1
|
Camorani S, Caliendo A, Morrone E, Agnello L, Martini M, Cantile M, Cerrone M, Zannetti A, La Deda M, Fedele M, Ricciardi L, Cerchia L. Bispecific aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: implications for precision phototherapies. J Exp Clin Cancer Res 2024; 43:92. [PMID: 38532439 PMCID: PMC10964525 DOI: 10.1186/s13046-024-03014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting single-ligand nanomedicine due to the complexity of the tumor microenvironment. METHODS Gold-core/silica-shell nanoparticles embedding a water-soluble iridium(III) complex as photosensitizer and luminescent probe (Iren-AuSiO2_COOH) were efficiently decorated with amino-terminated EGFR (CL4) and PDGFRβ (Gint4.T) aptamers (Iren-AuSiO2_Aptamer). The targeting specificity, and the synergistic photodynamic and photothermal effects of either single- and dual-aptamer-decorated nanoparticles have been assessed by confocal microscopy and cell viability assays, respectively, on different human cell types including mesenchymal subtype triple-negative breast cancer (MES-TNBC) MDA-MB-231 and BT-549 cell lines (both EGFR and PDGFRβ positive), luminal/HER2-positive breast cancer BT-474 and epidermoid carcinoma A431 cells (only EGFR positive) and adipose-derived mesenchymal stromal/stem cells (MSCs) (only PDGFRβ positive). Cells lacking expression of both receptors were used as negative controls. To take into account the tumor-stroma interplay, fluorescence imaging and cytotoxicity were evaluated in preclinical three-dimensional (3D) stroma-rich breast cancer models. RESULTS We show efficient capability of Iren-AuSiO2_Aptamer nanoplatforms to selectively enter into target cells, and kill them, through EGFR and/or PDGFRβ recognition. Importantly, by targeting EGFR+ tumor/PDGFRβ+ stromal cells in the entire tumor bulk, the dual-aptamer-engineered nanoparticles resulted more effective than unconjugated or single-aptamer-conjugated nanoparticles in either 3D spheroids cocultures of tumor cells and MSCs, and in breast cancer organoids derived from pathologically and molecularly well-characterized tumors. CONCLUSIONS Our study proposes smart, novel and safe multifunctional nanoplatforms simultaneously addressing cancer-stroma within the tumor microenvironment, which are: (i) actively delivered to the targeted cells through highly specific aptamers; (ii) localized by means of their luminescence, and (iii) activated via minimally invasive light, launching efficient tumor death, thus providing innovative precision therapeutics. Given the unique features, the proposed dual targeted nanoformulations may open a new door to precision cancer treatment.
Collapse
Affiliation(s)
- Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Alessandra Caliendo
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Elena Morrone
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, CS, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Matteo Martini
- Institute of Light and Matter, UMR 5306, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Monica Cantile
- Institutional Biobank-Scientific Directorate, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Margherita Cerrone
- Pathology Unit, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, 80145, Naples, Italy
| | - Massimo La Deda
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, CS, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Loredana Ricciardi
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy.
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy.
| |
Collapse
|
2
|
Niazi S, Khan IM, Akhtar W, Ul Haq F, Pasha I, Khan MKI, Mohsin A, Ahmad S, Zhang Y, Wang Z. Aptamer functionalized gold nanoclusters as an emerging nanoprobe in biosensing, diagnostic, catalysis and bioimaging. Talanta 2024; 268:125270. [PMID: 37875028 DOI: 10.1016/j.talanta.2023.125270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023]
Abstract
DNA nanostructures, with their fascinating luminescent and detecting capabilities, provide a basis that can accommodate a wide range of applications. The unique electronic configurations, and physical and chemical properties of aptamer-assembled gold nanoclusters (apt-AuNCs) as a novel type of fluorophore have gradually piqued the interest of the scientific community. Bending DNA sequences and other templates/legends as a stabilizing agent with Au metal has produced an abundance of biosensors, along with catalytic and imaging properties. This review article summarizes the synthesis, conjugation tactics, advantages, and sensing mechanisms of AuNCs aptasensor after providing a brief introduction to the topic. Moreover, the application of DNA/aptamer functionalization has been briefly discussed in the fields of food safety and quality, catalysis, clinical diagnosis, cancer cell bioimaging, detection of cancer cell indicators, and therapy. We also concluded the current obstacles and made recommendations about the future prospects of AuNCs for fundamental research and applications in line with the developments in DNA/aptamer-AuNCs.
Collapse
Affiliation(s)
- Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Wasim Akhtar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Faizan Ul Haq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Pasha
- NIFSAT, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif Iqbal Khan
- NIFSAT, University of Agriculture, Faisalabad, Pakistan; Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, ECUST, Shanghai, 200237, China
| | - Shabbir Ahmad
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
3
|
Shu W, Zhang X, Tang H, Wang L, Cheng M, Xu J, Li R, Ran X. Catalytic probes based on aggregation-induced emission-active Au nanoclusters for visualizing MicroRNA in living cells and in vivo. Anal Chim Acta 2023; 1268:341372. [PMID: 37268339 DOI: 10.1016/j.aca.2023.341372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/04/2023]
Abstract
Highly sensitive monitoring of cancer-related miRNAs is of great significance for tumor diagnosis. Herein, catalytic probes based on DNA-functionalized Au nanoclusters (AuNCs) were prepared in this work. The aggregation-induced emission-active Au nanoclusters showed an interesting phenomenon of aggregation induced emission (AIE) affected by the aggregation state. Leveraging this property, the AIE-active AuNCs were used to develop catalytic turn-on probes for detecting in vivo cancer-related miRNA based on a hybridization chain reaction (HCR). The target miRNA triggered the HCR and induced aggregation of AIE-active AuNCs, leading to a highly luminescent signal. The catalytic approach demonstrated a remarkable selectivity and a low detection limit in comparison to noncatalytic sensing signals. In addition, the excellent delivery the ability of MnO2 carrier made it possible to use the probes for intracellular imaging and in vivo imaging. Effective in situ visualization of miR-21 was achieved not only in living cells but also in tumors in living animals. This approach potentially offers a novel method for obtaining information for tumor diagnosis via highly sensitive cancer-related miRNA imaging in vivo.
Collapse
Affiliation(s)
- Wenhao Shu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Xuetao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Hongmei Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Linna Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Manxiao Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Jingwen Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China.
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
4
|
Sahoo K, Gazi TR, Roy S, Chakraborty I. Nanohybrids of atomically precise metal nanoclusters. Commun Chem 2023; 6:157. [PMID: 37495665 PMCID: PMC10372104 DOI: 10.1038/s42004-023-00958-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Atomically precise metal nanoclusters (NCs) with molecule-like structures are emerging nanomaterials with fascinating chemical and physical properties. Photoluminescence (PL), catalysis, sensing, etc., are some of the most intriguing and promising properties of NCs, making the metal NCs potentially beneficial in different applications. However, long-term instability under ambient conditions is often considered the primary barrier to translational research in the relevant application fields. Creating nanohybrids between such atomically precise NCs and other stable nanomaterials (0, 1, 2, or 3D) can help expand their applicability. Many such recently reported nanohybrids have gained promising attention as a new class of materials in the application field, exhibiting better stability and exciting properties of interest. This perspective highlights such nanohybrids and briefly explains their exciting properties. These hybrids are categorized based on the interactions between the NCs and other materials, such as metal-ligand covalent interactions, hydrogen-bonding, host-guest, hydrophobic, and electrostatic interactions during the formation of nanohybrids. This perspective will also capture some of the new possibilities with such nanohybrids.
Collapse
Affiliation(s)
- Koustav Sahoo
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tapu Raihan Gazi
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Soumyadip Roy
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Indranath Chakraborty
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
5
|
Mahmood Khan I, Niazi S, Akhtar W, Yue L, Pasha I, Khan MKI, Mohsin A, Waheed Iqbal M, Zhang Y, Wang Z. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: Fundamental mechanism to future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
|
7
|
Combes GF, Vučković AM, Perić Bakulić M, Antoine R, Bonačić-Koutecky V, Trajković K. Nanotechnology in Tumor Biomarker Detection: The Potential of Liganded Nanoclusters as Nonlinear Optical Contrast Agents for Molecular Diagnostics of Cancer. Cancers (Basel) 2021; 13:4206. [PMID: 34439360 PMCID: PMC8393257 DOI: 10.3390/cancers13164206] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of premature death, and, as such, it can be prevented by developing strategies for early and accurate diagnosis. Cancer diagnostics has evolved from the macroscopic detection of malignant tissues to the fine analysis of tumor biomarkers using personalized medicine approaches. Recently, various nanomaterials have been introduced into the molecular diagnostics of cancer. This has resulted in a number of tumor biomarkers that have been detected in vitro and in vivo using nanodevices and corresponding imaging techniques. Atomically precise ligand-protected noble metal quantum nanoclusters represent an interesting class of nanomaterials with a great potential for the detection of tumor biomarkers. They are characterized by high biocompatibility, low toxicity, and suitability for controlled functionalization with moieties specifically recognizing tumor biomarkers. Their non-linear optical properties are of particular importance as they enable the visualization of nanocluster-labeled tumor biomarkers using non-linear optical techniques such as two-photon-excited fluorescence and second harmonic generation. This article reviews liganded nanoclusters among the different nanomaterials used for molecular cancer diagnosis and the relevance of this new class of nanomaterials as non-linear optical probe and contrast agents.
Collapse
Affiliation(s)
- Guillaume F. Combes
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Ana-Marija Vučković
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
| | - Rodolphe Antoine
- UMR 5306, Centre National de la Recherche Scientifique (CNRS), Institute Lumière Matière, Claude Bernard University Lyon 1, F-69622 Villeurbanne, France;
| | - Vlasta Bonačić-Koutecky
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Interdisciplinary Center for Advanced Science and Technology (ICAST), University of Split, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Katarina Trajković
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| |
Collapse
|
8
|
The Role of Gold Nanoclusters as Emerging Theranostic Agents for Cancer Management. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00222-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
|
10
|
|
11
|
Deepagan VG, Leiske MN, Fletcher NL, Rudd D, Tieu T, Kirkwood N, Thurecht KJ, Kempe K, Voelcker NH, Cifuentes-Rius A. Engineering Fluorescent Gold Nanoclusters Using Xanthate-Functionalized Hydrophilic Polymers: Toward Enhanced Monodispersity and Stability. NANO LETTERS 2021; 21:476-484. [PMID: 33350838 DOI: 10.1021/acs.nanolett.0c03930] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We introduce xanthate-functionalized poly(cyclic imino ethers)s (PCIEs), specifically poly(2-ethyl-2-oxazoline) and poly(2-ethyl-2-oxazine) given their stealth characteristics, as an attractive alternative to conventional thiol-based ligands for the synthesis of highly monodisperse and fluorescent gold nanoclusters (AuNCs). The xanthate in the PCIEs interacts with Au ions, acting as a well-controlled template for the direct formation of PCIE-AuNCs. This method yields red-emitting AuNCs with a narrow emission peak (λem = 645 nm), good quantum yield (4.3-4.8%), long fluorescence decay time (∼722-844 ns), and unprecedented product yield (>98%). The PCIE-AuNCs exhibit long-term colloidal stability, biocompatibility, and antifouling properties, enabling a prolonged blood circulation, lower nonspecific accumulation in major organs, and better renal clearance when compared with AuNCs without polymer coating. The advances made here in the synthesis of metal nanoclusters using xanthate-functionalized PCIEs could propel the production of highly monodisperse, biocompatible, and renally clearable nanoprobes in large-scale for different theranostic applications.
Collapse
Affiliation(s)
- Veerasikku Gopal Deepagan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
| | - Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
| | - Terence Tieu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Nicholas Kirkwood
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Anna Cifuentes-Rius
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
12
|
Bony BA, Miller HA, Tarudji AW, Gee CC, Sarella A, Nichols MG, Kievit FM. Ultrasmall Mixed Eu-Gd Oxide Nanoparticles for Multimodal Fluorescence and Magnetic Resonance Imaging of Passive Accumulation and Retention in TBI. ACS OMEGA 2020; 5:16220-16227. [PMID: 32656444 PMCID: PMC7346268 DOI: 10.1021/acsomega.0c01890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/12/2020] [Indexed: 05/12/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. TBI can have a long-term impact on the quality of life for survivors of all ages. However, there remains no approved treatment that improves outcomes following TBI, which is partially due to poor delivery of therapies into the brain. Therefore, there is a significant unmet need to develop more effective delivery strategies that increase the accumulation and retention of potentially efficacious treatments in the injured brain. Recent work has revealed that nanoparticles (NPs) may offer a promising approach for site-specific delivery; however, a detailed understanding of the specific NP properties that promote brain accumulation and retention are still being developed. Multimodal imaging plays a vital role in the understanding of physicochemical properties that initiate the uptake and accumulation of NPs in the brain at both high spatial (e.g., fluorescence imaging) and temporal (e.g., magnetic resonance imaging, MRI) frequency. However, many NP systems that are currently used in TBI only provide contrast in a single imaging modality limiting the imaging data that can be obtained, and those that offer multimodal imaging capabilities have complicated multistep synthesis methods. Therefore, the goal of this work was to develop an ultrasmall NP with simple fabrication capable of multimodal imaging. Here, we describe the development, characterization, accumulation, and retention of poly(ethylene glycol) (PEG)-coated europium-gadolinium (Eu-Gd) mixed magnetic NPs (MNPs) in a controlled cortical impact mouse model of TBI. We find that these NPs having an ultrasmall core size of 2 nm and a small hydrodynamic size of 13.5 nm can be detected in both fluorescence and MR imaging modalities and rapidly accumulate and are retained in injured brain parenchyma. These NPs should allow for further testing of NP physicochemical properties that promote accumulation and retention in TBI and other disease models.
Collapse
Affiliation(s)
- Badrul Alam Bony
- Department of Biological
Systems Engineering, University of Nebraska—Lincoln, 3605 Fair Street, Lincoln, Nebraska 68583-0726, United States
| | - Hunter A. Miller
- Department of Biological
Systems Engineering, University of Nebraska—Lincoln, 3605 Fair Street, Lincoln, Nebraska 68583-0726, United States
| | - Aria W. Tarudji
- Department of Biological
Systems Engineering, University of Nebraska—Lincoln, 3605 Fair Street, Lincoln, Nebraska 68583-0726, United States
| | - Connor C. Gee
- Department of Biological
Systems Engineering, University of Nebraska—Lincoln, 3605 Fair Street, Lincoln, Nebraska 68583-0726, United States
| | - Anandakumar Sarella
- Nebraska
Center for Materials and Nanoscience, University
of Nebraska—Lincoln, 855 N 16th Street, Lincoln, Nebraska 68588-0298, United States
| | - Michael G. Nichols
- Department of Physics, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United
States
| | - Forrest M. Kievit
- Department of Biological
Systems Engineering, University of Nebraska—Lincoln, 3605 Fair Street, Lincoln, Nebraska 68583-0726, United States
- . Tel: +1-402-472-2175
| |
Collapse
|
13
|
Ge S, Zhao J, Ma G. Thiol stabilized extremely small gold cluster complexes with high photoluminescence. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Kundu S, Mukherjee D, Maiti TK, Sarkar N. Highly Luminescent Thermoresponsive Green Emitting Gold Nanoclusters for Intracellular Nanothermometry and Cellular Imaging: A Dual Function Optical Probe. ACS APPLIED BIO MATERIALS 2019; 2:2078-2091. [DOI: 10.1021/acsabm.9b00107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|