1
|
Kumar D, Tiwari R, Verma DK, Yadav S, Parwati K, Rai R, Adhikary P, Krishnamoorthi S. Negative capacitance based on isomeric polythiophene in action. SOFT MATTER 2024; 20:7578-7582. [PMID: 39315655 DOI: 10.1039/d4sm01075b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In this study, we demonstrated that arranging positive and negative capacitance materials in series, based on isomeric polythiophene, led to a notable increase in total capacitance. Furthermore, the application of negative capacitance (NC) technology in supercapacitor (SC) construction offers the potential for energy storage capabilities surpassing fundamental limits. Our findings suggest the feasibility of developing all-organic based energy storage devices with high capacitance.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Rudramani Tiwari
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Dipendra Kumar Verma
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Shashikant Yadav
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Km Parwati
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Rajshree Rai
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Pubali Adhikary
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - S Krishnamoorthi
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
2
|
Chen RS, Lu Y. Negative Capacitance Field Effect Transistors based on Van der Waals 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304445. [PMID: 37899295 DOI: 10.1002/smll.202304445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/20/2023] [Indexed: 10/31/2023]
Abstract
Steep subthreshold swing (SS) is a decisive index for low energy consumption devices. However, the SS of conventional field effect transistors (FETs) has suffered from Boltzmann Tyranny, which limits the scaling of SS to sub-60 mV dec-1 at room temperature. Ferroelectric gate stack with negative capacitance (NC) is proved to reduce the SS effectively by the amplification of the gate voltage. With the application of 2D ferroelectric materials, the NC FETs can be further improved in performance and downscaled to a smaller dimension as well. This review introduces some related concepts for in-depth understanding of NC FETs, including the NC, internal gate voltage, SS, negative drain-induced barrier lowering, negative differential resistance, single-domain state, and multi-domain state. Meanwhile, this work summarizes the recent advances of the 2D NC FETs. Moreover, the electrical characteristics of some high-performance NC FETs are expressed as well. The factors which affect the performance of the 2D NC FETs are also presented in this paper. Finally, this work gives a brief summary and outlook for the 2D NC FETs.
Collapse
Affiliation(s)
- Ruo-Si Chen
- School of Engineering, College of Engineering, Computing & Cybernetics, Australian National University, Canberra, ACT, 2602, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing & Cybernetics, Australian National University, Canberra, ACT, 2602, Australia
| |
Collapse
|
3
|
Sett S, Debnath R, Singha A, Mandal S, Jyothsna KM, Bhakar M, Watanabe K, Taniguchi T, Raghunathan V, Sheet G, Jain M, Ghosh A. Emergent Inhomogeneity and Nonlocality in a Graphene Field-Effect Transistor on a Near-Parallel Moiré Superlattice of Transition Metal Dichalcogenides. NANO LETTERS 2024. [PMID: 39012311 DOI: 10.1021/acs.nanolett.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
At near-parallel orientation, twisted bilayers of transition metal dichalcogenides exhibit interlayer charge transfer-driven out-of-plane ferroelectricity. Here, we report detailed electrical transport in a dual-gated graphene field-effect transistor placed on a 2.1° twisted bilayer WSe2. We observe hysteretic transfer characteristics and an emergent charge inhomogeneity with multiple local Dirac points evolving with an increasing electric displacement field (D). Concomitantly, we also observe a strong nonlocal voltage signal at D ∼ 0 V/nm that decreases rapidly with increasing D. A linear scaling of the nonlocal signal with longitudinal resistance suggests edge mode transport, which we attribute to the breaking of valley symmetry of graphene due to the spatially fluctuating electric field from the underlying polarized moiré domains. A quantitative analysis suggests the emergence of finite-size domains in graphene that modulate the charge and the valley currents simultaneously. This work underlines the impact of interfacial ferroelectricity that can trigger a new generation of devices.
Collapse
Affiliation(s)
- Shaili Sett
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Rahul Debnath
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Arup Singha
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Shinjan Mandal
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - K M Jyothsna
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Monika Bhakar
- Department of Physics, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Varun Raghunathan
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Goutam Sheet
- Department of Physics, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Manish Jain
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Wang Y, Liu S, Luo Z, Gan H, Wang H, Li J, Du X, Zhao H, Shen S, Yin Y, Li X. Ultralow Subthreshold Swing of a MOSFET Caused by Ferroelectric Polarization Reversal of Hf 0.5Zr 0.5O 2 Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42764-42773. [PMID: 37655492 DOI: 10.1021/acsami.3c08163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The emergence of complementary metal-oxide semiconductor (CMOS)-compatible HfO2-based ferroelectric materials provides a promising way to achieve ferroelectric field-effect transistors (FeFETs) with a steep subthreshold swing (SS) reduced to below the Boltzmann thermodynamics limit (∼60 mV/dec at room temperature), which has important implications for lowering power consumption. In this work, a metal-oxide-semiconductor field-effect transistor (MOSFET) is connected with Hf0.5Zr0.5O2 (HZO)-based ferroelectric capacitors with different capacitances. By adjusting the capacitance of ferroelectric capacitors, an ultralow SS of ∼0.34 mV/dec in HfO2-based FeFETs can be achieved. More interestingly, by designing the sweeping voltage sequences, the SS can be adjusted to be 0 mV/dec with the drain current ranging over six orders of magnitude, and the threshold voltage for turning on the MOSFET can be further reduced. The manipulated SS could be attributed to the evolution of ferroelectric switching. Our work contributes to understanding the origin of ultralow SS in ferroelectric MOSFETs and the realization of low-power devices.
Collapse
Affiliation(s)
- Yuchen Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Si Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hui Gan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jiachen Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xinzhe Du
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Haoyu Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shengchun Shen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yuewei Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Cho H, Jin HJ, Lee S, Jeon S, Cho Y, Park S, Jang M, Widiapradja LJ, Ryu DY, Park JH, Kim K, Im S. 5 nm Ultrathin Crystalline Ferroelectric P(VDF-TrFE)-Brush Tuned for Hysteresis-Free Sub 60 mV dec -1 Negative-Capacitance Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300478. [PMID: 36940281 DOI: 10.1002/adma.202300478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Indexed: 06/02/2023]
Abstract
Negative-capacitance field-effect transistors (NC-FETs) have gathered enormous interest as a way to reduce subthreshold swing (SS) and overcome the issue of power dissipation in modern integrated circuits. For stable NC behavior at low operating voltages, the development of ultrathin ferroelectrics (FE), which are compatible with the industrial process, is of great interest. Here, a new scalable ultrathin ferroelectric polymer layer is developed based on trichloromethyl (CCl3 )-terminated poly(vinylidene difluoride-co-trifloroethylene) (P(VDF-TrFE)) to achieve the state-of-the-art performance of NC-FETs. The crystalline phase of 5-10 nm ultrathin P(VDF-TrFE) is prepared on AlOX by a newly developed brush method, which enables an FE/dielectric (DE) bilayer. FE/DE thickness ratios are then systematically tuned at ease to achieve ideal capacitance matching. NC-FETs with optimized FE/DE thickness at a thickness limit demonstrate hysteresis-free operation with an SS of 28 mV dec-1 at ≈1.5 V, which competes with the best reports. This P(VDF-TrFE)-brush layer can be broadly adapted to NC-FETs, opening an exciting avenue for low-power devices.
Collapse
Affiliation(s)
- Hyunmin Cho
- Van der Waals, Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye-Jin Jin
- Van der Waals, Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sol Lee
- Van der Waals, Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| | - Seungbae Jeon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yongjae Cho
- Van der Waals, Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sam Park
- Van der Waals, Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myeongjin Jang
- Van der Waals, Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| | - Livia Janice Widiapradja
- Van der Waals, Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Hoon Park
- Department of Electronics and Electrical Engineering, Dankook University, Yongin, Gyeonggi-do, 16890, Republic of Korea
| | - Kwanpyo Kim
- Van der Waals, Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| | - Seongil Im
- Van der Waals, Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Pintilie L, Boni GA, Chirila CF, Stancu V, Trupina L, Istrate CM, Radu C, Pintilie I. Homogeneous versus Inhomogeneous Polarization Switching in PZT Thin Films: Impact of the Structural Quality and Correlation to the Negative Capacitance Effect. NANOMATERIALS 2021; 11:nano11082124. [PMID: 34443956 PMCID: PMC8402043 DOI: 10.3390/nano11082124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
Polarization switching in ferroelectric films is exploited in many applications, such as non-volatile memories and negative capacitance field affect transistors. This can be inhomogeneous or homogeneous, depending on if ferroelectric domains are forming or not during the switching process. The relation between the polarization switching, the structural quality of the films and the negative capacitance was not studied in depth. Here, Pb(Zr0.2Ti0.8)O3 (PZT) layers were deposited by pulse laser deposition (PLD) and sol-gel (SG) on single crystal SrTiO3 (STO) and Si substrates, respectively. The structural quality was analyzed by X-ray diffraction and transmission electron microscopy, while the electric properties were investigated by performing hysteresis, dynamic dielectric measurements, and piezo-electric force microscopy analysis. It was found that the PZT layers grown by PLD on SRO/STO substrates are epitaxial while the layers deposited by SG on Pt/Si are polycrystalline. The polarization value decreases as the structure changes from epitaxial to polycrystalline, as well as the magnitude of the leakage current and of the differential negative capacitance, while the switching changes from homogeneous to inhomogeneous. The results are explained by the compensation rate of the depolarization field during the switching process, which is much faster in epitaxial films than in polycrystalline ones.
Collapse
|
7
|
Esseni D, Fontanini R. Macroscopic and microscopic picture of negative capacitance operation in ferroelectric capacitors. NANOSCALE 2021; 13:9641-9650. [PMID: 34008596 DOI: 10.1039/d0nr06886a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The negative capacitance (NC) operation of ferroelectric materials has been originally proposed based on a homogeneous Landau theory, leading to a simple NC stabilization condition expressed in terms of macroscopic quantities. A multi-domain theory, however, has pointed out the importance of microscopic parameters, such as the domain wall energy coupling constant, and it helped explain the somewhat contradicting experiments for ferroelectric capacitors with or without a metal interlayer. In this work we use comprehensive numerical simulations and simplified equations to correlate the macroscopic features of the NC operation to the underlying microscopic picture. We show that, while the domain wall coupling constant plays a critical role in a quasi static operation, the transient NC operation is less sensitive to this parameter. In particular, ferroelectric capacitors with a very small coupling constant can still display a robust transient NC behavior, closely tracking the 'S'-shaped polarization versus field curve and with negligible hysteresis. Our results have been developed in the framework of a systematic comparison between simulations and experiments, and they provide both a better understanding of the NC operation and a sound basis for the design of future NC based devices.
Collapse
Affiliation(s)
- David Esseni
- DPIA, University of Udine, Via delle Scienze 206, 33100 Udine, Italy.
| | | |
Collapse
|
8
|
Luo ZD, Yang MM, Liu Y, Alexe M. Emerging Opportunities for 2D Semiconductor/Ferroelectric Transistor-Structure Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005620. [PMID: 33577112 DOI: 10.1002/adma.202005620] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Semiconductor technology, which is rapidly evolving, is poised to enter a new era for which revolutionary innovations are needed to address fundamental limitations on material and working principle level. 2D semiconductors inherently holding novel properties at the atomic limit show great promise to tackle challenges imposed by traditional bulk semiconductor materials. Synergistic combination of 2D semiconductors with functional ferroelectrics further offers new working principles, and is expected to deliver massively enhanced device performance for existing complementary metal-oxide-semiconductor (CMOS) technologies and add unprecedented applications for next-generation electronics. Herein, recent demonstrations of novel device concepts based on 2D semiconductor/ferroelectric heterostructures are critically reviewed covering their working mechanisms, device construction, applications, and challenges. In particular, emerging opportunities of CMOS-process-compatible 2D semiconductor/ferroelectric transistor structure devices for the development of a rich variety of applications are discussed, including beyond-Boltzmann transistors, nonvolatile memories, neuromorphic devices, and reconfigurable nanodevices such as p-n homojunctions and self-powered photodetectors. It is concluded that 2D semiconductor/ferroelectric heterostructures, as an emergent heterogeneous platform, could drive many more exciting innovations for modern electronics, beyond the capability of ubiquitous silicon systems.
Collapse
Affiliation(s)
- Zheng-Dong Luo
- Department of Physics, The University of Warwick, Coventry, CV4 7AL, UK
| | - Ming-Min Yang
- Center for Emergent Matter Science, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Yang Liu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Marin Alexe
- Department of Physics, The University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
9
|
Glinchuk MD, Morozovska AN, Yurchenko LP. Origin of Ferroelectricity and Multiferroicity in Binary Oxide Thin Films. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:273-278. [PMID: 32305912 DOI: 10.1109/tuffc.2020.2988361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The observation of ferroelectric, ferromagnetic, and ferroelastic phases in thin films of binary oxides attracts the broad interest of scientists and engineers. However, the theoretical consideration of the physical nature of the observed behavior was performed mainly for HfO2 thin films from the first principles, and in the framework of Landau-Ginzburg-Devonshire (LGD) phenomenological approach with special attention to the role of oxygen vacancies in both cases. Allowing for the generality of the LGD theory, we applied it to the group of binary oxides in this work. The calculations have been performed based on the assumption that oxygen vacancies, as elastic dipoles, can be partially transformed into electric dipoles due to the defect site-induced and/or surface-induced inversion symmetry breaking (via, e.g., piezoelectric effect), and can "migrate" throughout the depth of an ultrathin film. Since many films of binary oxide are ferroelectric and ferromagnetic due to the oxygen vacancies, they can be multiferroics. Performed calculations have shown that thin films of binary oxides can be considered as new multiferroics with physical properties useful for broad spectra of applications in nanoelectronics and nanotechnology. The properties can be controlled by the choice of oxygen vacancy concentration, film thickness, and special technological treatment, such as annealing.
Collapse
|
10
|
Lee HJ, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae SC, Waghmare U, Lee JH. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 2020; 369:1343-1347. [DOI: 10.1126/science.aba0067] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/29/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Discovery of robust yet reversibly switchable electric dipoles at reduced dimensions is critical to the advancement of nanoelectronics devices. Energy bands flat in momentum space generate robust localized states that are activated independently of each other. We determined that flat bands exist and induce robust yet independently switchable dipoles that exhibit a distinct ferroelectricity in hafnium dioxide (HfO2). Flat polar phonon bands in HfO2 cause extreme localization of electric dipoles within its irreducible half-unit cell widths (~3 angstroms). Contrary to conventional ferroelectrics with spread dipoles, those intrinsically localized dipoles are stable against extrinsic effects such as domain walls, surface exposure, and even miniaturization down to the angstrom scale. Moreover, the subnanometer-scale dipoles are individually switchable without creating any domain-wall energy cost. This offers unexpected opportunities for ultimately dense unit cell–by–unit cell ferroelectric switching devices that are directly integrable into silicon technology.
Collapse
Affiliation(s)
- Hyun-Jae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minseong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyoungjun Lee
- Department of Physics Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinhyeong Jo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyemi Yang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yungyeom Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Chul Chae
- Department of Physics Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Umesh Waghmare
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Jun Hee Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
11
|
Li X, Toriumi A. Stepwise internal potential jumps caused by multiple-domain polarization flips in metal/ferroelectric/metal/paraelectric/metal stack. Nat Commun 2020; 11:1895. [PMID: 32312962 PMCID: PMC7170928 DOI: 10.1038/s41467-020-15753-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/24/2020] [Indexed: 11/23/2022] Open
Abstract
Negative capacitance (NC) effects in ferroelectric/paraelectric (FE/PE) stacks have been recently discussed intensively in terms of the steep subthreshold swing (SS) in field-effect transistors (FETs). It is, however, still disputable to stabilize quasi-static-NC effects. In this work, stepwise internal potential jumps in a metal/FE/metal/PE/metal system observed near the coercive voltage of the FE layer are reported through carefully designed DC measurements. The relationship of the internal potential jumps with the steep SS in FETs is also experimentally confirmed by connecting a FE capacitor to a simple metal-oxide-semiconductor FET. On the basis of the experimental results, the observed internal potential jumps are analytically modelled from the viewpoint of bound charge emission associated with each domain flip in a multiple-domain FE layer in a FE/PE stack. This view is different from the original NC concept and should be employed for characterizing FE/PE gate stack FETs. Negative capacitance (NC) effects that could allow steep subthreshold swing (SS) in field-effect transistors (FETs) are still controversially discussed. Here the authors propose a model distinct from the NC concept, taking into account domain flips in multiple-domain ferroelectric/paraelectric gate stack FETs.
Collapse
Affiliation(s)
- Xiuyan Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China. .,Department of Materials Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
| | - Akira Toriumi
- Department of Materials Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
12
|
Rollo T, Blanchini F, Giordano G, Specogna R, Esseni D. Stabilization of negative capacitance in ferroelectric capacitors with and without a metal interlayer. NANOSCALE 2020; 12:6121-6129. [PMID: 32129361 DOI: 10.1039/c9nr09470a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The negative capacitance operation of a ferroelectric material is not only an intriguing materials science topic, but also a property with important technological applications in nanoscale electronic devices. Despite growing interest for possible applications, the very existence of negative capacitance is still actively debated, even because experimental results for ferroelectric capacitors with or without a metal interlayer led to quite contradicting indications. Here we present a comprehensive analysis of NC operation in ferroelectric capacitors and provide new insights into the discrepancies observed in experiments. Our models duly account for the three-dimensional nature of the problem and show a good agreement with several aspects of recent experiments. Our results also demonstrate that traps at the ferroelectric-dielectric interface play an important role in the feasibility of stable negative capacitance operation in ferroelectric capacitors.
Collapse
Affiliation(s)
- T Rollo
- DPIA, University of Udine, Via delle Scienze 206, 33100 Udine, Italy.
| | | | | | | | | |
Collapse
|
13
|
Abstract
The negative-capacitance field-effect transistor(NC-FET) has attracted tremendous research efforts. However, the lack of a clear physical picture and design rule for this device has led to numerous invalid fabrications. In this work, we address this issue based on an unexpectedly concise and insightful analytical formulation of the minimum hysteresis-free subthreshold swing (SS), together with several important conclusions. Firstly, well-designed MOSFETs that have low trap density, low doping in the channel, and excellent electrostatic integrity, receive very limited benefit from NC in terms of achieving subthermionic SS. Secondly, quantum-capacitance is the limiting factor for NC-FETs to achieve hysteresis-free subthermionic SS, and FETs that can operate in the quantum-capacitance limit are desired platforms for NC-FET construction. Finally, a practical role of NC in FETs is to save the subthreshold and overdrive voltage losses. Our analysis and findings are intended to steer the NC-FET research in the right direction. Negative Capacitance field-effect-transistor has long been touted as a steep-slope logic switch. Here, the authors present a lucid formulation that reveals the intrinsic limitation of NC-FETs in achieving steep-slope switching characteristics and highlights their more practical role in saving the voltage losses in modern FETs.
Collapse
|
14
|
Park HW, Roh J, Lee YB, Hwang CS. Modeling of Negative Capacitance in Ferroelectric Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805266. [PMID: 31165533 DOI: 10.1002/adma.201805266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The negative capacitance (NC) effect in ferroelectric thin films has attracted a great deal of attention from the material and semiconductor device communities because it could be a possible solution to the impending problems related to field-effect transistor power consumption and dynamic random-access memory charge loss. A short discussion on the fundamental premise of the NC effect is presented. A phase-field model based on the time-dependent Ginzburg-Landau (TDGL) formalism in conjunction with the Chensky-Tarasenko (C-T) formalism for multidomain configuration is then developed to reveal the subtle correlation between the domain wall motion and NC effect for different thicknesses of ferroelectric and dielectric films. When a ferroelectric film becomes thin enough, a stripe domain structure can be achieved through competition between the electrostatic energy and domain wall energy. This stripe domain structure is quite resilient to transition to a homogeneous polarization state, making it very useful for (quasi-)static NC operation. Finally, the physical implications of the numerical results are explored with analytical modeling. It is identified that the domain wall motion in the stripe domain structure remains dominated by the external field, even when the entire film is in the (quasi-)static NC state.
Collapse
Affiliation(s)
- Hyeon Woo Park
- Department of Materials Science and Engineering, and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 151-744, Republic of Korea
| | - Jangho Roh
- Department of Materials Science and Engineering, and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 151-744, Republic of Korea
| | - Yong Bin Lee
- Department of Materials Science and Engineering, and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 151-744, Republic of Korea
| | - Cheol Seong Hwang
- Department of Materials Science and Engineering, and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 151-744, Republic of Korea
| |
Collapse
|
15
|
Unveiling the double-well energy landscape in a ferroelectric layer. Nature 2019; 565:464-467. [PMID: 30643206 DOI: 10.1038/s41586-018-0854-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/09/2018] [Indexed: 11/08/2022]
Abstract
The properties of ferroelectric materials, which were discovered almost a century ago1, have led to a huge range of applications, such as digital information storage2, pyroelectric energy conversion3 and neuromorphic computing4,5. Recently, it was shown that ferroelectrics can have negative capacitance6-11, which could improve the energy efficiency of conventional electronics beyond fundamental limits12-14. In Landau-Ginzburg-Devonshire theory15-17, this negative capacitance is directly related to the double-well shape of the ferroelectric polarization-energy landscape, which was thought for more than 70 years to be inaccessible to experiments18. Here we report electrical measurements of the intrinsic double-well energy landscape in a thin layer of ferroelectric Hf0.5Zr0.5O2. To achieve this, we integrated the ferroelectric into a heterostructure capacitor with a second dielectric layer to prevent immediate screening of polarization charges during switching. These results show that negative capacitance has its origin in the energy barrier in a double-well landscape. Furthermore, we demonstrate that ferroelectric negative capacitance can be fast and hysteresis-free, which is important for prospective applications19. In addition, the Hf0.5Zr0.5O2 used in this work is currently the most industry-relevant ferroelectric material, because both HfO2 and ZrO2 thin films are already used in everyday electronics20. This could lead to fast adoption of negative capacitance effects in future products with markedly improved energy efficiency.
Collapse
|