1
|
Li K, Kuwahara Y, Yamashita H. Hollow carbon-based materials for electrocatalytic and thermocatalytic CO 2 conversion. Chem Sci 2024; 15:854-878. [PMID: 38239694 PMCID: PMC10793651 DOI: 10.1039/d3sc05026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Electrocatalytic and thermocatalytic CO2 conversions provide promising routes to realize global carbon neutrality, and the development of corresponding advanced catalysts is important but challenging. Hollow-structured carbon (HSC) materials with striking features, including unique cavity structure, good permeability, large surface area, and readily functionalizable surface, are flexible platforms for designing high-performance catalysts. In this review, the topics range from the accurate design of HSC materials to specific electrocatalytic and thermocatalytic CO2 conversion applications, aiming to address the drawbacks of conventional catalysts, such as sluggish reaction kinetics, inadequate selectivity, and poor stability. Firstly, the synthetic methods of HSC, including the hard template route, soft template approach, and self-template strategy are summarized, with an evaluation of their characteristics and applicability. Subsequently, the functionalization strategies (nonmetal doping, metal single-atom anchoring, and metal nanoparticle modification) for HSC are comprehensively discussed. Lastly, the recent achievements of intriguing HSC-based materials in electrocatalytic and thermocatalytic CO2 conversion applications are presented, with a particular focus on revealing the relationship between catalyst structure and activity. We anticipate that the review can provide some ideas for designing highly active and durable catalytic systems for CO2 valorization and beyond.
Collapse
Affiliation(s)
- Kaining Li
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| |
Collapse
|
2
|
Gao J, Ma R, Poovan F, Zhang L, Atia H, Kalevaru NV, Sun W, Wohlrab S, Chusov DA, Wang N, Jagadeesh RV, Beller M. Streamlining the synthesis of amides using Nickel-based nanocatalysts. Nat Commun 2023; 14:5013. [PMID: 37591856 PMCID: PMC10435480 DOI: 10.1038/s41467-023-40614-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The synthesis of amides is a key technology for the preparation of fine and bulk chemicals in industry, as well as the manufacture of a plethora of daily life products. Furthermore, it constitutes a central bond-forming methodology for organic synthesis and provides the basis for the preparation of numerous biomolecules. Here, we present a robust methodology for amide synthesis compared to traditional amidation reactions: the reductive amidation of esters with nitro compounds under additives-free conditions. In the presence of a specific heterogeneous nickel-based catalyst a wide range of amides bearing different functional groups can be selectively prepared in a more step-economy way compared to previous syntheses. The potential value of this protocol is highlighted by the synthesis of drugs, as well as late-stage modifications of bioactive compounds. Based on control experiments, material characterizations, and DFT computations, we suggest metallic nickel and low-valent Ti-species to be crucial factors that makes this direct amide synthesis possible.
Collapse
Affiliation(s)
- Jie Gao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Rui Ma
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Fairoosa Poovan
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Lan Zhang
- Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China
| | - Hanan Atia
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Narayana V Kalevaru
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Wenjing Sun
- Guang-dong Medical University, 523808, Dongguan, China
| | - Sebastian Wohlrab
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Denis A Chusov
- A. N. Nesmeyanov Institute of Organoelement Compounds, 119991, Moscow, Russia.
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China.
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany.
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany.
| |
Collapse
|
3
|
Peng Y, Xiao X, Song L, Wang N, Chu W. Engineering the Quaternary Hydrotalcite-Derived Ce-Promoted Ni-Based Catalysts for Enhanced Low-Temperature CO 2 Hydrogenation into Methane. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4642. [PMID: 37444955 DOI: 10.3390/ma16134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Ce-promoted NiMgAl mixed-oxide (NiCex-C, x = 0, 1, 5, 10) catalysts were prepared from the quaternary hydrotalcite precursors for CO2 hydrogenation to methane. By engineering the Ce contents, NiCe5-C showed its prior catalytic performance in low-temperature CO2 hydrogenation, being about three times higher than that of the Ce-free NiCe0-C catalyst (turnover frequency of NiCe5-C and NiCe0-C: 11.9 h-1 vs. 3.9 h-1 @ 225 °C). With extensive characterization, it was found that Ce dopants promoted the reduction of NiO by adjusting the interaction between Ni and Mg(Ce)AlOx support. The highest ratio of surface Ni0/(Ni2+ + Ni0) was obtained over NiCe5-C. Meanwhile, the surface basicity was tailored with Ce dopants. The strongest medium-strength basicity and highest capacity of CO2 adsorption was achieved on NiCe5-C with 5 wt.% Ce content. The TOF tests indicated a good correlation with medium-strength basicity over the NiCex-C samples. The results showed that the high medium-strength and Ce-promoted surface Ni0 species endows the enhanced low-temperature catalytic performance in CO2 hydrogenation to methane.
Collapse
Affiliation(s)
- Yuxin Peng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Xiao
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610106, China
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu 610065, China
| | - Lei Song
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ning Wang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Su X, Meng F, Tan H, Chen G. Unravelling the CO2 methanation mechanisms on a Ni-BaTiO3 catalyst: A theoretical investigation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Gao J, Ma R, Feng L, Liu Y, Jackstell R, Jagadeesh RV, Beller M. Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni‐Core–Shell Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jie Gao
- Leibniz Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Rui Ma
- Leibniz Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Lu Feng
- Dalian National Laboratory for Clean Energy (DNL) Dalian Institute of Chemical Physics Chinese Academy of Science 457 Zhongshan Road 116023 Dalian China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL) Dalian Institute of Chemical Physics Chinese Academy of Science 457 Zhongshan Road 116023 Dalian China
| | - Ralf Jackstell
- Leibniz Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | | | - Matthias Beller
- Leibniz Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
6
|
Gao J, Ma R, Feng L, Liu Y, Jackstell R, Jagadeesh RV, Beller M. Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core-Shell Catalyst. Angew Chem Int Ed Engl 2021; 60:18591-18598. [PMID: 34076934 PMCID: PMC8453733 DOI: 10.1002/anie.202105492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 11/08/2022]
Abstract
A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core-shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments.
Collapse
Affiliation(s)
- Jie Gao
- Leibniz Leibniz-Institut für Katalyse e.V.Albert-Einstein-Strasse 29a18059RostockGermany
| | - Rui Ma
- Leibniz Leibniz-Institut für Katalyse e.V.Albert-Einstein-Strasse 29a18059RostockGermany
| | - Lu Feng
- Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical PhysicsChinese Academy of Science457 Zhongshan Road116023DalianChina
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical PhysicsChinese Academy of Science457 Zhongshan Road116023DalianChina
| | - Ralf Jackstell
- Leibniz Leibniz-Institut für Katalyse e.V.Albert-Einstein-Strasse 29a18059RostockGermany
| | | | - Matthias Beller
- Leibniz Leibniz-Institut für Katalyse e.V.Albert-Einstein-Strasse 29a18059RostockGermany
| |
Collapse
|
7
|
Feng L, Liu Y, Jiang Q, Liu W, Wu KH, Ba H, Pham-Huu C, Yang W, Su DS. Nanodiamonds @ N, P co-modified mesoporous carbon supported on macroscopic SiC foam for oxidative dehydrogenation of ethylbenzene. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Liu Z, Zhang B, Yu H, Wu KH, Huang X. Editorial: Carbon Catalysis: Focus on Sustainable Chemical Technology. Front Chem 2020; 8:308. [PMID: 32391329 PMCID: PMC7191535 DOI: 10.3389/fchem.2020.00308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhigang Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Hao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Kuang-Hsu Wu
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
9
|
Tuning Interfacial Electron Transfer by Anchoring NiFe-LDH on In-situ Grown Cu2O for Enhancing Oxygen Evolution. Catal Letters 2020. [DOI: 10.1007/s10562-020-03179-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Gonçalves LPL, Sousa JPS, Soares OSGP, Bondarchuk O, Lebedev OI, Kolen'ko YV, Pereira MFR. The role of surface properties in CO 2 methanation over carbon-supported Ni catalysts and their promotion by Fe. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01254h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2 methanation over activated carbon-supported Ni catalysts with enhanced surface chemistry properties and their improved performance by Fe promotion.
Collapse
Affiliation(s)
- Liliana P. L. Gonçalves
- International Iberian Nanotechnology Laboratory (INL)
- 4715-330 Braga
- Portugal
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM)
- Faculdade de Engenharia
| | | | - O. Salomé G. P. Soares
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM)
- Faculdade de Engenharia
- Universidade do Porto
- 4200-465 Porto
- Portugal
| | | | | | - Yury V. Kolen'ko
- International Iberian Nanotechnology Laboratory (INL)
- 4715-330 Braga
- Portugal
| | - M. Fernando R. Pereira
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM)
- Faculdade de Engenharia
- Universidade do Porto
- 4200-465 Porto
- Portugal
| |
Collapse
|
11
|
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger AC, Amal R, He H, Park SE. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 2020; 49:8584-8686. [DOI: 10.1039/d0cs00025f] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers the sustainable development of advanced improvements in CO2 capture and utilization.
Collapse
|
12
|
Ma Y, Feng L, Guo Z, Deng J, Pham-Huu C, Liu Y. Palladium Supported on Calcium Decorated Carbon Nanotube Hybrids for Chemoselective Hydrogenation of Cinnamaldehyde. Front Chem 2019; 7:751. [PMID: 31799233 PMCID: PMC6863922 DOI: 10.3389/fchem.2019.00751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
The chemoselective hydrogenation of cinnamaldehyde (CAL) to the corresponding hydrocinamaldehyde (HCAL) is a type of important reactions in fine chemistry, which is critically dependent on the rational design the chemical structure of active metal. In this work, calcium promoted palladium on CNT hybrid (Ca-Pd@CNT) with monolithic structure was synthesized through one-pot alginate gel process. The catalytic performance results showed that moderate Ca promotion catalyst (Ca-Pd@CNTHCl-2h) present a superior CAL hydrogenation activity with CAL conversion of 99.9% and HCAL selectivity of 86.4% even at the lager Pd nanoparticle size (c.a. 5 nm). The characterization results show that the electron transfer between the additive Ca promoter and Pd nanoparticles (NPs) could modify the electron structure of Pd species and induce the formation of the partial positively charged Pdδ+ species on the Pd NPs surface in the Ca-Pd@CNTHCl-2h catalyst resulting to the satisfactory catalytic performance. Furthermore, the one-pot gel synthesis methodology for microscopic carbon supported catalyst could also endows its great potential industry application in heterogeneous catalysis with easily handling during the transportation and reaction, and attributed to reducing the overall pressure drop across in the fix-bed reactor.
Collapse
Affiliation(s)
- Ying Ma
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Feng
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, China
| | - Zhanglong Guo
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jiangtao Deng
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, China
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-University of Strasbourg, Strasbourg, France
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
13
|
Zhang X, Chen Z, Mou K, Jiao M, Zhang X, Liu L. Intentional construction of high-performance SnO 2 catalysts with a 3D porous structure for electrochemical reduction of CO 2. NANOSCALE 2019; 11:18715-18722. [PMID: 31589212 DOI: 10.1039/c9nr06354d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, SnO2-NC (SnO2-nanocube) and SnO2-NF (SnO2-nanoflake) electro-catalysts featuring a large specific surface area and 3D porous structure were successfully constructed via acid etching and sulfurization-desulphurization methods, respectively. As catalysts for the electrochemical reduction of CO2, the faradaic efficiency (FHCOO-+CO = 82.4%, 91.5%, respectively) and partial current density (jHCOO-+CO = 10.7 and 11.5 mA cm-2, respectively) of SnO2-NCs and SnO2-NFs were enhanced in comparison with SnO2-NPs (SnO2-nanoparticles, FHCOO-+CO = 63.4%, jHCOO-+CO = 5.7 mA cm-2) at -1.0 V vs. RHE. The enhanced catalytic activity is attributed to their uniform 3D porous structure, high specific surface area and excellent wettability. Additionally, the morphology of SnO2-NCs and SnO2-NFs was largely preserved after electrolyzing for 12 h (after 12 h of electrolysis), indicating the effective buffering effect of the 3D structure in electrolysis. Naturally, the current density and faradaic efficiency of the SnO2-NC and SnO2-NF catalysts remained nearly unchanged after long-term stability measurements, revealing great stability.
Collapse
Affiliation(s)
- Xinxin Zhang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhipeng Chen
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwen Mou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyang Jiao
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China.
| | - Xiangping Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China and Dalian National Laboratory for Clean Energy, CAS, Dalian 116023, China
| | - Licheng Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China. and Dalian National Laboratory for Clean Energy, CAS, Dalian 116023, China
| |
Collapse
|
14
|
Tang Q, Ji W, Russell CK, Zhang Y, Fan M, Shen Z. A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst. NANOSCALE 2019; 11:9969-9979. [PMID: 31070648 DOI: 10.1039/c9nr01245a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The hydrogenation of CO2 to CH3OH is one of the most promising technologies for the utilization of captured CO2 in the future. Nano Ni-Ga bimetallic catalysts have been proven to be excellent catalysts in the hydrogenation of CO2 to CH3OH. To investigate the promotion mechanisms of Ga for the hydrogenation of CO2 to CH3OH over Ga-doped Ni catalysts and the wide application of these promotion mechanisms in other catalysts and reactions, herein, density functional theory (DFT) was employed. The reaction mechanisms and the properties of Ni(211) and Ga-Ni(211) surfaces were comparatively studied. The results show that the Ni sites on both the Ni(211) and the Ga-Ni(211) surfaces are active sites, and the most stable structures of the intermediates are similar. Moreover, the Ga-Ni(211) surface is more favorable for the hydrogenation of CO2, whereas Ni(211) is more favorable for the dissociation of CO2. The activation barrier of the rate-limiting step in the CH3OH formation pathway on Ni(211) is 0.54 eV higher than that on Ga-Ni(211). According to the analyses of the projected density of states (PDOS) and Hirshfeld charge transfer, the addition of Ga atoms demonstrates the reactivity of the Ga-doped Ni(211) surfaces. Most importantly, the replacement of some secondary active sites of Ni atoms with the non-active Ga atoms may lower the activities of the secondary active sites and strengthen the activities of the active sites at the step edge. These results provide a new perspective for the reaction mechanism of the hydrogenation of CO2 to CH3OH over the state-of-the-art Ga-doped catalysts.
Collapse
Affiliation(s)
- Qingli Tang
- School of Energy Resouces and Departments of Chemical and Petroleum Engineering, University of Wyoming, 1000 East University Avenue, Laramie, 82071, Wyoming, USA. and School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P.R. China.
| | - Wenchao Ji
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P.R. China.
| | - Christopher K Russell
- Department of Civil and Environmental Engineering, Stanford University, Stanford 94305, CA, USA
| | - Yulong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China
| | - Maohong Fan
- School of Energy Resouces and Departments of Chemical and Petroleum Engineering, University of Wyoming, 1000 East University Avenue, Laramie, 82071, Wyoming, USA. and School of Civil and Environmental Engineering, Georgia Institute of Technology, North Avenue, Atlanta 30332, Georgia, USA
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P.R. China.
| |
Collapse
|
15
|
Synthesis of Cu–Co Catalysts for Methanol Decomposition to Hydrogen Production via Deposition–Precipitation with Urea Method. Catal Letters 2019. [DOI: 10.1007/s10562-019-02731-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Lian W, Chen B, Xu B, Zhang S, Wan Z, Zhao D, Zhang N, Chen C. Acquiring Clean and Highly Dispersed Nickel Particles (ca. 2.8 nm) by Growing Nickel-Based Nanosheets on Al 2O 3 as Efficient and Stable Catalysts for Harvesting Cyclohexane Carboxylic Acid from the Hydrogenation of Benzoic Acid. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weijie Lian
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Bo Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Bingyu Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Song Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhe Wan
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Dan Zhao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ning Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
17
|
Li J, Zhou Y, Xiao X, Wang W, Wang N, Qian W, Chu W. Regulation of Ni-CNT Interaction on Mn-Promoted Nickel Nanocatalysts Supported on Oxygenated CNTs for CO 2 Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41224-41236. [PMID: 30398829 DOI: 10.1021/acsami.8b04220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mn-promoted Ni nanoparticles (NPs) supported on oxygen-functionalized carbon nanotubes (CNTs) were synthesized for CO2 hydrogenation to methane. This novel metal-carbon catalytic system was characterized by both experimental and computational studies. An anomalous metal-support interaction mode (i.e., a higher temperature would lead to a weakened Ni-CNT interaction) was observed. Deep investigation confirmed that surface oxygen groups (SOGs) on CNTs played a key role in tuning the Ni-CNT interaction. We proposed that high calcination temperature would firstly lead to the decomposition of SOGs (>400 °C), then causing a loss of anchoring sites and the anchoring effect of SOGs on Ni NPs, thus cutting off the connection between interfacial Ni atoms and CNT body, resulting in the migration and coalescence of fine flat Ni NPs into larger sphere ones at 550 °C (geometric effect). Density functional theory calculation study clarified that this kind of anchoring effect stemmed from the formation of covalent bonding between the interfacial Ni atom and C or O elements of SOGs, causing the electrons to be transferred from Ni atoms to CNT support because of the intrinsic electronegativity of -COOH (electronic effect). Besides, Mn promotion notably boosts the activity compared with unpromoted catalysts, which was irrelevant to the size effect, but enhanced CO2 adsorption and conversion according to the result of CO2-temperature programmed desorption and transient response experiment. The optimized NiMn350 catalyst endowed with Mn promotion and robust Ni-CNT interaction showed both high activity and sintering resistance for more than 140 h. Our findings paved the way to reasonably design the metal-carbon catalyst with both high activity and stability.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemical Engineering , Sichuan University , Chengdu 610065 , China
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yanan Zhou
- Department of Chemical Engineering , Sichuan University , Chengdu 610065 , China
| | - Xin Xiao
- Department of Chemical Engineering , Sichuan University , Chengdu 610065 , China
| | - Wei Wang
- Department of Chemical Engineering , Sichuan University , Chengdu 610065 , China
- ICPEES, UMR 7515 CNRS-University of Strasbourg (UdS) , 25, rue Becquerel , Strasbourg Cedex 02 67087 , France
| | - Ning Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
- Physical Sciences and Engineering Division (PSE) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Weizhong Qian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Wei Chu
- Department of Chemical Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|