1
|
Zheng Y, Chen X, Wang Y, Chen Z, Wu D. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy. J Zhejiang Univ Sci B 2024; 25:890-913. [PMID: 39420524 PMCID: PMC11494163 DOI: 10.1631/jzus.b2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 10/19/2024]
Abstract
Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
- Zhejiang Rehabilitation Medical Center, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310009, China. ,
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Warerkar OD, Mudliar NH, Momin MM, Singh PK. Targeting Amyloids with Coated Nanoparticles: A Review on Potential Combinations of Nanoparticles and Bio-Compatible Coatings. Crit Rev Ther Drug Carrier Syst 2024; 41:85-119. [PMID: 37938191 DOI: 10.1615/critrevtherdrugcarriersyst.2023046209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Amyloidosis is the major cause of many neurodegenerative diseases, such as, Alzheimer's and Parkinson's where the misfolding and deposition of a previously functional protein make it inept for carrying out its function. The genesis of amyloid fibril formation and the strategies to inhibit it have been studied extensively, although some parts of this puzzle still remain unfathomable to date. Many classes of molecules have been explored as potential drugs in vitro, but their inability to work in vivo by crossing the blood-brain-barrier has made them an inadequate treatment option. In this regard, nanoparticles (NPs) have turned out to be an exciting alternative because they could overcome many drawbacks of previously studied molecules and provide advantages, such as, greater bioavailability of molecules and target-specific delivery of drugs. In this paper, we present an overview on several coated NPs which have shown promising efficiency in inhibiting fibril formation. A hundred and thirty papers published in the past two decades have been comprehensively reviewed, which majorly encompass NPs comprising different materials like gold, silver, iron-oxide, poly(lactic-co-glycolic acid), polymeric NP, etc., which are coated with various molecules of predominantly natural origin, such as different types of amino acids, peptides, curcumin, drugs, catechin, etc. We hope that this review will shed light on the advancement of symbiotic amalgamation of NPs with molecules from natural sources and will inspire further research on the tremendous therapeutic potential of these combinations for many amyloid-related diseases.
Collapse
Affiliation(s)
- Oshin D Warerkar
- SVKM's Shri C.B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Niyati H Mudliar
- SVKM's Shri C.B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Munira M Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India; SVKM's Shri C.B. Patel Research Centre for Chemistry and Biological Sciences, Vile Parle (West), Mumbai, Maharashtra, 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
3
|
Park S, Kim M, Lin Y, Hong M, Nam G, Mieczkowski A, Kardos J, Lee YH, Lim MH. Designing multi-target-directed flavonoids: a strategic approach to Alzheimer's disease. Chem Sci 2023; 14:9293-9305. [PMID: 37712013 PMCID: PMC10498667 DOI: 10.1039/d3sc00752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023] Open
Abstract
The underlying causes of Alzheimer's disease (AD) remain a mystery, with multiple pathological components, including oxidative stress, acetylcholinesterase, amyloid-β, and metal ions, all playing a role. Here we report a strategic approach to designing flavonoids that can effectively tackle multiple pathological elements involved in AD. Our systematic investigations revealed key structural features for flavonoids to simultaneously target and regulate pathogenic targets. Our findings led to the development of a highly promising flavonoid that exhibits a range of functions, based on a complete structure-activity relationship analysis. Furthermore, our mechanistic studies confirmed that this flavonoid's versatile reactivities are driven by its redox potential and direct interactions with pathogenic factors. This work highlights the potential of multi-target-directed flavonoids as a novel solution in the fight against AD.
Collapse
Affiliation(s)
- Seongmin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mingeun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Geewoo Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University Budapest 1117 Hungary
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea
- Bio-Analytical Science, University of Science and Technology (UST) Daejeon 34113 Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University (CAU) Gyeonggi 17546 Republic of Korea
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University Sendai Miyagi 980-8578 Japan
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
4
|
Kinfu HH, Rahman MM. Separation Performance of Membranes Containing Ultrathin Surface Coating of Metal-Polyphenol Network. MEMBRANES 2023; 13:membranes13050481. [PMID: 37233542 DOI: 10.3390/membranes13050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Metal-polyphenol networks (MPNs) are being used as versatile coatings for regulating membrane surface chemistry and for the formation of thin separation layers. The intrinsic nature of plant polyphenols and their coordination with transition metal ions provide a green synthesis procedure of thin films, which enhance membrane hydrophilicity and fouling resistance. MPNs have been used to fabricate tailorable coating layers for high-performance membranes desirable for a wide range of applications. Here, we present the recent progress of the use of MPNs in membrane materials and processes with a special focus on the important roles of tannic acid-metal ion (TA-Mn+) coordination for thin film formation. This review introduces the most recent advances in the fabrication techniques and the application areas of TA-Mn+ containing membranes. In addition, this paper outlines the latest research progress of the TA-metal ion containing membranes and summarizes the role of MPNs in membrane performance. The impact of fabrication parameters, as well as the stability of the synthesized films, is discussed. Finally, the remaining challenges that the field still faces and potential future opportunities are illustrated.
Collapse
Affiliation(s)
- Hluf Hailu Kinfu
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Md Mushfequr Rahman
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
5
|
Andrikopoulos N, Li Y, Nandakumar A, Quinn JF, Davis TP, Ding F, Saikia N, Ke PC. Zinc-Epigallocatechin-3-gallate Network-Coated Nanocomposites against the Pathogenesis of Amyloid-Beta. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7777-7792. [PMID: 36724494 PMCID: PMC10037301 DOI: 10.1021/acsami.2c20334] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aggregation of amyloid beta (Aβ) is a hallmark of Alzheimer's disease (AD), a major cause of dementia and an unmet challenge in modern medicine. In this study, we constructed a biocompatible metal-phenolic network (MPN) comprising a polyphenol epigallocatechin gallate (EGCG) scaffold coordinated by physiological Zn(II). Upon adsorption onto gold nanoparticles, the MPN@AuNP nanoconstruct elicited a remarkable potency against the amyloid aggregation and toxicity of Aβ in vitro. The superior performance of MPN@AuNP over EGCG@AuNP was attributed to the porosity and hence larger surface area of the MPN in comparison with that of EGCG alone. The atomic detail of Zn(II)-EGCG coordination was unraveled by density functional theory calculations and the structure and dynamics of Aβ aggregation modulated by the MPN were further examined by discrete molecular dynamics simulations. As MPN@AuNP also displayed a robust capacity to cross a blood-brain barrier model through the paracellular pathway, and given the EGCG's function as an anti-amyloidosis and antioxidation agent, this MPN-based strategy may find application in regulating the broad AD pathology beyond protein aggregation inhibition.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Aparna Nandakumar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - John F. Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| |
Collapse
|
6
|
John T, Adler J, Elsner C, Petzold J, Krueger M, Martin LL, Huster D, Risselada HJ, Abel B. Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation. J Colloid Interface Sci 2022; 622:804-818. [PMID: 35569410 DOI: 10.1016/j.jcis.2022.04.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
The aggregation of peptides into amyloid fibrils has been linked to ageing-related diseases, such as Alzheimer's and type 2 diabetes. Interfaces, particularly those with large nanostructured surfaces, can affect the kinetics of peptide aggregation, which ranges from complete inhibition to strong acceleration. While a number of physiochemical parameters determine interfacial effects, we focus here on the role of nanoparticle (NP) size and curvature. We used thioflavin T (ThT) fluorescence assays to demonstrate the size-dependent effects of NPs on amyloid fibril formation for the peptides Aβ40, NNFGAIL, GNNQQNY and VQIYVK. While 5 nm gold NPs (AuNP-5) retarded or inhibited the aggregation of all peptides except NNFGAIL, larger 20 nm gold NPs (AuNP-20) tended to accelerate or not influence peptide aggregation. Differences in the NP effects for the peptides resulted from the different peptide properties (size, tendency to aggregate) and associated surface binding affinities. Additional dynamic light scattering (DLS), electron microscopy, and atomic force microscopy (AFM) experiments with the Aβ40 peptide confirmed size-dependent NP effects on peptide aggregation, and also suggested a structural influence on the formed fibrils. NPs can serve as a surface for the adsorption of peptide monomers and enable nucleation to oligomers and fibril formation. However, molecular dynamics (MD) simulations showed that peptide oligomers were less stable at smaller NPs. High surface curvatures destabilized prefibrillar structures, which provides a possible explanation for inhibitory effects on fibril growth, provided that peptide-NP surface binding was relevant for fibril formation. These mechanistic insights can support the design of future nanostructured materials.
Collapse
Affiliation(s)
- Torsten John
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany; School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Juliane Adler
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Christian Elsner
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Johannes Petzold
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Herre Jelger Risselada
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; Institute for Theoretical Physics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| |
Collapse
|
7
|
Wang H, Wang D, Yu J, Zhang Y, Zhou Y. Applications of metal-phenolic networks in nanomedicine: a review. Biomater Sci 2022; 10:5786-5808. [PMID: 36047491 DOI: 10.1039/d2bm00969b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The exploration of nanomaterials is beneficial for the development of nanomedicine and human medical treatment. Metal-phenolic networks (MPNs) have been introduced as a nanoplatform for versatile functional hybrid nanomaterials and have attracted extensive attention due to their simple preparation, excellent properties and promising medical application prospects. This review presents an overview of recent synthesis methods for MPNs, their unique biomedical properties and the research progress in their application in disease detection and treatment. First, the synthesis methods of MPNs are summarised, and then the advantages and applicability of each assembly method are emphasised. The various functions exhibited by MPNs in biomedical applications are then introduced. Finally, the latest research progress in MPN-based nanoplatforms in the biomedical field is discussed, and their future research and application are investigated.
Collapse
Affiliation(s)
- Hanchi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Dongyang Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jize Yu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
8
|
La Barbera L, Mauri E, D’Amelio M, Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives. Front Neurosci 2022; 16:939855. [PMID: 35992936 PMCID: PMC9387393 DOI: 10.3389/fnins.2022.939855] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive and multifactorial neurodegenerative disorder whose primary causes are mostly unknown. Due to the increase in life expectancy of world population, including developing countries, AD, whose incidence rises dramatically with age, is at the forefront among neurodegenerative diseases. Moreover, a definitive cure is not yet within reach, imposing substantial medical and public health burdens at every latitude. Therefore, the effort to devise novel and effective therapeutic strategies is still of paramount importance. Genetic, functional, structural and biochemical studies all indicate that new and efficacious drug delivery strategies interfere at different levels with various cellular and molecular targets. Over the last few decades, therapeutic development of nanomedicine at preclinical stage has shown to progress at a fast pace, thus paving the way for its potential impact on human health in improving prevention, diagnosis, and treatment of age-related neurodegenerative disorders, including AD. Clinical translation of nano-based therapeutics, despite current limitations, may present important advantages and innovation to be exploited in the neuroscience field as well. In this state-of-the-art review article, we present the most promising applications of polymeric nanoparticle-mediated drug delivery for bypassing the blood-brain barrier of AD preclinical models and boost pharmacological safety and efficacy. In particular, novel strategic chemical functionalization of polymeric nanocarriers that could be successfully employed for treating AD are thoroughly described. Emphasis is also placed on nanotheranostics as both potential therapeutic and diagnostic tool for targeted treatments. Our review highlights the emerging role of nanomedicine in the management of AD, providing the readers with an overview of the nanostrategies currently available to develop future therapeutic applications against this chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D’Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Manuele Gori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| |
Collapse
|
9
|
Chopra H, Bibi S, Singh I, Kamal MA, Islam F, Alhumaydhi FA, Emran TB, Cavalu S. Nanomedicines in the Management of Alzheimer's Disease: Current View and Future Prospects. Front Aging Neurosci 2022; 14:879114. [PMID: 35875806 PMCID: PMC9304964 DOI: 10.3389/fnagi.2022.879114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a kind of dementia that creates serious challenges for sufferers' memory, thinking, and behavior. It commonly targeting the aging population and decay the brain cells, despite attempts have been performed to enhance AD diagnostic and therapeutic techniques. Hence, AD remains incurable owing to its complex and multifactorial consequences and still there is lack of appropriate diagnostics/therapeutics option for this severe brain disorder. Therefore, nanotechnology is currently bringing new tools and insights to improve the previous knowledge of AD and ultimately may provide a novel treatment option and a ray of hope to AD patients. Here in this review, we highlighted the nanotechnologies-based findings for AD, in both diagnostic and therapeutic aspects and explained how advances in the field of nanotechnology/nanomedicine could enhance patient prognosis and quality of life. It is highly expected these emerging technologies could bring a research-based revolution in the field of neurodegenerative disorders and may assist their clinical experiments and develop an efficacious drug for AD also. The main aim of review is to showcase readers the recent advances in nanotechnology-based approaches for treatment and diagnosing of AD.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
10
|
Metal-Phenolic Network-Functionalized Magnetic Nanoparticles for Enzyme Immobilization. Appl Biochem Biotechnol 2022; 194:5305-5321. [PMID: 35751761 DOI: 10.1007/s12010-022-04003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Metal-phenolic network (MPN) coating is an emerging class of surface functionalization method and has attracted ever-growing interest in areas of bioengineering and biotechnology. Although various applications for MPN coatings, including drug delivery, cytoprotection, and antimicrobial surfaces, have been studied in the form of films and capsules, their interaction with enzyme molecules and the subsequent influence of biocatalytic properties are poorly understood. Herein, MPN coatings composed of different types of metal ions (CuII, FeIII, ZnII, MnII, AuIV) coordinated with tannic acid (TA) were fabricated on Fe3O4 nanoparticles as a facile nanoplatform for immobilizing alcohol dehydrogenase (ADH). The results show that the different polarization capacities of metal ions (i.e., Lewis acids) could affect the hydrophilicity and hydrophobicity of the coordinated MPN coatings, while the enzyme immobilization rate, biocatalytic activity, and stability are in turn influenced by the surface properties of the MPN coatings. Among the different metal ions, the Fe3O4-TA-ZnII showed the highest enzyme immobilizing efficiency (91.53%) and catalytic activity (60.45 U/mg ADH). Besides, the enzyme re-usability and tolerance to extreme conditions were both enhanced after immobilization. These results highlight an advanced strategy for the interfacial construction of hybrid heterogeneous biocatalytic systems with potential use in biomedical applications.
Collapse
|
11
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
12
|
Abstract
Tannic Acid (TA) is a naturally occurring antioxidant polyphenol that has gained popularity over the past decade in the field of biomedical research for its unique biochemical properties. Tannic acid, typically extracted from oak tree galls, has been used in many important historical applications. TA is a key component in vegetable tanning of leather, iron gall ink, red wines, and as a traditional medicine to treat a variety of maladies. The basis of TA utility is derived from its many hydroxyl groups and its affinity for forming hydrogen bonds with proteins and other biomolecules. Today, the study of TA has led to the development of many new pharmaceutical and biomedical applications. TA has been shown to reduce inflammation as an antioxidant, act as an antibiotic in common pathogenic bacterium, and induce apoptosis in several cancer types. TA has also displayed antiviral and antifungal activity. At certain concentrations, TA can be used to treat gastrointestinal disorders such as hemorrhoids and diarrhea, severe burns, and protect against neurodegenerative diseases. TA has also been utilized in biomaterials research as a natural crosslinking agent to improve mechanical properties of natural and synthetic hydrogels and polymers, while also imparting anti-inflammatory, antibacterial, and anticancer activity to the materials. TA has also been used to develop thin film coatings and nanoparticles for drug delivery. In all, TA is fascinating molecule with a wide variety of potential uses in pharmaceuticals, biomaterials applications, and drug delivery strategies.
Collapse
Affiliation(s)
- Andrew Baldwin
- RinggoldID:170373Department of Bioengineering, Clemson University, Clemson, SC USA
| | - Brian W Booth
- RinggoldID:170373Department of Bioengineering, Clemson University, Clemson, SC USA
| |
Collapse
|
13
|
Wang Z, Gao J, Zhu L, Meng J, He F. Tannic acid-based functional coating: surface engineering of membranes for oil-in-water emulsion separation. Chem Commun (Camb) 2022; 58:12629-12641. [DOI: 10.1039/d2cc05102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in the tannic acid-based functional coating for surface engineering of membranes toward oil-in-water emulsion separation is summarized.
Collapse
Affiliation(s)
- Zhenxing Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jie Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Lin Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jinxuan Meng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Fang He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
14
|
Wu K, Wu X, Guo J, Jiao Y, Zhou C. Facile Polyphenol-Europium Assembly Enabled Functional Poly(l-Lactic Acid) Nanofiber Mats with Enhanced Antioxidation and Angiogenesis for Accelerated Wound Healing. Adv Healthc Mater 2021; 10:e2100793. [PMID: 34346184 DOI: 10.1002/adhm.202100793] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Burns, trauma, surgery and chronic diabetic ulcers are the most common reasons causing skin wounds in clinic. Thus, developing a functional wound dressing has been an imperative issue. Herein, functional wound dressing (poly(l-lactic acid) PLLA-((tanic acid (TA)/europium (Eu))n ) is fabricated through a facile polyphenol-europium ion assembly to ameliorate wound microenvironment via scavenging excessive reactive oxygen species (ROS) and promoting angiogenesis. The physicochemical characterization indicates that the multicycle assembled TA/Eu is uniformly deposited on PLLA-(TA/Eu)n nanofiber mats surface. In vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant tests display good antioxidant ability by scavenging more than 75% ROS, and significantly increasing the antioxidant enzyme levels in vivo. Cytocompatibility experiments illustrate that PLLA-(TA/Eu)n nanofiber mats can promote the adhesion and proliferation of human umbilical vein endothelial cells (HUVECs) and L929 cells. Meanwhile, real-time quantitative polymerase chain reaction (PCR) (RT-qPCR) and western blot assays illustrate that it can stimulate proangiogenesis by elevating the expression of angiogenesis-related genes and proteins. In vivo Sprague-Dawley (SD) rats experiments indicate that PLLA-(TA/Eu)n nanofiber mats can significantly promote wound healing by improving both angiogenesis and antioxidant activity. Taken together, the functional PLLA-(TA/Eu)n nanofiber mats can offer significant promise as wound dressing for accelerated wound healing.
Collapse
Affiliation(s)
- Keke Wu
- Department of Materials Science and Engineering Jinan University Guangzhou 510632 China
- Department of Histology and Embryology School of Basic Medical Sciences Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou 510515 China
| | - Xiaoxian Wu
- Instrumental Analysis and Research Center South China Agricultural University Guangzhou 510642 China
| | - Jinshan Guo
- Department of Histology and Embryology School of Basic Medical Sciences Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou 510515 China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering Jinan University Guangzhou 510632 China
| | - Changren Zhou
- Department of Materials Science and Engineering Jinan University Guangzhou 510632 China
| |
Collapse
|
15
|
Kadaoluwa Pathirannahalage SP, Meftahi N, Elbourne A, Weiss ACG, McConville CF, Padua A, Winkler DA, Costa Gomes M, Greaves TL, Le TC, Besford QA, Christofferson AJ. Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:4521-4536. [PMID: 34406000 DOI: 10.1021/acs.jcim.1c00794] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Water is a unique solvent that is ubiquitous in biology and present in a variety of solutions, mixtures, and materials settings. It therefore forms the basis for all molecular dynamics simulations of biological phenomena, as well as for many chemical, industrial, and materials investigations. Over the years, many water models have been developed, and it remains a challenge to find a single water model that accurately reproduces all experimental properties of water simultaneously. Here, we report a comprehensive comparison of structural and dynamic properties of 30 commonly used 3-point, 4-point, 5-point, and polarizable water models simulated using consistent settings and analysis methods. For the properties of density, coordination number, surface tension, dielectric constant, self-diffusion coefficient, and solvation free energy of methane, models published within the past two decades consistently show better agreement with experimental values compared to models published earlier, albeit with some notable exceptions. However, no single model reproduced all experimental values exactly, highlighting the need to carefully choose a water model for a particular study, depending on the phenomena of interest. Finally, machine learning algorithms quantified the relationship between the water model force field parameters and the resulting bulk properties, providing insight into the parameter-property relationship and illustrating the challenges of developing a water model that can accurately reproduce all properties of water simultaneously.
Collapse
Affiliation(s)
- Sachini P Kadaoluwa Pathirannahalage
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, CNRS, Lyon 69342, France
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Alessia C G Weiss
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Chris F McConville
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Agilio Padua
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, CNRS, Lyon 69342, France
| | - David A Winkler
- School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
| | | | - Tamar L Greaves
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Tu C Le
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Quinn A Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Andrew J Christofferson
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
16
|
Yan W, Shi M, Dong C, Liu L, Gao C. Applications of tannic acid in membrane technologies: A review. Adv Colloid Interface Sci 2020; 284:102267. [PMID: 32966965 DOI: 10.1016/j.cis.2020.102267] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 01/26/2023]
Abstract
Today, membrane technologies play a big role in chemical industry, especially in separation engineering. Tannic acid, one of the most famous polyphenols, has attracted widespread interest in membrane society. In the past several years, researches on the applications of tannic acid in membrane technologies have grown rapidly. However, there has been lack of a comprehensive review for now. Here, we summarize the recent developments in this field for the first time. We comb the history of tannic acid and introduce the properties of tannic acid firstly, and then we turn our focus onto the applications of membrane surface modification, interlayers and selective layers construction and mixed matrix membrane development. In those previous works, tannic acid has been demonstrated to be capable of making a great contribution to the membrane science and technology. Especially in membrane surface/interface engineering (such as the construction of superhydrophilic and antifouling surfaces and polymer/nanoparticle interfaces with high compatibility) and development of thin film composite membranes with high permselectivity (such as developing thin film composite membranes with ultrahigh flux and high rejection), tannic acid can play a positive and great role. Despite this, there are still many critical challenges lying ahead. We believe that more exciting progress will be made in addressing these challenges in the future.
Collapse
Affiliation(s)
- Wentao Yan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mengqi Shi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| | - Chenxi Dong
- Research Institute of Shannxi Yanchang Petroleum (Group) Co. Ltd., Xi'an 710075, PR China
| | - Lifen Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
17
|
Binda A, Murano C, Rivolta I. Innovative Therapies and Nanomedicine Applications for the Treatment of Alzheimer's Disease: A State-of-the-Art (2017-2020). Int J Nanomedicine 2020; 15:6113-6135. [PMID: 32884267 PMCID: PMC7434571 DOI: 10.2147/ijn.s231480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The field of nanomedicine is constantly expanding. Since the first work dated in 1999, almost 28 thousand articles have been published, and more and more are published every year: just think that only in the last five years 20,855 have come out (source PUBMED) including original research and reviews. The goal of this review is to present the current knowledge about nanomedicine in Alzheimer’s disease, a widespread neurodegenerative disorder in the over 60 population that deeply affects memory and cognition. Thus, after a brief introduction on the pathology and on the state-of-the-art research for NPs passing the BBB, special attention is placed to new targets that can enter the interest of nanoparticle designers and to new promising therapies. The authors performed a literature review limited to the last three years (2017–2020) of available studies with the intention to present only novel formulations or approaches where at least in vitro studies have been performed. This choice was made because, while limiting the sector to nanotechnology applied to Alzheimer, an organic census of all the relevant news is difficult to obtain.
Collapse
Affiliation(s)
- Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB) 20900, Italy
| | - Carmen Murano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB) 20900, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Monza (MB) 20900, Italy
| |
Collapse
|
18
|
Zhou M, Zhao C, Li Y, Guo Y, Liu H, Zhang Y, Liu Z. Facile synthesis of metal-phenolic-coated gold nanocuboids for surface-enhanced Raman scattering. APPLIED OPTICS 2020; 59:6124-6130. [PMID: 32672759 DOI: 10.1364/ao.395067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Metal-phenolic networks (MPNs) have been exploited to be a versatile coating film to fabricate core-shell structure due to their general adherent properties. Herein, gold nanocuboid (GNCB) wrapped by MPNs (GNCB at MPNs) are prepared by a facile encapsulation method for surface-enhanced Raman scattering (SERS) analysis. The MPN coating not only reshapes the electric field distribution around the nanostructures but also allows the substrate to adsorb more analytes, both of which contribute to the superior SERS activity of GNCB at MPNs. The SERS signals induced by plasmonic nanostructures increase four- to sixfold after MPN coating, reaching a maximum Raman enhancement factor calculated to be 9.47×108. Moreover, the core-shell SERS substrate also demonstrates improved biocompatibility (∼fivefold increase) that facilitates the reliable SERS analysis of cancer cells and further diverse biomedical applications.
Collapse
|
19
|
Burilova EA, Pashirova TN, Zueva IV, Gibadullina EM, Lushchekina SV, Sapunova AS, Kayumova RM, Rogov AM, Evtjugin VG, Sudakov IA, Vyshtakalyuk AB, Voloshina AD, Bukharov SV, Burilov AR, Petrov KA, Zakharova LY, Sinyashin OG. Bi-functional sterically hindered phenol lipid-based delivery systems as potential multi-target agents against Alzheimer's disease via an intranasal route. NANOSCALE 2020; 12:13757-13770. [PMID: 32573587 DOI: 10.1039/d0nr04037a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
New lipid-based nanomaterials and multi-target directed ligands (MTDLs) based on sterically hindered phenol, containing a quaternary ammonium moiety (SHP-s-R, with s = 2,3) of varying hydrophobicity (R = CH2Ph and CnH2n+1, with n = 8, 10, 12, 16), have been prepared as potential drugs against Alzheimer's disease (AD). SHP-s-R are inhibitors of human cholinesterases with antioxidant properties. The inhibitory potency of SHP-s-R and selectivity ratio of cholinesterase inhibition were found to significantly depend on the length of the methylene spacer (s) and alkyl chain length. The compound SHP-2-16 showed the best IC50 for human AChE and the highest selectivity, being 30-fold more potent than for human BChE. Molecular modeling of SHP-2-16 binding to human AChE suggests that this compound is a dual binding site inhibitor that interacts with both the peripheral anionic site and catalytic active site. The relationship between self-assembly parameters (CMC, solubilization capacity, aggregation number), antioxidant activity and a toxicological parameter (hemolytic action on human red blood cells) was investigated. Two sterically hindered phenols (SHP-2-Bn and SHP-2-R) were loaded into L-α-phosphatidylcholine (PC) nanoparticles by varying the SHP alkyl chain length. For the brain AChE inhibition assay, PC/SHP-2-Bn/SHP-2-16 nanoparticles were administered to rats intranasally at a dose of 8 mg kg-1. The Morris water maze experiment showed that scopolamine-induced AD-like dementia in rats treated with PC/SHP-2-Bn/SHP-2-16 nanoparticles was significantly reduced. This is the first example of cationic SHP-phospholipid nanoparticles for inhibition of brain cholinesterases realized by the use of intranasal administration. This route has promising potential for the treatment of AD.
Collapse
Affiliation(s)
- Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang W, Besford QA, Christofferson AJ, Charchar P, Richardson JJ, Elbourne A, Kempe K, Hagemeyer CE, Field MR, McConville CF, Yarovsky I, Caruso F. Cobalt-Directed Assembly of Antibodies onto Metal-Phenolic Networks for Enhanced Particle Targeting. NANO LETTERS 2020; 20:2660-2666. [PMID: 32155075 DOI: 10.1021/acs.nanolett.0c00295] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The orientation-specific immobilization of antibodies onto nanoparticles, to preserve antibody-antigen recognition, is a key challenge in developing targeted nanomedicines. Herein, we report the targeting ability of metal-phenolic network (MPN)-coated gold nanoparticles with surface-physisorbed antibodies against respective antigens. The MPN coatings were self-assembled from metal ions (FeIII, CoII, CuII, NiII, or ZnII) cross-linked with tannic acid. Upon physisorption of antibodies, all particle systems exhibited enhanced association with target antigens, with CoII systems demonstrating more than 2-fold greater association. These systems contained more metal atoms distributed in a way to specifically interact with antibodies, which were investigated by molecular dynamics simulations. A model antibody fragment crystallizable (Fc) region in solution with CoII-tannic acid complexes revealed that the solvent-exposed CoII can directly coordinate to the histidine-rich portion of the Fc region. This one-pot interaction suggests anchoring of the antibody Fc region to the MPN on nanoparticles, allowing for enhanced targeting.
Collapse
Affiliation(s)
- Wenjie Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Patrick Charchar
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aaron Elbourne
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne Victoria 3001, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Matthew R Field
- RMIT Microscopy & Microanalysis Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Chris F McConville
- College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
21
|
Pilapong C, Phatruengdet T, Krungchanuchat S. Autophagic stress; a new cellular response to nanoparticles. Could it be a new strategy for inhibition of liver cancer cell invasion and metastasis? NANOSCALE 2020; 12:6556-6561. [PMID: 32159197 DOI: 10.1039/c9nr10131d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We herein report a new biological consequence from a unique interaction between nanoparticles of ferric-tannic complexes (Fe-TA NPs) and liver cancer cells (HepG2.2.15). The Fe-TA NPs were found to accumulate into the cells via specific cellular uptake mechanisms and thereafter disturbed cellular autophagy and cellular pH homeostasis, which led the cells to undergo autophagic stress and eventual death. According to biophysical analysis, the cells undergoing autophagic stress were found to lose their capability of attachment, migration, and movement. Similarly, KEGG analysis demonstrated the down-regulation of TGF-beta indicating that the autophagic stress is capable of reducing cancer cell invasion. Therefore, the Fe-TA NPs could be considered beneficial as a new pharmaceutical nanoplatform for liver cancer treatment via induction of autophagic stress.
Collapse
Affiliation(s)
- Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand. and AMS Cancer Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand and Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thipjutha Phatruengdet
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Saowalak Krungchanuchat
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
22
|
Liu Y, Shi Q, Zhang Y, Jing J, Pei J. One-step facile synthesis of Au@copper–tannic acid coordination core–shell nanostructures as photothermally-enhanced ROS generators for synergistic tumour therapy. NEW J CHEM 2020. [DOI: 10.1039/d0nj04460a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Au@TACu core–shell nanostructures with good biocompatibility and GSH-depleting capability showed enhanced photothermal performance and ROS generation for synergistic tumour therapy.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
- Center for Reproductive Medicine
| | - Qingyang Shi
- Center for Reproductive Medicine
- Center for Prenatal Diagnosis, First Hospital
- Jilin University
- Changchun
- China
| | - Yan Zhang
- Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Jili Jing
- Center for Reproductive Medicine
- Center for Prenatal Diagnosis, First Hospital
- Jilin University
- Changchun
- China
| | - Jin Pei
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| |
Collapse
|
23
|
Todorova N, Yarovsky I. The Enigma of Amyloid Forming Proteins: Insights From Molecular Simulations. Aust J Chem 2019. [DOI: 10.1071/ch19059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular level insight into the interplay between protein sequence, structure, and conformational dynamics is crucial for the comprehensive understanding of protein folding, misfolding, and aggregation phenomena that are pertinent to the formation of amyloid fibrils implicated in several degenerative diseases. Computational modelling provides insight into protein behaviour at spatial and temporal resolution still largely outside the reach of experiments. Herein we present an account of our theoretical modelling research conducted in collaboration with several experimental groups where we explored the effects of local environment on the structure and aggregation propensity of several types of amyloidogenic peptides and proteins, including apolipoprotein C-II, insulin, amylin, and amyloid-β using a variety of computational approaches.
Collapse
|