1
|
Zhang H, Wang H, Cao X, Chen M, Liu Y, Zhou Y, Huang M, Xia L, Wang Y, Li T, Zheng D, Luo Y, Sun S, Zhao X, Sun X. Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312746. [PMID: 38198832 DOI: 10.1002/adma.202312746] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Indexed: 01/12/2024]
Abstract
The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts.
Collapse
Affiliation(s)
- Haoran Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Haijian Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Xiqian Cao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Mengshan Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Yuelong Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
2
|
Xu XY, Guo JY, Zhang W, Jie Y, Song HT, Lu H, Zhang YF, Zhao J, Hu CX, Yan H. Theoretical study on electrocatalytic carbon dioxide reduction over copper with copper-based layered double hydroxides. Phys Chem Chem Phys 2024; 26:4480-4491. [PMID: 38240307 DOI: 10.1039/d3cp03249c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The conversion of CO2 into valuable fuels and multi-carbon chemical substances by electrical energy is an effective strategy to solve environmental problems by using renewable energy sources. In this work, the density functional theory (DFT) method is used to reveal the electrocatalytic mechanism of CO2 reduction reaction (CO2RR) over the surface of CuAl-Cl-layered double hydroxides (LDHs) with Cu monoatoms (Cu@CuAl-Cl-LDH), Cu2 diatoms (Cu2@CuAl-Cl-LDH), orthotetrahedral Cu4 clusters (Td-Cu4@CuAl-Cl-LDH) and planar Cu4 clusters (Pl-Cu4@CuAl-Cl-LDH). The active sites, density of states, adsorption energy, charge density difference and free energy are calculated. The results show that CO2RR over all the above five catalysts can generate C2 products. Pl-Cu4@CuAl-Cl-LDH tends to generate C2H5OH, while the remaining four structures all tend to produce C2H4. Cuδ+ favors CO2RR, and Td-Cu4@CuAl-Cl-LDH with a larger positively charged area at the active site has the better electrocatalytic performance among the calculated systems with a maximum step height of 0.78 eV. The selectivity of the products C2H4 and C2H5OH depends on the dehydration of the intermediate *C2H2O to *C2H3O or *CCH; if the dehydration produces *CCH intermediate, the final product is C2H4, and if no dehydration occurs, C2H5OH is produced. This work provides theoretical information and guidance for further rational design of efficient CO2RR catalysts for energy saving and emission reduction.
Collapse
Affiliation(s)
- Xin-Yu Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jing-Yi Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yao Jie
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hui-Ting Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yi-Fan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jia Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chen-Xu Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Jašik J, Fortunelli A, Vajda S. Exploring the materials space in the smallest particle size range: From heterogeneous catalysis to electrocatalysis and photocatalysis. Phys Chem Chem Phys 2022; 24:12083-12115. [DOI: 10.1039/d1cp05677h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrasmall clusters of subnanometer size can possess unique and even unexpected physical and chemical propensities which make them interesting in various fields of basic science and for potential applications, such...
Collapse
|
4
|
Liu Y, Tang W, Zhang G, Chen W, Chen Q, Xiao C, Xie S, Qiu Y. A 3D binder-free AgNWs@NiMo/PU electrode for efficient hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Jiang B, Li Z. MOF-derived Co, Ni, Mn co-doped N-enriched hollow carbon for efficient hydrogen evolution reaction catalysis. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121912] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Zhang Z, Meng Y, Su H, Dong G, Zhao B, Zhang W, Yin G, Liu Y. Controllable design of 3D hierarchical Co/Ni-POM nanoflower compounds supported on Ni foam for the hydrogen evolution reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj01910d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The outstanding HER activity of Co/Ni-POM/NF stems from the synergistic effect between the metallic elements of the Co/Ni-POM and its large specific surface area.
Collapse
Affiliation(s)
- Zhuanfang Zhang
- Center of Teaching Experiment Management Equipment
- Qiqihar University
- Qiqihar 161006
- China
| | - Yuanyuan Meng
- College of Chemistry and Chemical Engineering
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary
- Qiqihar University
- Qiqihar 161006
- P. R. China
| | - Haolun Su
- College of Chemistry and Chemical Engineering
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary
- Qiqihar University
- Qiqihar 161006
- P. R. China
| | - GuoHua Dong
- College of Chemistry and Chemical Engineering
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary
- Qiqihar University
- Qiqihar 161006
- P. R. China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary
- Qiqihar University
- Qiqihar 161006
- P. R. China
| | - Wenzhi Zhang
- College of Chemistry and Chemical Engineering
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary
- Qiqihar University
- Qiqihar 161006
- P. R. China
| | - Guangming Yin
- Center of Teaching Experiment Management Equipment
- Qiqihar University
- Qiqihar 161006
- China
| | - Yongzhi Liu
- Center of Teaching Experiment Management Equipment
- Qiqihar University
- Qiqihar 161006
- China
| |
Collapse
|
7
|
Meng X, Yan R, Zuo S, Zhang Y, Li Z, Wang H. Synthesis of Bimetallic Au-Ag/CMK-3 Catalysts and Their Catalytic Activity for the Oxidation of Amino Alcohol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiangzhan Meng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Ruiyi Yan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Shouwei Zuo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongqiang Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zengxi Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hui Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P.R. China
| |
Collapse
|
8
|
Gan Y, Xue XX, Jiang XX, Xu Z, Chen K, Yu JF, Feng Y. Chemically modified phosphorene as efficient catalyst for hydrogen evolution reaction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:025202. [PMID: 31557744 DOI: 10.1088/1361-648x/ab482b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen gas produced by electrolysis has been considered as an excellent alternative to fossil fuels. Developing non-noble metal catalysts with high electrocatalytic activities is an effective way to reduce the cost of hydrogen production. Recently, black phosphorus (BP) based materials have been reported to have good potential as electrocatalysts for hydrogen evolution reaction (HER). Herein, we systematically study the catalytic performance of monolayer BP (phosphorene) and several chemically modified phosphorenes (N/S/C/O doping and adsorbed NH2/OH functional groups) for HER on the basis of first-principles calculations. For pristine phosphorene, the armchair edge shows much better catalytic activity than the plane site and zigzag edge. The electronic states of phosphorene near the Fermi level are strongly influenced by chemical modifications. Both of doping heteroatoms into the lattice and introducing NH2/OH functional groups can effectively improve the catalytic performance of the plane site and zigzag edge site, but slightly degrade the armchair edge. These theoretical results shed light on the microscopic understanding of the active sites in BP based electrocatalysts for HER and pave the way for further improving their catalytic performance.
Collapse
Affiliation(s)
- Yu Gan
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Ren J, Zong H, Sun Y, Gong S, Feng Y, Wang Z, Hu L, Yu K, Zhu Z. 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction. CrystEngComm 2020. [DOI: 10.1039/c9ce01777a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our work introduces an emerging route for the synthesis of MoS2 nanoflowers decorating organ-like Mo2CTx MXene. This effective synthesis strategy of MoS2@Mo2CTx nanohybrid structure can shed some light on energy-related applications.
Collapse
Affiliation(s)
- Jie Ren
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Hui Zong
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Yuyun Sun
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Shijing Gong
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Yu Feng
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Zhenguo Wang
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Le Hu
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Ke Yu
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Ziqiang Zhu
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
10
|
Liang J, Ding C, Liu J, Chen T, Peng W, Li Y, Zhang F, Fan X. Heterostructure engineering of Co-doped MoS 2 coupled with Mo 2CT x MXene for enhanced hydrogen evolution in alkaline media. NANOSCALE 2019; 11:10992-11000. [PMID: 31140532 DOI: 10.1039/c9nr02085c] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The hydrogen evolution reaction (HER) in alkaline media is key for the cathodic reaction of electrochemical water splitting, but it suffers sluggish kinetics due to the slow water dissociation process. Here, we present a simple strategy to enhance the HER activity in alkaline media by engineering Co-doped MoS2 coupled with Mo2CTx MXene. The improved HER activity might be ascribed to the synergistic regulation of water dissociation sites and electronic conductivity. Co doping could effectively regulate the electronic structure of MoS2 and further improve the intrinsic activity of the catalyst. Mo2CTx MXene served as both the active and conductive substrate to facilitate electron transfer. As a result, the Co-MoS2/Mo2CTx nanohybrids showed dramatically enhanced HER performance with a low overpotential of 112 mV at a current density of 10 mA cm-2 and exhibited excellent long-term stability in alkaline media.
Collapse
Affiliation(s)
- Junmei Liang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|