1
|
Gomes SIL, Roca CP, Pokhrel S, Mädler L, Scott-Fordsmand JJ, Amorim MJB. TiO 2 nanoparticles' library toxicity (UV and non-UV exposure) - High-throughput in vivo transcriptomics reveals mechanisms. NANOIMPACT 2023; 30:100458. [PMID: 36858316 DOI: 10.1016/j.impact.2023.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/03/2023]
Abstract
The hazards of nanomaterials/nanoparticles (NMs/NPs) are mostly assessed using individual NMs, and a more systematic approach, using many NMs, is needed to evaluate its risks in the environment. Libraries of NMs, with a range of identified different but related characters/descriptors allow the comparison of effects across many NMs. The effects of a custom designed Fe-doped TiO2 NMs library containing 11 NMs was assessed on the soil model Enchytraeus crypticus (Oligochaeta), both with and without UV (standard fluorescent) radiation. Effects were analyzed at organism (phenotypic, survival and reproduction) and gene expression level (transcriptomics, high-throughput 4x44K microarray) to understand the underlying mechanisms. A total of 48 microarrays (20 test conditions) were done plus controls (UV and non-UV). Unique mechanisms induced by TiO2 NPs exposure included the impairment in RNA processing for TiO2_10nm, or deregulated apoptosis for 2%FeTiO2_10nm. Strikingly apparent was the size dependent effects such as induction of reproductive effects via smaller TiO2 NPs (≤12 nm) - embryo interaction, while larger particles (27 nm) caused reproductive effects through different mechanisms. Also, phagocytosis was affected by 12 and 27 nm NPs, but not by ≤11 nm. The organism level study shows the integrated response, i.e. the result after a cascade of events. While uni-cell models offer key mechanistic information, we here deliver a combined biological system level (phenotype and genotype), seldom available, especially for environmental models.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos P Roca
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4, DK-8000, Aarhus, Denmark
| | - Suman Pokhrel
- Department of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany; Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | - Lutz Mädler
- Department of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany; Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Scott-Fordsmand JJ, Amorim MJB. Using Machine Learning to make nanomaterials sustainable. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160303. [PMID: 36410486 DOI: 10.1016/j.scitotenv.2022.160303] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Sustainable development is a key challenge for contemporary human societies; failure to achieve sustainability could threaten human survival. In this review article, we illustrate how Machine Learning (ML) could support more sustainable development, covering the basics of data gathering through each step of the Environmental Risk Assessment (ERA). The literature provides several examples showing how ML can be employed in most steps of a typical ERA.A key observation is that there are currently no clear guidance for using such autonomous technologies in ERAs or which standards/checks are required. Steering thus seems to be the most important task for supporting the use of ML in the ERA of nano- and smart-materials. Resources should be devoted to developing a strategy for implementing ML in ERA with a strong emphasis on data foundations, methodologies, and the related sensitivities/uncertainties. We should recognise historical errors and biases (e.g., in data) to avoid embedding them during ML programming.
Collapse
Affiliation(s)
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Amorim MJB, Gomes SIL, Bicho RCS, Scott-Fordsmand JJ. On virus and nanomaterials - Lessons learned from the innate immune system - ACE activation in the invertebrate model Enchytraeus crypticus. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129173. [PMID: 35739709 PMCID: PMC9116975 DOI: 10.1016/j.jhazmat.2022.129173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/03/2023]
Abstract
Current human research on COVID-19 - SARS-CoV-2 (Severe Acute Respiratory Syndrome-Corona Virus) showed that ACE2 (Angiotensin Converting Enzyme 2) is a functional receptor to which the spike proteins attach. Invertebrates have been exposed to a wide array of threats for millennia and their immune system has evolved to deal with these efficiently. The annelid Enchytraeus crypticus, a standard ecotoxicological species, is an invertebrate species where extensive mechanisms of response studies are available, covering all levels from gene to population responses. Nanomaterials (NMs) are often perceived as invaders (e.g. virus) and can enter the cell covered by a corona, triggering similar responses. We created a database on E. crypticus ACE gene expression, aiming to analyse the potential knowledge transfer between invertebrates and vertebrates. Total exposure experiments sum 87 stress conditions for 18 different nanomaterials (NMs). ACE expression following TiO2 NM exposure was clearly different from other NMs showing a clear (6-7 fold) ACE down-regulation, not observed for any other NMs. Other NMs, notably Ag NMs, and to some extent Cu NMs, caused ACE up-regulation (up to 4 fold). The extensive knowledge from response to NMs can support the immuno-research community, especially to develop therapies for virus that trigger the innate immune system.
Collapse
Affiliation(s)
- M J B Amorim
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - S I L Gomes
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - R C S Bicho
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - J J Scott-Fordsmand
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle, DK-8000, Aarhus, Denmark
| |
Collapse
|
4
|
Gomes SIL, Amorim MJB, Pokhrel S, Mädler L, Fasano M, Chiavazzo E, Asinari P, Jänes J, Tämm K, Burk J, Scott-Fordsmand JJ. Machine learning and materials modelling interpretation of in vivo toxicological response to TiO 2 nanoparticles library (UV and non-UV exposure). NANOSCALE 2021; 13:14666-14678. [PMID: 34533558 DOI: 10.1039/d1nr03231c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Assessing the risks of nanomaterials/nanoparticles (NMs/NPs) under various environmental conditions requires a more systematic approach, including the comparison of effects across many NMs with identified different but related characters/descriptors. Hence, there is an urgent need to provide coherent (eco)toxicological datasets containing comprehensive toxicity information relating to a diverse spectra of NPs characters. These datasets are test benches for developing holistic methodologies with broader applicability. In the present study we assessed the effects of a custom design Fe-doped TiO2 NPs library, using the soil invertebrate Enchytraeus crypticus (Oligochaeta), via a 5-day pulse via aqueous exposure followed by a 21-days recovery period in soil (survival, reproduction assessment). Obviously, when testing TiO2, realistic conditions should include UV exposure. The 11 Fe-TiO2 library contains NPs of size range between 5-27 nm with varying %Fe (enabling the photoactivation of TiO2 at energy wavelengths in the visible-light range). The NPs were each described by 122 descriptors, being a mixture of measured and atomistic model descriptors. The data were explored using single and univariate statistical methods, combined with machine learning and multiscale modelling techniques. An iterative pruning process was adopted for identifying automatically the most significant descriptors. TiO2 NPs toxicity decreased when combined with UV. Notably, the short-term water exposure induced lasting biological responses even after longer-term recovery in clean exposure. The correspondence with Fe-content correlated with the band-gap hence the reduction of UV oxidative stress. The inclusion of both measured and modelled materials data benefitted the explanation of the results, when combined with machine learning.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Suman Pokhrel
- Department of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | - Lutz Mädler
- Department of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | - Matteo Fasano
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Eliodoro Chiavazzo
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Pietro Asinari
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
- INRIM, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, Torino 10135, Italy
| | - Jaak Jänes
- Department of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Kaido Tämm
- Department of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Jaanus Burk
- Department of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600 Silkeborg, Denmark
| |
Collapse
|
5
|
Amorim MJB, Gansemans Y, Gomes SIL, Van Nieuwerburgh F, Scott-Fordsmand JJ. Annelid genomes: Enchytraeus crypticus, a soil model for the innate (and primed) immune system. Lab Anim (NY) 2021; 50:285-294. [PMID: 34489599 PMCID: PMC8460440 DOI: 10.1038/s41684-021-00831-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023]
Abstract
Enchytraeids (Annelida) are soil invertebrates with worldwide distribution that have served as ecotoxicology models for over 20 years. We present the first high-quality reference genome of Enchytraeus crypticus, assembled from a combination of Pacific Bioscience single-molecule real-time and Illumina sequencing platforms as a 525.2 Mbp genome (910 gapless scaffolds and 18,452 genes). We highlight isopenicillin, acquired by horizontal gene transfer and conferring antibiotic function. Significant gene family expansions associated with regeneration (long interspersed nuclear elements), the innate immune system (tripartite motif-containing protein) and response to stress (cytochrome P450) were identified. The ACE (Angiotensin-converting enzyme) - a homolog of ACE2, which is involved in the coronavirus SARS-CoV-2 cell entry - is also present in E. crypticus. There is an obvious potential of using E. crypticus as a model to study interactions between regeneration, the innate immune system and aging-dependent decline.
Collapse
Affiliation(s)
- Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
6
|
Kim IY, Lee TG, Reipa V, Heo MB. Titanium Dioxide Induces Apoptosis under UVA Irradiation via the Generation of Lysosomal Membrane Permeabilization-Dependent Reactive Oxygen Species in HaCat Cells. NANOMATERIALS 2021; 11:nano11081943. [PMID: 34443774 PMCID: PMC8400875 DOI: 10.3390/nano11081943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have wide commercial applications, owing to their small size; however, the biosafety of TiO2 NPs should be evaluated further. In this study, we aimed to investigate the cytotoxicity of TiO2 NPs in the presence and absence of ultraviolet A (UVA) irradiation in human keratinocyte HaCaT cells. TiO2 NPs did not significantly affect cell viability in the absence of UVA irradiation. Nonetheless, UVA-irradiated TiO2 NPs induced caspase-dependent apoptosis of HaCaT cells. Exposure of HaCaT cells to TiO2 NPs and UVA resulted in reactive oxygen species (ROS) generation and lysosomal membrane permeabilization (LMP); both effects were not observed in the absence of UVA irradiation. An analysis of the relationship between LMP and ROS, using CA-074 as a cathepsin inhibitor or NAC as an antioxidant, showed that LMP stimulates ROS generation under these conditions. These results imply that LMP-dependent oxidative stress plays a critical role in the UVA phototoxicity of TiO2 NPs in HaCaT cells.
Collapse
Affiliation(s)
- In Young Kim
- Nano-Safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea; (I.Y.K.); (T.G.L.)
| | - Tae Geol Lee
- Nano-Safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea; (I.Y.K.); (T.G.L.)
| | - Vytas Reipa
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Correspondence: (V.R.); (M.B.H.); Tel.: +1-(301)-975-5056 (V.R.); +82-(042)-604-1052 (M.B.H.)
| | - Min Beom Heo
- Nano-Safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea; (I.Y.K.); (T.G.L.)
- Correspondence: (V.R.); (M.B.H.); Tel.: +1-(301)-975-5056 (V.R.); +82-(042)-604-1052 (M.B.H.)
| |
Collapse
|
7
|
Grillo R, Fraceto LF, Amorim MJB, Scott-Fordsmand JJ, Schoonjans R, Chaudhry Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124148. [PMID: 33059255 DOI: 10.1016/j.jhazmat.2020.124148] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 05/25/2023]
Abstract
Recent years have seen the development of various colloidal formulations of pesticides and other agrochemicals aimed at use in sustainable agriculture. These formulations include inorganic, organic or hybrid particulates, or nanocarriers composed of biodegradable polymers, that can provide a better control of the release of active ingredients. The very small particle sizes and high surface areas of nanopesticides may however also lead to some unintended (eco)toxicological effects due to the way in which they interact with the target and non-target species and the environment. The current level of knowledge on ecotoxicological effects of nanopesticides is scarce, especially in regard to the fate and behaviour of such formulations in the environment. Nanopesticides will however have to cross a stringent regulatory scrutiny before marketing in most countries for health and environmental risks under a range of regulatory frameworks that require pre-market notification, risk assessment and approval, followed by labelling, post-market monitoring and surveillance. This review provides an overview of the key regulatory and ecotoxicological aspects relating to nanopesticides that will need to be considered for environmentally-sustainable use in agriculture.
Collapse
Affiliation(s)
- Renato Grillo
- Department of Physics and Chemistry, São Paulo State University (UNESP), Avenida Brasil, 56, Centro, 15385-000 Ilha Solteira, SP, Brazil.
| | - Leonardo F Fraceto
- Department of Environmental Engineering, São Paulo State University (UNESP), Avenida Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Reinhilde Schoonjans
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1/A, 43123 Parma, Italy
| | - Qasim Chaudhry
- University of Chester, Parkgate Road, Chester CH1 4BJ, United Kingdom
| |
Collapse
|
8
|
Zhang Q, Du R, Tan C, Chen P, Yu G, Deng S. Efficient degradation of typical pharmaceuticals in water using a novel TiO 2/ONLH nano-photocatalyst under natural sunlight. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123582. [PMID: 32781276 DOI: 10.1016/j.jhazmat.2020.123582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Photocatalytic degradation of typical pharmaceuticals in natural sunlight and in actual water is of great significance. In this study, the oxygen or nitrogen linked heptazine-base polymer (ONLH) was successfully incorporated with TiO2 nanoparticles and formed a TiO2/ONLH nanocomposite which was responded to the natural sunlight. Under natural sunlight, the TiO2/ONLH can effectively degrade ten types of pharmaceuticals. In particular, fluoroquinolone containing N-piperazinyl, and cardiovascular drugs containing long aromatic side chains were easily degraded. The half-life of the best degradation performance of propranolol was less than 5 min. The rate constants of propranolol using the TiO2/ONLH were approximately six- and eight-fold higher than those of pristine TiO2 and ONLH, respectively. Two reactive species (OH and O2-) facilitated the rapid degradation of propranolol, which occurred primarily through the hydroxyl radical addition, ring-opening, and ipso substitution reactions. An acute toxicity test using luminescent bacteria indicated that the toxicity of the propranolol reaction solution gradually decreased with lower total organic carbon (TOC). According to the toxicity evaluation of monomer products, the TiO2/ONLH also reduced the generation of toxic transformation products. The effects of actual water/wastewater have further shown the TiO2/ONLH might be applied for the removal of pharmaceuticals in wastewater.
Collapse
Affiliation(s)
- Qianxin Zhang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| | - Roujia Du
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| | - Cuiwen Tan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Gang Yu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| | - Shubo Deng
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Ren Y, Geng R, Lu Q, Tan X, Rao R, Zhou H, Yang X, Liu W. Involvement of TGF-β and ROS in G1 Cell Cycle Arrest Induced by Titanium Dioxide Nanoparticles Under UVA Irradiation in a 3D Spheroid Model. Int J Nanomedicine 2020; 15:1997-2010. [PMID: 32273698 PMCID: PMC7102912 DOI: 10.2147/ijn.s238145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Background As one of the most widely produced engineered nanomaterials, titanium dioxide nanoparticles (nano-TiO2) are used in biomedicine and healthcare products, and as implant scaffolds; therefore, the toxic mechanism of nano-TiO2 has been extensively investigated with a view to guiding application. Three-dimensional (3D) spheroid models can simplify the complex physiological environment and mimic the in vivo architecture of tissues, which is optimal for the assessment of nano-TiO2 toxicity under ultraviolet A (UVA) irradiation. Methods and Results In the present study, the toxicity of nano-TiO2 under UVA irradiation was investigated in 3D H22 spheroids cultured in fibrin gels. A significant reduction of approximately 25% in spheroid diameter was observed following treatment with 100 μg/mL nano-TiO2 under UVA irradiation after seven days of culture. Nano-TiO2 under UVA irradiation triggered the initiation of the TGF-β/Smad signaling pathway, increasing the expression levels of TGF-β1, Smad3, Cdkn1a, and Cdkn2b at both the mRNA and protein level, which resulted in cell cycle arrest in the G1 phase. In addition, nano-TiO2 under UVA irradiation also triggered the production of reactive oxygen species (ROS), which were shown to be involved in cell cycle regulation and the induction of TGF-β1 expression. Conclusion Nano-TiO2 under UVA irradiation induced cell cycle arrest in the G1 phase and the formation of smaller spheroids, which were associated with TGF-β/Smad signaling pathway activation and ROS generation. These results reveal the toxic mechanism of nano-TiO2 under UVA irradiation, providing the possibility for 3D spheroid models to be used in nanotoxicology studies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Runqing Geng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Qunwei Lu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xi Tan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Rong Rao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|