographenes as Stoppers in a [2]Rotaxane with Two-Photon Excited Emission. J Org Chem 2024; 89:9344-9351. [PMID: 38907714 PMCID: PMC11232015 DOI: 10.1021/acs.joc.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Heptagon-containing distorted nanographenes are used as stoppers for the capping of a [2]rotaxane through a Michael-type addition reaction to vinyl sulfone groups. These curved aromatics are bulky enough to prevent the disassembly of the rotaxane but also give emissive and nonlinear (two-photon absorption and emission) optical properties to the structure.
Collapse
Affiliation(s)
- Marcos D Codesal
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Arthur H G David
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Carla I M Santos
- Centro de Química Estrutural and Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Maria J Álvaro-Martins
- Centro de Química Estrutural and Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Ermelinda Maçôas
- Centro de Química Estrutural and Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Araceli G Campaña
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Victor Blanco
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| |
Collapse
|
2
|
Wu P, Dharmadhikari B, Patra P, Xiong X. Rotaxane nanomachines in future molecular electronics. NANOSCALE ADVANCES 2022; 4:3418-3461. [PMID: 36134345 PMCID: PMC9400518 DOI: 10.1039/d2na00057a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/16/2022] [Indexed: 06/16/2023]
Abstract
As the electronics industry is integrating more and more new molecules to utilize them in logic circuits and memories to achieve ultra-high efficiency and device density, many organic structures emerged as promising candidates either in conjunction with or as an alternative to conventional semiconducting materials such as but not limited to silicon. Owing to rotaxane's mechanically interlocked molecular structure consisting of a dumbbell-shaped molecule threaded through a macrocycle, they could be excellent nanomachines in molecular switches and memory applications. As a nanomachine, the macrocycle of rotaxane can move reversibly between two stations along its axis under external stimuli, resulting in two stable molecular configurations known as "ON" and "OFF" states of the controllable switch with distinct resistance. There are excellent reports on rotaxane's structure, properties, and function relationship and its application to molecular electronics (Ogino, et al., 1984; Wu, et al., 1991; Bissell, et al., 1994; Collier, et al., 1999; Pease, et al., 2001; Chen, et al., 2003; Green, et al., 2007; Jia, et al., 2016). This comprehensive review summarizes [2]rotaxane and its application to molecular electronics. This review sorts the major research work into a multi-level pyramid structure and presents the challenges of [2]rotaxane's application to molecular electronics at three levels in developing molecular circuits and systems. First, we investigate [2]rotaxane's electrical characteristics with different driving methods and discuss the design considerations and roles based on voltage-driven [2]rotaxane switches that promise the best performance and compatibility with existing solid-state circuits. Second, we examine the solutions for integrating [2]rotaxane molecules into circuits and the limitations learned from these devices keep [2]rotaxane active as a molecular switch. Finally, applying a sandwiched crossbar structure and architecture to [2]rotaxane circuits reduces the fabrication difficulty and extends the possibility of reprogrammable [2]rotaxane arrays, especially at a system level, which eventually promotes the further realization of [2]rotaxane circuits.
Collapse
Affiliation(s)
- Peiqiao Wu
- Department of Computer Science and Computer Engineering, University of Bridgeport Bridgeport CT USA
| | - Bhushan Dharmadhikari
- Department of Electrical and Computer Engineering and Technology, Minnesota State University Mankato MN USA
| | - Prabir Patra
- Department of Biomedical Engineering and Mechanical Engineering, University of Bridgeport Bridgeport CT USA
| | - Xingguo Xiong
- Department of Electrical Engineering and Computer Engineering, University of Bridgeport Bridgeport CT USA
| |
Collapse
|
3
|
Sarraute S, Biesse-Martin AS, Devemy J, Dequidt A, Bonal C, Malfreyt P. Investigation of the Complexation between 4-Aminoazobenzene and Cucurbit[7]uril through a Combined Spectroscopic, Nuclear Magnetic Resonance, and Molecular Simulation Studies. ACS OMEGA 2022; 7:25013-25021. [PMID: 35910107 PMCID: PMC9330255 DOI: 10.1021/acsomega.2c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/30/2022] [Indexed: 06/02/2023]
Abstract
Cucurbiturils are well known for their ability to form supramolecular systems with ultrahigh affinities binding. Inclusion complex between 4-aminoazobenzene and cucurbit[7]uril has been investigated in aqueous solution by ultraviolet (UV)-spectroscopy, 1H NMR, and molecular simulations. 4-aminoazobenzene shows high affinity in acidic solutions while no association was detected in neutral solutions. The thermodynamic properties of complex formation are investigated using both UV spectroscopy and nuclear magnetic resonance (NMR) measurements. Our results highlight that the high binding constant between CB7 and 4AA (log K = 4.9) is the result of a large negative change in Δr H° (-19 kJ/mol) and a small positive change in TΔr S° (9 kJ/mol). The analysis of the experimental data lead to hypothesis on the structure of the complex. We have used molecular dynamics simulation to interpret experiments. Interestingly, the cis-trans isomerization of aminoazobenzene is considered. All the results are discussed and compared with those previously obtained with other host molecules.
Collapse
|
4
|
Gschneidtner TA, Lerch S, Olsén E, Wen X, Liu ACY, Stolaś A, Etheridge J, Olsson E, Moth-Poulsen K. Constructing a library of metal and metal-oxide nanoparticle heterodimers through colloidal assembly. NANOSCALE 2020; 12:11297-11305. [PMID: 32420581 DOI: 10.1039/d0nr02787a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoparticle dimers composed of different metals or metal oxides, as well as different shapes and sizes, are of wide interest for applications ranging from nanoplasmonic sensing to nanooptics to biomedical engineering. Shaped nanoparticles, like triangles and nanorods, can be particularly useful in applications due to the strong localized plasmonic hot-spot that forms at the tips or corners. By placing catalytic, but traditionally weakly- or non-plasmonic nanoparticles, such as metal oxides and metals like palladium, in these hot-spots, an enhanced function for sensing, photocatalysis or optical use is predicted. Here, we present an electrostatic colloidal assembly strategy for nanoparticles, incorporating different sizes, shapes and metal or metal oxide compositions into heterodimers with smaller gaps than are achievable using nanofabrication techniques. This versatile method is demonstrated on 14 combinations, including a variety of shaped gold nanoparticles as well as palladium, iron oxide, and titanium oxide nanoparticles. These colloidal nanoparticles are stabilized with traditional surfactants, such as citrate, CTAB, PVP and oleic acid/oleylamines, indicating the wide applicability of our approach. Heterodimers of gold and palladium are further analyzed using cathodoluminescence to demonstrate the tunability of these "plasmonic molecules". Since systematically altering the absorption and emission of the plasmonic nanoparticles dimers is crucial to extending their functionality, and small gap sizes produce the strongest hot-spots, this method indicates that the electrostatic approach to heterodimer assembly can be useful in creating new nanoparticle dimers for many applications.
Collapse
Affiliation(s)
- Tina A Gschneidtner
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Sarah Lerch
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Erik Olsén
- Department of Physics, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Xin Wen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Amelia C Y Liu
- Monash Centre for Electron Microscopy, Monash University, VIC 3800, Australia. and School of Physics and Astronomy, Monash University, VIC 3800, Australia
| | - Alicja Stolaś
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Joanne Etheridge
- Monash Centre for Electron Microscopy, Monash University, VIC 3800, Australia. and Department of Materials Science and Metallurgy, Monash University, VIC 3800, Australia
| | - Eva Olsson
- Department of Physics, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| |
Collapse
|
5
|
Schröder HV, Schalley CA. Electrochemically switchable rotaxanes: recent strides in new directions. Chem Sci 2019; 10:9626-9639. [PMID: 32110308 PMCID: PMC7020790 DOI: 10.1039/c9sc04118d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Are they still electrifying? Electrochemically switchable rotaxanes are well known for their ability to efficiently undergo changes of (co-)conformation and properties under redox-control. Thus, these mechanically interlocked assemblies represent an auspicious liaison between the fields of molecular switches and molecular electronics. Since the first reported example of a redox-switchable molecular shuttle in 1994, improved tools of organic and supramolecular synthesis have enabled sophisticated new architectures, which provide precise control over properties and function. This perspective covers recent advances in the area of electrochemically active rotaxanes including novel molecular switches and machines, metal-containing rotaxanes, non-equilibrium systems and potential applications.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Christoph A Schalley
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| |
Collapse
|
6
|
Zhou W, Chen Y, Yu Q, Li P, Chen X, Liu Y. Photo-responsive cyclodextrin/anthracene/Eu 3+ supramolecular assembly for a tunable photochromic multicolor cell label and fluorescent ink. Chem Sci 2019; 10:3346-3352. [PMID: 30996922 PMCID: PMC6429777 DOI: 10.1039/c9sc00026g] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/04/2019] [Indexed: 11/21/2022] Open
Abstract
A photo-responsive supramolecular assembly was successfully constructed through the stoichiometric 2 : 1 non-covalent association of two 4-(anthracen-2-yl)pyridine-2,6-dicarboxylic acid (1) units in one γ-cyclodextrin (γ-CD) cavity, followed by the subsequent coordination polymerization of the γ-CD·1 2 (1 2 = two 1) inclusion complex with Eu(iii). Interestingly, owing to the photodimerization behavior of anthracene units and the excellent luminescence properties of Eu(iii), the Eu3+⊂γ-CD·1 2 system showed multicolor fluorescence emission from cyan to red by irradiation for 0-16 minutes. Moreover, white light emission with CIE coordinates (0.32 and 0.36) was achieved at 4 min. Importantly, white light-containing multicolor emission could be obtained in water, solid films and living cells. Especially, the Eu3+⊂γ-CD·1 2 system could tag living cells with marvelous white fluorescence and display no obvious cytotoxicity. Thus, this supramolecular assembly offers a new pathway in the fields of tunable photochromic fluorescent ink and cell labelling.
Collapse
Affiliation(s)
- Weilei Zhou
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China .
| | - Yong Chen
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China .
| | - Qilin Yu
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China .
- Key Laboratory of Molecular Microbiology and Technology , College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Peiyu Li
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China .
| | - Xuman Chen
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China .
| | - Yu Liu
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China .
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| |
Collapse
|
7
|
Self-assembled (pseudo)rotaxane and polyrotaxane through host–guest chemistry based on the cucurbituril family. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0828-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|