1
|
Marongiu M, Ha T, Gil-Guerrero S, Garg K, Mandado M, Melle-Franco M, Diez-Perez I, Mateo-Alonso A. Molecular Graphene Nanoribbon Junctions. J Am Chem Soc 2024; 146:3963-3973. [PMID: 38305745 PMCID: PMC10870704 DOI: 10.1021/jacs.3c11340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
One of the challenges for the realization of molecular electronics is the design of nanoscale molecular wires displaying long-range charge transport. Graphene nanoribbons are an attractive platform for the development of molecular wires with long-range conductance owing to their unique electrical properties. Despite their potential, the charge transport properties of single nanoribbons remain underexplored. Herein, we report a synthetic approach to prepare N-doped pyrene-pyrazinoquinoxaline molecular graphene nanoribbons terminated with diamino anchoring groups at each end. These terminal groups allow for the formation of stable molecular graphene nanoribbon junctions between two metal electrodes that were investigated by scanning tunneling microscope-based break-junction measurements. The experimental and computational results provide evidence of long-range tunneling charge transport in these systems characterized by a shallow conductance length dependence and electron tunneling through >6 nm molecular backbone.
Collapse
Affiliation(s)
- Mauro Marongiu
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Tracy Ha
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Sara Gil-Guerrero
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kavita Garg
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Marcos Mandado
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Manuel Melle-Franco
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ismael Diez-Perez
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
2
|
Mateos-Martín J, Dhbaibi K, Melle-Franco M, Mateo-Alonso A. Modulating Strain in Twisted Pyrene-Fused Azaacenes. Chemistry 2023:e202302002. [PMID: 37682106 DOI: 10.1002/chem.202302002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
The design and synthesis of strained aromatics provide an additional insight into the relationship between structure and properties. In the last years, several approaches to twist pyrene-fused azaacenes have been developed that allow to introduce twists of different sizes. Herein, we describe the synthesis of a new set of twisted dibenzotetraazahexacenes constituted by fused pyrene and quinoxaline residues that have been distorted by introducing increasingly larger substituents on the quinoxaline residues. Their twisted structure has been demonstrated by single-crystal X-ray diffraction. Furthermore, absorption, fluorescence, electrochemical and theoretical studies shine light on the effects of the substituents and twists on the optoelectronic and redox properties.
Collapse
Affiliation(s)
- Javier Mateos-Martín
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastián, Spain
| | - Kais Dhbaibi
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastián, Spain
| | - Manuel Melle-Franco
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Wu Z, Hippchen N, Han J, Ji L, Friedrich A, Krummenacher I, Braunschweig H, Krebs J, Moos M, Biegger P, Tverskoy O, Maier S, Lambert C, Dreuw A, Marder TB, Freudenberg J, Bunz UHF. The Radical Anion and Dianion of Benzo[3,4]cyclobuta[1,2- b]phenazine. J Org Chem 2023. [PMID: 36802620 DOI: 10.1021/acs.joc.2c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We present the reduction of two azaacenes (a benzo-[3,4]cyclobuta[1,2-b]phenazine and a benzo[3,4]cyclobuta[1,2-b]naphtho[2,3-i]phenazine derivative), featuring a single cyclobutadiene unit, to their radical anions and dianions. The reduced species were produced using potassium naphthalenide in the presence of 18-crown-6 in THF. Crystal structures of the reduced representatives were obtained and their optoelectronic properties evaluated. Charging these 4n Hückel systems gives dianionic 4n + 2 π-electron systems with increased antiaromaticity, according to NICS(1.7)zz calculations, featuring unusually red-shifted absorption spectra.
Collapse
Affiliation(s)
- Zhu Wu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nikolai Hippchen
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jie Han
- Interdisziplinares Zentrum für Wissenschaftliches Rechnen and Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Lei Ji
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Philipp Biegger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Olena Tverskoy
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Steffen Maier
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Dreuw
- Interdisziplinares Zentrum für Wissenschaftliches Rechnen and Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Nishimoto M, Uetake Y, Yakiyama Y, Saeki A, Freudenberg J, Bunz UHF, Sakurai H. Acceleration Effect of Bowl-Shaped Structure in Aerobic Oxidation Reaction: Synthesis of Homosumanene ortho-Quinone and Azaacene-Fused Homosumanenes. Chemistry 2023; 29:e202203461. [PMID: 36373946 DOI: 10.1002/chem.202203461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
An oxidation reaction of hydroxyhomosumanene on silica gel providing homosumanene ortho-quinone and its synthetic application for azaacene-fused homosumanenes is described. Hydroxyhomosumanene is photochemically oxidized by air, when it is coated on silica gel; this aerobic oxidation proceeds faster than that of planar analogues. The difference of such reactivity was attributed to the unusual keto-enol tautomerization due to structural difference between planar and curved π-system. The homosumanene ortho-quinone was used in the synthesis of several azaacene-fused homosumanenes, azaacenohomosumanenes. X-ray diffraction analysis of the single crystals revealed their columnar stacking structures due to the interactions between each bowl. Azaacenohomosumanenes exhibited high electron affinity due to the combination of buckybowl and electron-deficient azaacene moieties.
Collapse
Affiliation(s)
- Mikey Nishimoto
- Division of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuta Uetake
- Division of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yumi Yakiyama
- Division of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akinori Saeki
- Division of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hidehiro Sakurai
- Division of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Fujimoto K, Sasaki K, Yamagishi S, Inuzuka T, Sanada K, Sakamoto M, Takahashi M. 7,12‐Dihydrobenzo[de]indolo[3,2‐b]quinoline: Unique Reactivity and Redox Interconversion. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Keisuke Fujimoto
- Shizuoka Daigaku Faculty of Engineering 3-5-1 johoku nakaku 432-8561 hamamatsu JAPAN
| | | | | | - Toshiyasu Inuzuka
- Gifu University: Gifu Daigaku Division of Instrumental Analysis JAPAN
| | - Kazutaka Sanada
- Chiba University: Chiba Daigaku Applied Chemistry and Biotechnology JAPAN
| | - Masami Sakamoto
- Chiba University: Chiba Daigaku Applied Chemistry and Biotechnology JAPAN
| | | |
Collapse
|
6
|
Hernández‐Culebras F, Melle‐Franco M, Mateo‐Alonso A. Doubling the Length of the Longest Pyrene-Pyrazinoquinoxaline Molecular Nanoribbons. Angew Chem Int Ed Engl 2022; 61:e202205018. [PMID: 35467070 PMCID: PMC9321727 DOI: 10.1002/anie.202205018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 12/16/2022]
Abstract
Molecular nanoribbons are a class of atomically-precise nanomaterials for a broad range of applications. An iterative approach that allows doubling the length of the longest pyrene-pyrazinoquinoxaline molecular nanoribbons is described. The largest nanoribbon obtained through this approach-with a 60 linearly-fused ring backbone (14.9 nm) and a 324-atoms core (C276 N48 )-shows an extremely high molar absorptivity (values up to 1 198 074 M-1 cm-1 ) that also endows it with a high molar fluorescence brightness (8700 M-1 cm-1 ).
Collapse
Affiliation(s)
- Félix Hernández‐Culebras
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro3810–193AveiroPortugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
- IkerbasqueBasque Foundation for Science48009BilbaoSpain
| |
Collapse
|
7
|
Chen F, Melle-Franco M, Mateo-Alonso A. Planar and Helical Dinaphthophenazines. J Org Chem 2022; 87:7635-7642. [PMID: 35616330 PMCID: PMC9207929 DOI: 10.1021/acs.joc.2c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we report the synthesis of a series of planar and helical dinaphthophenazines by cyclocondensation reactions between the newly developed 9,10-bis((triisopropylsilyl)ethynyl)anthracene-1,2-dione and different diamines. Their optoelectronic and electrochemical properties are studied by ultraviolet-visible (UV-vis) spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and density functional theory calculations.
Collapse
Affiliation(s)
- Fengkun Chen
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manuel Melle-Franco
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Hernández‐Culebras F, Melle‐Franco M, Mateo‐Alonso A. Doubling the Length of the Longest Pyrene‐Pyrazinoquinoxaline Molecular Nanoribbons. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Félix Hernández‐Culebras
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810–193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastián Spain
- Ikerbasque Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
9
|
Zhou P, Deng L, Han Z, Zhao X, Zhang Z, Huo S. Benzo[de]isoquinoline-1,3-dione condensed asymmetric azaacenes as strong acceptors. RSC Adv 2022; 12:13480-13486. [PMID: 35520146 PMCID: PMC9067369 DOI: 10.1039/d2ra01074g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
We have designed and synthesized three novel benzo[de]isoquinoline-1,3-dione (BQD) condensed asymmetric azaacenes, BQD-TZ, BQD-AP and BQD-PA, with different end groups of 1,2,5-thiadiazole, acenaphthylene and phenanthrene. The triisopropylsilylethynyl groups were grafted to increase the solubility and crystallinity of the three molecules. These molecules have high electron affinity values of 3.87, 3.69 and 3.74 eV for BQD-TZ, BQD-AP and BQD-PA, respectively as confirmed by cyclic voltammetry measurements. Single-crystal X-ray diffraction revealed that these molecules have strong π-π stacking with distances of 3.31-3.41 Å and different stacking arrangements.
Collapse
Affiliation(s)
- Pengxin Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Lanlan Deng
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Zengtao Han
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xiaolong Zhao
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Zhe Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Shuhui Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
10
|
Ran W, Walz A, Stoiber K, Knecht P, Xu H, Papageorgiou AC, Huettig A, Cortizo‐Lacalle D, Mora‐Fuentes JP, Mateo‐Alonso A, Schlichting H, Reichert J, Barth JV. Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self-Assembly and On-Surface Transformations. Angew Chem Int Ed Engl 2022; 61:e202111816. [PMID: 35077609 PMCID: PMC9305426 DOI: 10.1002/anie.202111816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/31/2022]
Abstract
The chemical processing of low-dimensional carbon nanostructures is crucial for their integration in future devices. Here we apply a new methodology in atomically precise engineering by combining multistep solution synthesis of N-doped molecular graphene nanoribbons (GNRs) with mass-selected ultra-high vacuum electrospray controlled ion beam deposition on surfaces and real-space visualisation by scanning tunnelling microscopy. We demonstrate how this method yields solely a controllable amount of single, otherwise unsublimable, GNRs of 2.9 nm length on a planar Ag(111) surface. This methodology allows for further processing by employing on-surface synthesis protocols and exploiting the reactivity of the substrate. Following multiple chemical transformations, the GNRs provide reactive building blocks to form extended, metal-organic coordination polymers.
Collapse
Affiliation(s)
- Wei Ran
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Andreas Walz
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Karolina Stoiber
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter Knecht
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Hongxiang Xu
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | | | - Annette Huettig
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Diego Cortizo‐Lacalle
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Juan P. Mora‐Fuentes
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Hartmut Schlichting
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Johannes V. Barth
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| |
Collapse
|
11
|
Ran W, Walz A, Stoiber K, Knecht P, Xu H, Papageorgiou AC, Huettig A, Cortizo‐Lacalle D, Mora‐Fuentes JP, Mateo‐Alonso A, Schlichting H, Reichert J, Barth JV. Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Ran
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Andreas Walz
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Karolina Stoiber
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Peter Knecht
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Hongxiang Xu
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Anthoula C. Papageorgiou
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Annette Huettig
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Diego Cortizo‐Lacalle
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Juan P. Mora‐Fuentes
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| | - Hartmut Schlichting
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Joachim Reichert
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Johannes V. Barth
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| |
Collapse
|
12
|
Dubey RK, Melle-Franco M, Mateo-Alonso A. Inducing Single-Handed Helicity in a Twisted Molecular Nanoribbon. J Am Chem Soc 2022; 144:2765-2774. [PMID: 35099195 PMCID: PMC8855342 DOI: 10.1021/jacs.1c12385] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular conformation has an important role in chemistry and materials science. Molecular nanoribbons can adopt chiral twisted helical conformations. However, the synthesis of single-handed helically twisted molecular nanoribbons still represents a considerable challenge. Herein, we describe an asymmetric approach to induce single-handed helicity with an excellent degree of conformational discrimination. The chiral induction is the result of the chiral strain generated by fusing two oversized chiral rings and of the propagation of that strain along the nanoribbon's backbone.
Collapse
Affiliation(s)
- Rajeev K Dubey
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manuel Melle-Franco
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
13
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
14
|
Fujimoto K, Takimoto S, Masuda S, Inuzuka T, Sanada K, Sakamoto M, Takahashi M. 5,11-Diazadibenzo[hi,qr]tetracene: Synthesis, Properties, and Reactivity toward Nucleophilic Reagents. Chemistry 2021; 27:8951-8955. [PMID: 33851483 DOI: 10.1002/chem.202100944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/06/2022]
Abstract
5,11-Diazadibenzo[hi,qr]tetracene was synthesized as a new nitrogen-substituted polycyclic heteroaromatic compound by Pd-catalyzed cycloisomerization of an alkyne precursor followed by oxidative cyclization with bis(trifluoroacetoxy)iodobenzene. The substitution of imine-type nitrogen atoms significantly enhanced its electron-accepting character and facilitated the direct nucleophilic addition of arylamines under strongly basic conditions to afford the desired amino-substituted products. The introduction of amino groups induced a remarkable red-shift in their absorption spectra; the tetrasubstituted product exhibited intense near-infrared absorbing property. Furthermore, the π-electronic system, which includes a redox-active 1,4-diazabutadiene moiety, underwent reversible interconversion to its corresponding reduced form upon reduction with NaBH4 and aerobic oxidation.
Collapse
Affiliation(s)
- Keisuke Fujimoto
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| | - Satoshi Takimoto
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| | - Shota Masuda
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazutaka Sanada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Masaki Takahashi
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| |
Collapse
|
15
|
Dubey RK, Melle-Franco M, Mateo-Alonso A. Twisted Molecular Nanoribbons with up to 53 Linearly-Fused Rings. J Am Chem Soc 2021; 143:6593-6600. [PMID: 33876941 DOI: 10.1021/jacs.1c01849] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of three molecular nanoribbons with a twisted aromatic framework is described. The largest one shows a 53 linearly fused rings backbone (12.9 nm) and 322 conjugated atoms in its aromatic core (C296N24S2). This new family of nanoribbons shows extremely high molar absorptivities, reaching 986 100 M-1 cm-1, and red-emitting properties.
Collapse
Affiliation(s)
- Rajeev K Dubey
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manuel Melle-Franco
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
16
|
Ueberricke L, Punja Benke B, Kirschbaum T, Hahn S, Rominger F, Bunz UHF, Mastalerz M. Synthesis and Optoelectronic Properties of a Quinoxalino-Phenanthrophenazine (QPP) Extended Tribenzotriquinacene (TBTQ). Chemistry 2021; 27:2043-2049. [PMID: 32954544 PMCID: PMC7898691 DOI: 10.1002/chem.202003666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/21/2022]
Abstract
A six‐step synthesis towards a tribenzotriquinacene (TBTQ) bearing three quinoxalinophenanthrophenazine (QPP) units is presented. The optoelectronic properties are investigated and the effect of the three‐dimensional arrangement of the individual QPP planes is examined using optical spectroscopy, electrochemical analysis and quantum‐chemical calculations.
Collapse
Affiliation(s)
- Lucas Ueberricke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Bahiru Punja Benke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sebastian Hahn
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
17
|
Ueberricke L, Mastalerz M. Triptycene End-Capping as Strategy in Materials Chemistry to Control Crystal Packing and Increase Solubility. CHEM REC 2021; 21:558-573. [PMID: 33411413 DOI: 10.1002/tcr.202000161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In materials chemistry of polycyclic aromatic compounds (PACs) the kind of aggregation and the spatial arrangement of the π-planes are of utmost importance, e. g. for charge transport properties. Unfortunately, controlling these during crystallization is not trivial. In the past decade, we have introduced one-fold triptycene end-capping of quinoxalinophenanthrophenazines (QPPs) and other related structures to overcome this problem. When two instead of one triptycene end-caps are introduced, packing is largely suppressed, making typical PACs or pigments soluble in common organic solvents - which is another important property for such compounds to be processable from solution. In this account an overview of our research on using triptycene end-capping as dual strategy is given.
Collapse
Affiliation(s)
- Lucas Ueberricke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im NeuenheimerFeld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im NeuenheimerFeld 270, 69120, Heidelberg, Germany
| |
Collapse
|
18
|
Mateos-Martín J, Carini M, Melle-Franco M, Mateo-Alonso A. Increasing and dispersing strain in pyrene-fused azaacenes. Chem Commun (Camb) 2020; 56:11457-11460. [PMID: 32852499 DOI: 10.1039/d0cc04735j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy to obtain distorted pyrene-fused azaacenes is reported. The careful alignment and selection of substituents give rise to highly twisted pyrene-fused azaacenes. A combined global and local theoretical analysis shows how the strain is generated and dispersed across the aromatic backbone. Furthermore, simulation of the observed optoelectronic properties shines light on the structural factors that govern the properties of twisted pyrene-fused azaacenes.
Collapse
Affiliation(s)
- Javier Mateos-Martín
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastián, Spain.
| | | | | | | |
Collapse
|
19
|
Ueberricke L, Ciubotaru I, Ghalami F, Mildner F, Rominger F, Elstner M, Mastalerz M. Di- and Tetracyano-Substituted Pyrene-Fused Pyrazaacenes: Aggregation in the Solid State. Chemistry 2020; 26:11634-11642. [PMID: 32459010 PMCID: PMC7540477 DOI: 10.1002/chem.202002382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Indexed: 01/23/2023]
Abstract
Five di- and tetracyano-substituted pyrene-fused pyrazaacenes were synthesized and studied as potential electron acceptors in the solid state. Single crystals of all compounds were grown and the crystal packing studied by DFT calculations (transfer integrals and reorganization energies) to get insight into possible use for semiconducting charge transport.
Collapse
Affiliation(s)
- Lucas Ueberricke
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Ioana Ciubotaru
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Farhad Ghalami
- Institut für Physikalische ChemieKarlsruher Institute of Technology (KIT)Kaiserstrasse 1276131KarlsruheGermany
| | - Felix Mildner
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Marcus Elstner
- Institut für Physikalische ChemieKarlsruher Institute of Technology (KIT)Kaiserstrasse 1276131KarlsruheGermany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
20
|
Martínez JI, Mora-Fuentes JP, Carini M, Saeki A, Melle-Franco M, Mateo-Alonso A. Dibenzoanthradiquinone Building Blocks for the Synthesis of Nitrogenated Polycyclic Aromatic Hydrocarbons. Org Lett 2020; 22:4737-4741. [PMID: 32484682 DOI: 10.1021/acs.orglett.0c01536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A straightforward method for the synthesis of two dibenzo[a,h]anthracene-5,6,12,13-diquinone building blocks is reported. To showcase their usefulness, a series of dibenzo[a,h]anthracene nitrogenated derivatives have been synthesized that show different optoelectronic, redox, and charge transport properties, illustrating their potential as organic semiconductors.
Collapse
Affiliation(s)
- Jose I Martínez
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Juan P Mora-Fuentes
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Marco Carini
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Manuel Melle-Franco
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
21
|
Lee SH, Valverde Paredes MS, Rappenecker TJ, Robins KA, Lee DC. Optimized synthesis of thermally stable axially modified pyrazine-acene nanoribbon with gelation properties. NEW J CHEM 2020. [DOI: 10.1039/c9nj06303j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A comprehensive synthesis study to axially modify N-heteroacene nanoribbon and its outstanding thermal and one-dimensional assembly properties.
Collapse
Affiliation(s)
- Sae Hui Lee
- Department of Chemistry & Biochemistry
- University of Nevada, Las Vegas
- Las Vegas
- USA
| | | | | | - Kathleen A. Robins
- Department of Chemistry & Biochemistry
- University of Nevada, Las Vegas
- Las Vegas
- USA
| | - Dong-Chan Lee
- Department of Chemistry & Biochemistry
- University of Nevada, Las Vegas
- Las Vegas
- USA
| |
Collapse
|
22
|
Jin P, Tian F, Han Y, Wang L, Zhao X, Xiao J. Dimesitylboryl-Decorated Azaarene: Synthesis, Enhanced Stability and Optoelectronic Property. Chem Asian J 2019; 14:4395-4399. [PMID: 31709746 DOI: 10.1002/asia.201901349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Indexed: 01/07/2023]
Abstract
The instability of large acenes and analogues usually limits their wide potentials in organic devices. Thus, effectively constructing large acenes or heteroacenes and examining their optoelectronic properties are of great interest. We herein describe the synthesis, optoelectronic behaviors and electroluminescent property of dimesitylboryl-decorated azaarene 5 and its homologue 7. The former emits strong green fluorescence in non-polar solvents but yellow light in polar solvents. The latter emits a blue light in various organic solvents. Moreover, their electrochemical behavior, photostability and electroluminescent property were further studied in a comparative manner, and the experimental findings suggest that the desired heteroarenes are appealing materials for fabricating electroluminescent devices.
Collapse
Affiliation(s)
- Pengcheng Jin
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Feng Tian
- National-Local Joint Engineering Laboratory of New Energy Photovoltaic Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Yanbing Han
- Department of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lijiao Wang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Xiaohui Zhao
- National-Local Joint Engineering Laboratory of New Energy Photovoltaic Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Jinchong Xiao
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
23
|
Ahrens L, Hahn S, Rominger F, Freudenberg J, Bunz UHF. N-Acenoacenes. Chemistry 2019; 25:14522-14526. [PMID: 31529726 PMCID: PMC7687221 DOI: 10.1002/chem.201903646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Indexed: 12/01/2022]
Abstract
The syntheses of new, fourfold alkynylated tetraazaacenoacenes (tetraazaanthracenoanthracene, tetraazatetracenotetracene and tetraazapentacenopentacene) are reported. This novel heteroacenoacene motif exhibits surprisingly strong electronic coupling between its constituting diazaacene units.
Collapse
Affiliation(s)
- Lukas Ahrens
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120Heidelberg, FRGGermany
| | - Sebastian Hahn
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120Heidelberg, FRGGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120Heidelberg, FRGGermany
| | - Jan Freudenberg
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120Heidelberg, FRGGermany
- InnovationLabSpeyerer Straße 469115Heidelberg, FRGGermany
| | - Uwe H. F. Bunz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120Heidelberg, FRGGermany
- Centre for Advanced Materials (CAM)Ruprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120Heidelberg, FRGGermany
| |
Collapse
|
24
|
Wang L, Hao W, Han Y, Shi Y, Li S, Zhang C, Xiao J. Facile and versatile access to substituted hexabenzoovalene derivatives: characterization and optoelectronic properties. Org Biomol Chem 2019; 17:7964-7972. [PMID: 31407769 DOI: 10.1039/c9ob01446b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the design and modular synthesis of a library of substituted hexabenzoovalene derivatives (SHBO), along with the key precursor dinaphthopyrenes (3), highlighting the influence of a wide array of substituent variation on the photophysical properties via UV-vis absorption, fluorescence spectra and electrochemical methods. The results show that the cyclized hexabenzoovalenes present a stronger spectroscopic red-shift than the corresponding dinaphthopyrenes. X-ray diffraction analysis suggests that intermediate 3hx containing two nitro groups forms a trans-configuration with twisted structures. Our systematic investigation might provide a realistic design strategy to construct large one-dimensional and two-dimensional materials via bottom-up approaches.
Collapse
Affiliation(s)
- Lijiao Wang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
N-Heteroacenes and N-heteroarenes are the heterocyclic congeners of the acenes and arenes, in which one or several perimeter C-H bonds have been substituted by pyridine-type nitrogen atoms. They are formally segments out of N-doped nanographenes. Position and number of the nitrogens vary greatly, making N-heteroacenes and N-heteroarenes define a vast class of N-nanographene segments; they display modular electronic and structural properties. The nitrogen atoms in the perimeter lead to finely tunable frontier molecular orbital positions and therefore improved electron affinity and higher oxidative stability but conversely also require and allow different synthetic approaches than those reported for the synthesis of their hydrocarbon and nanographene analogues. The chemistry of N-heteroarenes, despite being known for more than a century, has made significant progress in the last years and established these materials both as powerful n-channel semiconductors in thin film transistors and as useful emitters in organic light emitting diodes (OLEDs) and in photovoltaic devices. The electronegative nitrogen atoms impart a deep LUMO into the azaacenes and azaarenes, improve electron injection, and enable powerful electron transport but also charge separation in bulk-heterojunction type organic photovoltaic (OPV) devices. At the same time, azaacenes and azaarenes are fundamentally exciting materials that push the limits of structure and stability, constantly displaying novel topologies and structures as variations of a simple leitmotif; we expect a bright future for esthetically pleasing yet highly functional N-heterocyclic species. Firstly, we discuss novel structures and structural elements that have evolved during the last years in N-heteroacene and N-heteroarene chemistry and delineate their properties. An important aspect is the oligomerization or better multimerization of azaacene and azaarene units into novel and surprising topologies, in which multiple azaarenes or azaacenes are stitched together. Examples are tetrahedral assemblies of tetraazapentacenes but also cyclic tetramers of different types of azaacenes and linearly bent, S-shaped, formally dimeric species. An exciting aspect of the exploration of the structural manifold of azaacenes is their electronic interaction in such assemblies and their solid-state microstructure. A further aspect of this work is the increase in size of the azaacenes and concepts that allow stabilization of the larger congeners. The attachment of four benzo units to the azaacene core is a powerful concept that stabilizes tetraazaheptacenes and should also be useful to achieve persistent tetraazanonacenes. Secondly, we describe the success of N-heteroacenes and N-heteroarenes in organic electronic devices; specifically, the use of symmetrical halogenated tetraazapentacenes as superb n-channel transistor materials with air stable and persistent radical anions as charge carriers; we discuss the structural reason for their success. Use of azaacenes and azaarenes is not restricted to transistors, but they are also applied in bulk heterojunction photovoltaic devices and in brightly emitting OLEDs. Azaacenes and azaarenes are attractive segments out of hetero-nanographenes and objects of study, starting from fundamental structural and topological questions, ranging to powerful applications in organic electronics. The general interest in azaacenes is witnessed by the constantly increasing number of groups who discover and work on these materials as novel functional and flexible species.
Collapse
Affiliation(s)
- Uwe H. F. Bunz
- Organisch-Chemisches Institut and Centre of Advanced Materials, Ruprecht Karls Universitat Heidelberg, Im Neuenheimer Feld 225 and 270, 69120 Heidelberg, FRG
| | - Jan Freudenberg
- Organisch-Chemisches Institut and Centre of Advanced Materials, Ruprecht Karls Universitat Heidelberg, Im Neuenheimer Feld 225 and 270, 69120 Heidelberg, FRG
| |
Collapse
|
26
|
Tian F, Song T, Wang T, Xiao J, Zhao X. 11,16-Di- tert
-butyl-9,18-diphenylbenzo[ kl
]benzo[8,9]triphenyleno [2,3- b
]xanthene: Synthesis, Photophysics, Self-Assembly and Electroluminescent Properties. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Feng Tian
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology; Hebei University; Baoding 071002 P. R. China
| | - Tingting Song
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Hebei University; Baoding 071002 P. R. China
| | - Tao Wang
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology; Hebei University; Baoding 071002 P. R. China
| | - Jinchong Xiao
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Hebei University; Baoding 071002 P. R. China
| | - Xiaohui Zhao
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology; Hebei University; Baoding 071002 P. R. China
| |
Collapse
|
27
|
Mora‐Fuentes JP, Riaño A, Cortizo‐Lacalle D, Saeki A, Melle‐Franco M, Mateo‐Alonso A. Giant Star‐Shaped Nitrogen‐Doped Nanographenes. Angew Chem Int Ed Engl 2019; 58:552-556. [DOI: 10.1002/anie.201811015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Juan P. Mora‐Fuentes
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Alberto Riaño
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Diego Cortizo‐Lacalle
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Akinori Saeki
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- IkerbasqueBasque Foundation for Science 48011 Bilbao Spain
| |
Collapse
|
28
|
Mora‐Fuentes JP, Riaño A, Cortizo‐Lacalle D, Saeki A, Melle‐Franco M, Mateo‐Alonso A. Giant Star‐Shaped Nitrogen‐Doped Nanographenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juan P. Mora‐Fuentes
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Alberto Riaño
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Diego Cortizo‐Lacalle
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Akinori Saeki
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- IkerbasqueBasque Foundation for Science 48011 Bilbao Spain
| |
Collapse
|
29
|
Wang CZ, Feng X, Elsegood MRJ, Warwick TG, Teat SJ, Redshaw C, Bi YS, Yamato T. Pyrene-Fused Pyrazaacenes with Eight Rectilinearly Arranged Aromatic Rings. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Chuan-Zeng Wang
- School of Chemical Engineering; Shandong University of Technology; Zibo 255049 P. R. China
- Department of Applied Chemistry; Faculty of Science and Engineering; Saga University; Honjo-machi 1 Saga 840-8502 Japan
| | - Xing Feng
- Faculty of Material and Energy Engineering; Guangdong University of Technology; Guangdong 510006 China
| | | | - Thomas G. Warwick
- Chemistry Department; Loughborough University; Loughborough LE11 3TU UK
| | - Simon J. Teat
- Advanced Light Source; Lawrence Berkeley National Lab; 1 cyclotron Rd Berkeley, CA 94720 USA
| | - Carl Redshaw
- Department of Chemistry & Biochemistry; The University of Hull; Cottingham Road, Hull Yorkshire HU6 7RX UK
| | - Yu-Sui Bi
- School of Chemical Engineering; Shandong University of Technology; Zibo 255049 P. R. China
| | - Takehiko Yamato
- Department of Applied Chemistry; Faculty of Science and Engineering; Saga University; Honjo-machi 1 Saga 840-8502 Japan
| |
Collapse
|