1
|
Wang X, Wei X, Tong R, Yi C, Wang Y, Fu Y, Yan F. Boron-doped carbon dots with time-resolved room temperature phosphorescence for detection of ciprofloxacin hydrochloride and information encryption applications. Mikrochim Acta 2024; 191:691. [PMID: 39438317 DOI: 10.1007/s00604-024-06767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Novel boron-doped carbon dots (BCDs) with extended afterglow characteristics were synthesized via a one-step solvothermal method using acrylamide, sulfosalicylic acid, and sodium tetraborate as protective matrices. The presence of boron from sodium tetraborate introduced an empty orbital, allowing it to form a more extended conjugated system with adjacent oxygen atoms, thereby lowering the energy level of the lowest unoccupied molecular orbital in the system. The phosphorescence emission of these BCDs exhibits a red shift over time from 450 to 500 nm. These BCDs have been effectively utilized to produce anti-counterfeit phosphorescent powder. Additionally, the BCDs display optimal fluorescence excitation at 330 nm and optimal emission at 420 nm. They demonstrate a detection limit for ciprofloxacin hydrochloride of 37 nM in the 1-100 µM concentration range and 26 nM in the 100-210 µM range. This fluorescence detection is governed by an inner filter effect. Real sample testing further confirms that these BCDs serve as excellent sensors for ciprofloxacin hydrochloride.
Collapse
Affiliation(s)
- Xueyu Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Xin Wei
- School of Textiles Science and Engineering, Tiangong University, Tianjin, 300387, PR China
- Hebei Industrial Technology Research Institute of Membranes, Cangzhou Institute of Tiangong University, Cangzhou, 061000, PR China
| | - Runze Tong
- State Key Laboratory of Separation Membranes and Membrane Processes, Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Chunhui Yi
- State Key Laboratory of Separation Membranes and Membrane Processes, Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Yidi Wang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Yang Fu
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Fanyong Yan
- School of Pharmaceutical Sciences, Tiangong University, Tianjin, 300387, PR China.
| |
Collapse
|
2
|
Ren J, Opoku H, Tang S, Edman L, Wang J. Carbon Dots: A Review with Focus on Sustainability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405472. [PMID: 39023174 PMCID: PMC11425242 DOI: 10.1002/advs.202405472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Carbon dots (CDs) are an emerging class of nanomaterials with attractive optical properties, which promise to enable a variety of applications. An important and timely question is whether CDs can become a functional and sustainable alternative to incumbent optical nanomaterials, notably inorganic quantum dots. Herein, the current CD literature is comprehensively reviewed as regards to their synthesis and function, with a focus on sustainability aspects. The study quantifies why it is attractive that CDs can be synthesized with biomass as the sole starting material and be free from toxic and precious metals and critical raw materials. It further describes and analyzes employed pretreatment, chemical-conversion, purification, and processing procedures, and highlights current issues with the usage of solvents, the energy and material efficiency, and the safety and waste management. It is specially shown that many reported synthesis and processing methods are concerningly wasteful with the utilization of non-sustainable solvents and energy. It is finally recommended that future studies should explicitly consider and discuss the environmental influence of the selected starting material, solvents, and generated byproducts, and that quantitative information on the required amounts of solvents, consumables, and energy should be provided to enable an evaluation of the presented methods in an upscaled sustainability context.
Collapse
Affiliation(s)
- Junkai Ren
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Henry Opoku
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Shi Tang
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
- LunaLEC ABUmeå UniversityUmeåSE‐90187Sweden
| | - Ludvig Edman
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
- LunaLEC ABUmeå UniversityUmeåSE‐90187Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Jia Wang
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| |
Collapse
|
3
|
Simões R, Rodrigues J, Neto V, Monteiro T, Gonçalves G. Carbon Dots: A Bright Future as Anticounterfeiting Encoding Agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311526. [PMID: 38396215 DOI: 10.1002/smll.202311526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Counterfeit products and data vulnerability present significant challenges in contemporary society. Hence, various methods and technologies are explored for anticounterfeiting encoding, with luminescent tracers, particularly luminescent carbon dots (CDs), emerging as a notable solution. CDs offer promising contributions to product security, environmental sustainability, and the circular economy. This critical review aims to highlight the luminescence responsiveness of CDs to physical and chemical stimuli, achieved through nanoengineering their chemical structure. The discussion will delve into the various tunable luminescence mechanisms and decay times of CDs, investigating preferential excitations such as up-conversion, delayed fluorescence, fluorescence, room temperature phosphorescence, persistent luminescence, energy and charge transfer, as well as photo-chemical interactions. These insights are crucial for advancing anticounterfeiting solutions. Following this exploration, a systematic review will focus on the research of luminescent CDs' smart encoding applications, encompassing anticounterfeiting, product tracing, quality certification, and information encryption. Finally, the review will address key challenges in implementing CDs-based technology, providing specific insights into strategies aimed at maximizing their stability and efficacy in anticounterfeiting encoding applications.
Collapse
Affiliation(s)
- Raul Simões
- TEMA, Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, Portugal., LASI, Guimarães, 4800-058, Portugal
- i3N, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Joana Rodrigues
- i3N, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Victor Neto
- TEMA, Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, Portugal., LASI, Guimarães, 4800-058, Portugal
| | - Teresa Monteiro
- i3N, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Gil Gonçalves
- TEMA, Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-193, Portugal
- i3N, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
4
|
Arefina IA, Erokhina DV, Ushakova EV. Influence of chemical treatment and interaction with matrix on room temperature phosphorescence of carbon dots. NANOTECHNOLOGY 2024; 35:365601. [PMID: 38806016 DOI: 10.1088/1361-6528/ad50e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
In this work, composite materials were formed based on various matrices (polymer and porous cellulose matrix) and carbon dots (CDs) with intense room-temperature phosphorescence (RTP). The effect of post-synthesis chemical treatment with citric acid or urea on the optical properties of composites was studied: the increase in carboxy and carbonyl groups led to an increase of RTP signals that could be seen with the naked eye over several seconds. The fabricated composites demonstrated good stability and reversibility of RTP signals by mild heating. Based on the developed CDs, luminescent inks were used for a simple demonstration of the data encryption on paper.
Collapse
Affiliation(s)
- Irina A Arefina
- International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg 197101, Russia
| | - Daria V Erokhina
- International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg 197101, Russia
- Secondary General School No. 598, Saint Petersburg 197372, Russia
| | - Elena V Ushakova
- International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg 197101, Russia
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong Special Administrative Region of China 999077, People's Republic of China
| |
Collapse
|
5
|
Chen T, Yan D. Full-color, time-valve controllable and Janus-type long-persistent luminescence from all-inorganic halide perovskites. Nat Commun 2024; 15:5281. [PMID: 38902239 PMCID: PMC11190143 DOI: 10.1038/s41467-024-49654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Long persistent luminescence (LPL) has gained considerable attention for the applications in decoration, emergency signage, information encryption and biomedicine. However, recently developed LPL materials - encompassing inorganics, organics and inorganic-organic hybrids - often display monochromatic afterglow with limited functionality. Furthermore, triplet exciton-based phosphors are prone to thermal quenching, significantly restricting their high emission efficiency. Here, we show a straightforward wet-chemistry approach for fabricating multimode LPL materials by introducing both anion (Br-) and cation (Sn2+) doping into hexagonal CsCdCl3 all-inorganic perovskites. This process involves establishing new trapping centers from [CdCl6-nBrn]4- and/or [Sn2-nCdnCl9]5- linker units, disrupting the local symmetry in the host framework. These halide perovskites demonstrate afterglow duration time ( > 2,000 s), nearly full-color coverage, high photoluminescence quantum yield ( ~ 84.47%), and the anti-thermal quenching temperature up to 377 K. Particularly, CsCdCl3:x%Br display temperature-dependent LPL and time-valve controllable time-dependent luminescence, while CsCdCl3:x%Sn exhibit forward and reverse excitation-dependent Janus-type luminescence. Combining both experimental and computational studies, this finding not only introduces a local-symmetry breaking strategy for simultaneously enhancing afterglow lifetime and efficiency, but also provides new insights into the multimode LPL materials with dynamic tunability for applications in luminescence, photonics, high-security anti-counterfeiting and information storage.
Collapse
Affiliation(s)
- Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
6
|
Zhao H, Jia X, Zhang M, Zhu L. Construction of Carbon Dots@LiCl-polyacrylamide with Humidity-Induced Ultralong Room-Temperature Phosphorescence to Fluorescence and Rigid-to-Flexible Transition Behavior. Macromol Rapid Commun 2024; 45:e2300538. [PMID: 37877956 DOI: 10.1002/marc.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Indexed: 10/26/2023]
Abstract
The continuous advancement of luminescent materials has placed increasingly stringent requirements on dynamic color-tunable ultralong room-temperature phosphorescence (URTP) materials that can respond to external stimuli. Nevertheless, endowing URTP materials with stimuli-response-induced dynamic color tuning is a challenging task. This study introduces a carbon dots (CDs)@LiCl-polyacrylamide (PAM) polymer system that switches from URTP to fluorescence under humidity stimuli, accompanied by a transition from rigidity to flexibility. The obtained rigid CDs@LiCl-PAM exhibits ultralong green phosphorescence with a lifetime of 560 ms in the initial state. After absorbing moisture, it becomes flexible and its phosphorescence switches off. Moreover, the emission of the CDs@LiCl-PAM film depends on the excitation wavelength. This property can potentially used in multicolored luminescence applications and displays. Moreover, multicolor luminescent patterns can be constructed in situ using the water-absorption ability of the obtained thin film and the Förster resonance energy-transfer strategy. The proposed strategy is expected to promote the interdisciplinary development of intelligent information encryption, anti-counterfeiting, and smart flexible display materials.
Collapse
Affiliation(s)
- Huimin Zhao
- Henan Key Laboratory of Photovoltaic Materials, College of Future Technical, Henan University, Zhengzhou, 450046, China
| | - Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials, College of Future Technical, Henan University, Zhengzhou, 450046, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
7
|
Guo X, Sun X, Zhang J, Huang Y, Liu X, Liu X, Xu W, Chen D. Luminescent Mechanism and Anti-Counterfeiting Application of Hydrophilic, Undoped Room-Temperature Phosphorescent Silicon Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303464. [PMID: 37670207 DOI: 10.1002/smll.202303464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Silicon nanocrystals (SiNCs) have attracted extensive attention in many advanced applications due to silicon's high natural abundance, low toxicity, and impressive optical properties. However, these applications are mainly focused on fluorescent SiNCs, little attention is paid to SiNCs with room-temperature phosphorescence (RTP) and their relative applications, especially water-dispersed ones. Herein, this work presents water-dispersible RTP SiNCs (UA-SiNCs) and their optical applications. The UA-SiNCs with a uniform particle size of 2.8 nm are prepared by thermal hydrosilylation between hydrogen-terminated SiNCs (H-SiNCs) and 10-undecenoic acid (UA). Interestingly, the resultant UA-SiNCs can exhibit tunable long-lived RTP with an average lifetime of 0.85 s. The RTP feature of the UA-SiNCs is confirmed to the n-π* transitions of their surface C═O groups. Subsequently, new dual-modal emissive UA-SiNCs-based ink is fabricated by blending with sodium alginate (SA) as the binder. The customized anticounterfeiting labels are also prepared on cellulosic substrates by screen-printing technique. As expected, UA-SiNCs/SA ink exhibits excellent practicability in anticounterfeiting applications. These findings will trigger the rapid development of RTP SiNCs, envisioning enormous potential in future advanced applications such as high-level anti-counterfeiting, information encryption, and so forth.
Collapse
Affiliation(s)
- Xin Guo
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Xuening Sun
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Jinfeng Zhang
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Yuanfen Huang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xiaohong Liu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xin Liu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Dongzhi Chen
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
8
|
Sardari N, Abdollahi A, Farokhi Yaychi M. Chameleon-like Photoluminescent Janus Nanoparticles as Full-Color Multicomponent Organic Nanoinks: Combination of Förster Resonance Energy Transfer and Photochromism for Encryption and Anticounterfeiting with Multilevel Authentication. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38035478 DOI: 10.1021/acsami.3c14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Increasing the security by the multilevel authentication mechanism was the most significant challenge in recent years for the development of anticounterfeiting inks based on photoluminescent nanomaterials. For this purpose, the greatest strategy is the use of multicomponent organic materials and a combination of Förster resonance energy transfer (FRET) with the intelligent behavior of photochromic compounds like spiropyran. Here, the hydroxyl-functionalized polymer nanoparticles were synthesized by emulsion copolymerization of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different compositions (0-30 wt % of HEMA). Results illustrated that the size of the nanoparticles changed from 64 to 204 nm, and a morphology evolution from spherical to Janus shape was observed by increasing the concentration of HEMA. Photoluminescent inks with red, green, and blue (RGB) fluorescence emissions were prepared by modification of nanoparticles containing 15 wt % of HEMA with spiropyran, fluorescein, and coumarin, respectively. To develop dual-color and multicolor photoluminescent inks that display static and dynamic emission, RGB latex samples were mixed together in different ratios and printed on cellulosic paper. Results display that the fluorescence emission of developed inks can be photoswitched between different statuses, including white to blue, green to blue, green to red/orange, purple to pink, and white to pink, utilizing the FRET phenomenon, photochromism, and a combination of both phenomena. Samples containing spiropyran displayed dynamic color changes in the emission to red, orange, and pink depending on the composition. Hence, developed dual-color and multicolor photoluminescent inks were used for printing of security tags and also painting of some hand-drawn artworks, which obtained results indicating high printability, maximum fluorescence intensity, high resolution, and fast responsivity upon UV-light irradiations of 254 nm (for static mode) and 365 nm (for dynamic mode). In addition, the multilevel authentication mechanism by a static emission under UV-light irradiation of 254 nm, a dynamic emission under UV-light irradiation of 365 nm, and photochromic color change was observed, resulting in increasing the security of developed inks. Actually, developed multicolor photoluminescent inks are the most efficient candidates for developing a new category of chameleon-like high-security anticounterfeiting inks that have tunable optical properties and complex multilevel authentication mechanisms.
Collapse
Affiliation(s)
- Negar Sardari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Amin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mojtaba Farokhi Yaychi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
9
|
Shi Y, Su W, Yuan F, Yuan T, Song X, Han Y, Wei S, Zhang Y, Li Y, Li X, Fan L. Carbon Dots for Electroluminescent Light-Emitting Diodes: Recent Progress and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210699. [PMID: 36959751 DOI: 10.1002/adma.202210699] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs), as emerging carbon nanomaterials, have been regarded as promising alternatives for electroluminescent light-emitting diodes (LEDs) owing to their distinct characteristics, such as low toxicity, tuneable photoluminescence, and good photostability. In the last few years, despite remarkable progress achieved in CD-based LEDs, their device performance is still inferior to that of well-developed organic, heavy-metal-based QDs, and perovskite LEDs. To better exploit LED applications and boost device performance, in this review, a comprehensive overview of currently explored CDs is presented, focusing on their key optical characteristics, which are closely related to the structural design of CDs from their carbon core to surface modifications, and to macroscopic structural engineering, including the embedding of CDs in the matrix or spatial arrangement of CDs. The design of CD-based LEDs for display and lighting applications based on the fluorescence, phosphorescence, and delayed fluorescence emission of CDs is also highlighted. Finally, it is concluded with a discussion regarding the key challenges and plausible prospects in this field. It is hoped that this review inspires more extensive research on CDs from a new perspective and promotes practical applications of CD-based LEDs in multiple directions of current and future research.
Collapse
Affiliation(s)
- Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wen Su
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xianzhi Song
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuyi Han
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Shuyan Wei
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Mandal T, Mishra SR, Singh V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. NANOSCALE ADVANCES 2023; 5:5717-5765. [PMID: 37881704 PMCID: PMC10597556 DOI: 10.1039/d3na00447c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Red emitting fluorescent carbon nanomaterials have drawn significant scientific interest in recent years due to their high quantum yield, water-dispersibility, photostability, biocompatibility, ease of surface functionalization, low cost and eco-friendliness. The red emissive characteristics of fluorescent carbon nanomaterials generally depend on the carbon source, reaction time, synthetic approach/methodology, surface functional groups, average size, and other reaction environments, which directly or indirectly help to achieve red emission. The importance of several factors to achieve red fluorescent carbon nanomaterials is highlighted in this review. Numerous plausible theories have been explained in detail to understand the origin of red fluorescence and tunable emission in these carbon-based nanostructures. The above advantages and fluorescence in the red region make them a potential candidate for multifunctional applications in various current fields. Therefore, this review focused on the recent advances in the synthesis approach, mechanism of fluorescence, and electronic and optical properties of red-emitting fluorescent carbon nanomaterials. This review also explains the several innovative applications of red-emitting fluorescent carbon nanomaterials such as biomedicine, light-emitting devices, sensing, photocatalysis, energy, anticounterfeiting, fluorescent silk, artificial photosynthesis, etc. It is hoped that by choosing appropriate methods, the present review can inspire and guide future research on the design of red emissive fluorescent carbon nanomaterials for potential advancements in multifunctional applications.
Collapse
Affiliation(s)
- Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shiv Rag Mishra
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
11
|
Liang P, Zheng Y, Liu F, Shao H, Hu C, Lei B, Zhang X, Liu Y, Zhuang J, Zhang X. General Synthesis of Carbon Dot-Based Composites with Triple-Mode Luminescence Properties and High Stability. JACS AU 2023; 3:2291-2298. [PMID: 37654575 PMCID: PMC10466326 DOI: 10.1021/jacsau.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Carbon dot (CD)-based luminescent materials have attracted great attention in optical anti-counterfeiting due to their excellent photophysical properties in response to ultraviolet-to-visible excitation. Hence, there is an urgent need for the general synthesis of CD-based materials with multimode luminescence properties and high stability; however, their synthesis remains a formidable challenge. Herein, CDs were incorporated into a Yb,Tm-doped YF3 matrix to prepare CDs@YF3:Yb,Tm composites. The YF3 plays a dual role, not only serving as a host for fixing rare earth luminescent centers but also functioning as a rigid matrix to stabilize the triplet state of the CDs. Under the excitation of 365 nm ultraviolet light and 980 nm near-infrared light, CDs@YF3:Yb,Tm exhibited blue fluorescence and green room-temperature phosphorescence of CDs and upconversion luminescence of Tm3+, respectively. Due to the strong protection of the rigid matrix, the stability of CDs@YF3:Yb,Tm is greatly improved. This work provides a general synthesis strategy for achieving multimode luminescence and high stability of CD-based luminescent materials and offers opportunities for their applications in advanced anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Ping Liang
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Yihao Zheng
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
- Joint
Key Laboratory of the Ministry of Education, Institute of Applied
Physics and Materials Engineering, University
of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
| | - Fengru Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Huaiyu Shao
- Joint
Key Laboratory of the Ministry of Education, Institute of Applied
Physics and Materials Engineering, University
of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
| | - Chaofan Hu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Xuejie Zhang
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Jianle Zhuang
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Xingcai Zhang
- School
of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
12
|
Zhou S, Wang F, Feng N, Xu A, Sun X, Zhou J, Li H. Room Temperature Phosphorescence Carbon Dots: Preparations, Regulations, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301240. [PMID: 37086135 DOI: 10.1002/smll.202301240] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Room temperature phosphorescence (RTP) materials have drawn considerable attention by virtue of their outstanding features. Compared with organometallic complexes and pure organic compounds, carbon dots (CDs) have emerged as a new type of RTP materials, which show great advantages, such as moderate reaction condition, low toxicity, low cost, and tunable optical properties. In this review, the important progress made in RTP CDs is summarized, with an emphasis on the latest developments. The synthetic strategies of RTP CDs will be comprehensively summarized, followed by detailed introduction of their performance regulation and potential applications in anti-counterfeiting, information encryption, sensing, light-emitting diodes, and biomedicine. Finally, the remaining major challenges for RTP CDs are discussed and new opportunities in the future are proposed.
Collapse
Affiliation(s)
- Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Feixiang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ning Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aoxue Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
13
|
Lou Q, Chen N, Zhu J, Liu K, Li C, Zhu Y, Xu W, Chen X, Song Z, Liang C, Shan CX, Hu J. Thermally Enhanced and Long Lifetime Red TADF Carbon Dots via Multi-Confinement and Phosphorescence Assisted Energy Transfer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211858. [PMID: 36893767 DOI: 10.1002/adma.202211858] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/28/2023] [Indexed: 05/19/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials, which can harvest both singlet and triplet excitons for high-efficiency emission, have attracted widespread concern for their enormous applications. Nevertheless, luminescence thermal quenching severely limits the efficiency and operating stability in TADF materials and devices at high temperature. Herein, a surface engineering strategy is adopted to obtain unique carbon dots (CDs)-based thermally enhanced TADF materials with ≈250% enhancement from 273 to 343 K via incorporating seed CDs into ionic crystal network. The rigid crystal network can simultaneously boost reverse intersystem crossing process via enhancing spin-orbit coupling between singlet and triplet states and suppressing non-radiative transition rate, contributing to the thermally enhanced TADF character. Benefiting from efficient energy transfer from triplet states of phosphorescence center to singlet states of CDs, TADF emission at ≈600 nm in CDs displays a long lifetime up to 109.6 ms, outperforming other red organic TADF materials. Thanks to variable decay rates of the delayed emission centers, time and temperature-dependent delayed emission color has been first realized in CDs-based delayed emission materials. The CDs with thermally enhanced and time-/temperature-dependent emission in one material system can offer new opportunities in information protection and processing.
Collapse
Affiliation(s)
- Qing Lou
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Niu Chen
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Jinyang Zhu
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kaikai Liu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Chao Li
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Yongsheng Zhu
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, P. R. China
| | - Xu Chen
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Zhijiang Song
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Changhao Liang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Chong-Xin Shan
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Junhua Hu
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Longzihu New Energy Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
14
|
Wu Y, Yu Liu Q, Qi Bu Z, Xia Quan M, Yang Lu J, Tao Huang W. Colorimetric multi-channel sensing of metal ions and advanced molecular information protection based on fish scale-derived carbon nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122291. [PMID: 36603276 DOI: 10.1016/j.saa.2022.122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Some nanosystems based on carbon nanomaterials have been used for fluorescent chemical/biosensing, elementary information processing, and textual coding. However, little attention has been paid to utilizing biowaste-derived carbon nanomaterials for colorimetric multi-channel sensing and advanced molecular information protection (including text and pattern information). Herein, fish scale-derived carbon nanoparticles (FSCN) were prepared and used for colorimetric detection of metal ions, encoding, encrypting and hiding text- and pattern-based information. The morphology and composition of FSCN were analyzed by TEM, XRD, FTIR, and XPS, and it was found that the FSCN-based multi-channel colorimetric sensing system can detect Cr6+ (detection limit of 56.59 nM and 13.32 nM) and Fe3+ (detection limit of 81.55 nM) through the changes of absorption intensity at different wavelengths (272, 370, and 310 nm). Moreover, the selective responses of FSCN to 20 kinds of metal ions can be abstracted into a series of binary strings, which can encode, hide, and encrypt traditional text-based and even two-dimensional pattern-based information. The preparation of carbon nanomaterials derived from waste fish scales can stimulate other researcheres' enthusiasm for the development and utilization of wastes and promoting resource recycling. Inspired by this work, more researches will continue to explore the world of molecular information technology.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiao Yang Lu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| |
Collapse
|
15
|
Wu Y, Chen X, Wu W. Multiple Stimuli-Response Polychromatic Carbon Dots for Advanced Information Encryption and Safety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206709. [PMID: 36642825 DOI: 10.1002/smll.202206709] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Optical information encryption and safety have aroused great attention since they are closely correlated to data protection and information safety. The development of multiple stimuli-response optical materials for constructing large-capacity information encryption and safety is very important for practical applications. Carbon dots (CDs) have many gratifying merits, such as polychromatic emission, diverse luminous categories, and stable physicochemical properties, and are considered as one of the most ideal candidates for information protection. Herein, carbon core, functional groups, solvents, and other crucial factors are reviewed for outputting polychromatic emission of multiple luminous categories. In particular, substrate engineering strategies have been emphasized for their critical role in yielding excellent optical features of multiple luminous categories. High-capacity information encryption and safety strategies are reviewed by relying on the rich optical properties of CDs, such as polychromatic emission, multiple luminous categories of fluorescence, afterglow, and upconversion, as well as external-stimuli-assisted optical changes. Some perspectives for preparing excellent CDs and further developing information security strategies are proposed. This review provides a good reference for the manipulation of polychromatic CDs and the development of next-generation information encryption and safety.
Collapse
Affiliation(s)
- Youfusheng Wu
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao Chen
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
16
|
Orthogonal luminescence lifetime encoding by intermetallic energy transfer in heterometallic rare-earth MOFs. Nat Commun 2023; 14:981. [PMID: 36813785 PMCID: PMC9947006 DOI: 10.1038/s41467-023-36576-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Lifetime-encoded materials are particularly attractive as optical tags, however examples are rare and hindered in practical application by complex interrogation methods. Here, we demonstrate a design strategy towards multiplexed, lifetime-encoded tags via engineering intermetallic energy transfer in a family of heterometallic rare-earth metal-organic frameworks (MOFs). The MOFs are derived from a combination of a high-energy donor (Eu), a low-energy acceptor (Yb) and an optically inactive ion (Gd) with the 1,2,4,5 tetrakis(4-carboxyphenyl) benzene (TCPB) organic linker. Precise manipulation of the luminescence decay dynamics over a wide microsecond regime is achieved via control over metal distribution in these systems. Demonstration of this platform's relevance as a tag is attained via a dynamic double encoding method that uses the braille alphabet, and by incorporation into photocurable inks patterned on glass and interrogated via digital high-speed imaging. This study reveals true orthogonality in encoding using independently variable lifetime and composition, and highlights the utility of this design strategy, combining facile synthesis and interrogation with complex optical properties.
Collapse
|
17
|
Shi H, Wu Y, Xu J, Shi H, An Z. Recent Advances of Carbon Dots with Afterglow Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207104. [PMID: 36810867 DOI: 10.1002/smll.202207104] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs) have gradually become a new generation of nano-luminescent materials, which have received extensive attention due to excellent optical properties, wide source of raw materials, low toxicity, and good biocompatibility. In recent years, there are many reports on the luminescent phenomenon of CDs, and great progress has been achieved. However,there are rarely systematic summaries on CDs with persistent luminescence. Here, a summary of the recent progress on persistent luminescent CDs, including luminous mechanism, synthetic strategies, property regulation, and potential applications, is given. First, a brief introduction is given to the development of CDs luminescent materials. Then, the luminous mechanism of afterglow CDs from room temperature phosphorescence (RTP), delayed fluorescence (DF), and long persistent luminescence (LPL) is discussed. Next, the constructed methods of luminescent CDs materials are summarized from two aspects, including matrix-free self-protected and matrix-protected CDs. Moreover, the regulation of afterglow properties from color, lifetime, and efficiency is presented. Afterwards, the potential applications of CDs, such as anti-counterfeiting, information encryption, sensing, bio-imaging, multicolor display, LED devices, etc., are reviewed. Finally, an outlook on the development of CDs materials and applications is proposed.
Collapse
Affiliation(s)
- Huixian Shi
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yang Wu
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Jiahui Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
18
|
Jie Y, Wang D, Chen R, Zhang J, Li W, Huang J, Dai P, Gao Y, Li F, Fang J. Deep-blue thermally activated delayed fluorescence carbon dots with ultralong lifetime. NANOSCALE 2023; 15:3337-3344. [PMID: 36722749 DOI: 10.1039/d2nr05104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs) with deep-blue thermally activated delayed fluorescence (TADF) of more than 2 s were developed, exhibiting the longest lifetime to date. In contrast to the established deep-blue TADF systems, this developed CD-based system (BNCDs) could be facilely and effectively synthesized, and more impressively, the emission lasted for more than 16 s (to the naked eye). XRD, TEM, FT-IR, and XPS analyses were conducted, and structural characterizations indicated that the CDs formed hydrogen bonding with B2O3. The temperature-dependent photoluminescence (PL) spectra demonstrated the existence of thermally activated delayed fluorescence in the composite. Further studies revealed that the B2O3 matrix restricted the vibration and rotation of CD chromophores and suppressed the non-radiative recombination of triplet excitons. Last but not least, potential applications in bioimaging, anti-counterfeiting, and information encryption were also explored. This work can provide new insights for developing metal-free and ultralong lifetime afterglow materials.
Collapse
Affiliation(s)
- Yanni Jie
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Dong Wang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Jingyu Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Wenqi Li
- National Engineering Research Center for Miniaturized Detection Systems, Shaanxi Lifegene Company, School of Life Sciences, Northwest University, Xi'an, 710021, China
| | - Jianfeng Huang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems, Shaanxi Lifegene Company, School of Life Sciences, Northwest University, Xi'an, 710021, China
| | - Yang Gao
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuchun Li
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Jiawen Fang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
19
|
Wang K, Qu L, Yang C. Long-Lived Dynamic Room Temperature Phosphorescence from Carbon Dots Based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206429. [PMID: 36609989 DOI: 10.1002/smll.202206429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As a type of room temperature phosphorescence (RTP) material, carbon dots (CDs) always show short lifetime and low phosphorescence efficiency. To counter these disadvantages, several strategies, such as embedding in rigid matrix, introducing of heteroatom, crosslink-enhanced emission, etc., are well developed. Consequently, lots of CDs-based RTP materials are obtained. Doping of CDs into various matrix is the dominant method for preparation of long-lived CDs-based RTP materials so far. The desired CDs@matrix composites always display outstanding RTP performances. Meanwhile, matrix-free CDs and carbonized polymer dots-based RTP materials are also widely developed. Amounts of CDs possessing ultra-long lived, multiple colored, and dynamic RTP emission are successfully obtained. Herein, the recent progress achieved in CDs-based RTP materials as well as the corresponding efficient strategies and emission mechanisms are summarized and reviewed in detail. Due to CDs-based RTP materials possess excellent chemical stability, photostability and low biological toxicity, they exhibit great application potential in the fields of anti-counterfeiting, data encryption, and biological monitoring. The application of the CDs-based RTP materials is also introduced in this review. As a promising functional material, development of long wavelength RTP emitting CDs with long lifetime is still challengeable, especially for the red and near-infrared emitting RTP materials.
Collapse
Affiliation(s)
- Kaiti Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
20
|
Zheng X, Han Q, Lin Q, Li C, Jiang J, Guo Q, Ye X, Yuan WZ, Liu Y, Tao X. A processable, scalable, and stable full-color ultralong afterglow system based on heteroatom-free hydrocarbon doped polymers. MATERIALS HORIZONS 2023; 10:197-208. [PMID: 36331106 DOI: 10.1039/d2mh00998f] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although room-temperature phosphorescence (RTP) organic materials are a widely-studied topic especially popular in recent decades, long-lived RTP able to fulfil broad time-resolved application requirements reliably, are still rare. Polymeric materials doped with phosphorescent chromophores generally feature high productivity and diverse applications, compared with their crystalline counterparts. This study proves that pure polycyclic aromatic hydrocarbons (PAHs) may even outperform chromophores containing hetero- or heavy-atoms. Full-color (blue, green, orange and red) polymer-PAHs with lifetimes >5000 ms under ambient conditions are constructed, which provide impressive values compared to the widely reported polymer-based RTP materials in the respective color regions. The polymer-PAHs could be fabricated on a large-scale using various methods (solution, melt and in situ polymerization), be processed into diverse forms (writing ink, fibers, films, and complex 3D architectures), and be used in a range of applications (anti-counterfeiting, information storage, and oxygen sensors). Plus their environmental (aqueous) stability makes the polymer-PAHs a promising option to expand the portfolio of organic RTPs.
Collapse
Affiliation(s)
- Xiaoxin Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Quanxiang Han
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Qinglian Lin
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Cuicui Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Jinke Jiang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Qing Guo
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Xin Ye
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
21
|
Ding ZZ, Shen CL, Han JF, Zheng GS, Ni QC, Song RW, Liu KK, Zang JH, Dong L, Lou Q, Shan CX. In Situ Confining Citric Acid-Derived Carbon Dots for Full-Color Room-Temperature Phosphorescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022:e2205916. [PMID: 36494158 DOI: 10.1002/smll.202205916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Room-temperature phosphorescence has received much attention owing to its potential applications in information encryption and bioelectronics. However, the preparation of full-color single-component-derived phosphorescent materials remains a challenge. Herein, a facile in situ confining strategy is proposed to achieve full-color phosphorescent carbon dots (CDs) through rapid microwave-assisted carbonization of citric acid in NaOH. By tuning the mass ratio of citric acid and NaOH, the obtained CDs exhibit tunable phosphorescence wavelengths ranging from 483 to 635 nm and alterable lifetimes from 58 to 389 ms with a synthesis yield of up to 83.7% (>30 g per synthesis). Theoretical calculations and experimental results confirm that the formation of high-density ionic bonds between cations and CDs leads to efficient afterglow emission via the dissociation of CD arrangement, and the evolution of the aggregation state of CDs results in redshifted phosphorescence. These findings provide a strategy for the synthesis of new insights into achieving and manipulating room-temperature phosphorescent CDs, and prospect their applications in labeling and information encryption.
Collapse
Affiliation(s)
- Zhong-Zheng Ding
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng-Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jiang-Fan Han
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Guang-Song Zheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing-Chao Ni
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Run-Wei Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jin-Hao Zang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
22
|
Tomskaya A, Asanov IP, Yushina I, Rakhmanova MI, Smagulova S. Optical Properties of Tricarboxylic Acid-Derived Carbon Dots. ACS OMEGA 2022; 7:44093-44102. [PMID: 36506125 PMCID: PMC9730746 DOI: 10.1021/acsomega.2c05503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Herein, we report the characterization of two types of luminescent carbon dots (CDs) synthesized by the hydrothermal treatment of citric acid and trans-aconitic acid by using ammonia solution as a nitrogen dopant. The lateral size range of nanoparticles for CDs lies in the range of 3-15 nm. The intense blue photoluminescence (PL) was emitted by the CDs at around 409-435 nm under the excitation of 320 nm. The PL quantum yield of the synthesized CDs ranged from 26.4 to 51%. Our results of the structural and optical properties of CDs imply that molecular fluorophores are an important part of the structure; in particular, the main contribution to the PL is carried by the fluorophores based on citrazinic acid derivatives, which formed during the synthesis of CDs.
Collapse
Affiliation(s)
- Aleksandra Tomskaya
- A.M.
Prokhorov General Physics Institute, RAS, Moscow 119991, Russia
- Moscow
Institute of Physics and Technology, Dolgoprudny 141701, Russia
- North-Eastern
Federal University, Yakutsk 670000, Russia
| | - Igor P. Asanov
- Nikolaev
Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Irina Yushina
- Nikolaev
Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
23
|
Cheng Q, Chen Z, Hu L, Song Y, Zhu S, Liu R, Zhu H. Spatial effect and resonance energy transfer for the construction of carbon dots composites with long-lived multicolor afterglow for advanced anticounterfeiting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Chai H, Ma Y, Yuan Z, Li Y, Liu G, Chen L, Tian Y, Tan W, Ma J, Zhang G. A ratiometric fluorescence sensor based on carbon dots and two-dimensional porphyrinic MOFs for on-site monitoring of sulfide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Zhang Y, Li M, Lu S. Rational Design of Covalent Bond Engineered Encapsulation Structure toward Efficient, Long-Lived Multicolored Phosphorescent Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022:e2206080. [PMID: 36436834 DOI: 10.1002/smll.202206080] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Multicolored phosphorescent materials based on carbon dots (CDs) constructed using the same or similar precursors with long lifetimes are conducive to their wide range of practical applications due to the developed compatibility. Herein, a universal method is developed to prepare long-lived multicolored phosphorescent CD-based composites for which heavy-metal doping is not required. The multicolored CDs are encapsulated in silica via silane hydrolysis, which forms many covalent SiOC and SiC bonds; hence, the vibrations and rotations of the luminescent centers on the CD surfaces are hindered. The transformation of SiOC to a more rigid SiC moiety occurs during high-temperature calcination. Furthermore, during calcination, the silica collapses, resulting in more tightly encapsulated CDs. The synergistic effect of these two calcination phenomena produces blue, green, yellow, and red phosphorescence, at wavelengths spanning 465 to 680 nm and with lifetimes of up to 2.11 s. Taking advantage of their superior phosphorescence performances, the CD-based composites are successfully applied to 3D multichannel information storage and encryption.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Manyu Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
26
|
Song H, Zhang R, Zhao Z, Wu X, Zhang Y, Wang J, Li B. RGB Tricolor and Multimodal Dynamic Optical Information Encryption and Decoding for Anti-Counterfeiting Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45562-45572. [PMID: 36125983 DOI: 10.1021/acsami.2c12387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional optical anti-counterfeiting strategies are based on the single-color emission, which are easily deciphered and thus greatly limited in the application of information security. Herein, a multimodal dynamic optical information coding with red, green, and blue (RGB) tricolors has been developed by photoluminescence (PL), persistent luminescence (PersL), thermally stimulated luminescence (TSL), and thermally stimulated persistent luminescence (TSPL). The BaSi2O2N2:Eu2+ phosphors with a blue emission peak at 494 nm were used as the crucial blue optical information coding material and exhibited the distinctive response properties to light, heat, and force stimuli with intrinsic trap depths of 0.674 and 0.82 eV. More importantly, by combining the red Sr2Si5N8:Eu2+,Dy3+ and green SrSi2O2N2:Eu2+,Dy3+ nitride phosphors, a RGB tricolor and multimodal strategy has been successfully developed for anti-counterfeiting applications. The "RGB tricolor flower" with RGB emissions is given as a typical example to achieve the dynamic display of optical information encryption and decoding through the various PL, PersL, TSL, and TSPL modes. Finally, the traditional quick response (QR) code mechanism has been integrated into the design of multi-information encrypted RGB tricolor anti-counterfeiting devices with different identifiabilities of the encrypted information in natural light, PL, PersL, TSL, and TSPL modes. The laminated layers of RGB QR code patterns containing different specific information, such as "DLPU" and "116034", can be effectively recognized in the corresponding modes. The design strategy of RGB tricolor and multimodal optical information encryption and decoding devices in this work greatly improves the security level of advanced optical information technologies and extends the potential applications in dynamic anti-counterfeiting fields.
Collapse
Affiliation(s)
- Hao Song
- Research Institute of Photonics, Dalian Polytechnic University, Dalian 116034, China
| | - Ran Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan 030001, China
| | - Zihan Zhao
- Research Institute of Photonics, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan 030001, China
| | - Yanjie Zhang
- Research Institute of Photonics, Dalian Polytechnic University, Dalian 116034, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan 030001, China
| | - Jinlong Wang
- Research Institute of Photonics, Dalian Polytechnic University, Dalian 116034, China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
27
|
Ma YJ, Qi Z, Xiao G, Fang X, Yan D. Metal-Halide Coordination Polymers with Excitation Wavelength- and Time-Dependent Ultralong Room-Temperature Phosphorescence. Inorg Chem 2022; 61:16477-16483. [PMID: 36190957 DOI: 10.1021/acs.inorgchem.2c02750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic hybrids with ultralong room-temperature phosphorescence (RTP) have potential applications in many fields, including optical communications, anticounterfeiting, encryption, bioimaging, and so on. Herein, we report two isostructural one-dimensional zinc-organic halides as coordination polymers ZnX2(bpp) (X = Cl, 1; Br, 2; bpp = 1,3-di(4-pyridyl)propane) with excitation wavelength- and time-dependent ultralong RTP properties. The dynamic multicolor afterglow can be assigned to the emission of the pristine ligand bpp and its interactions with halogen atoms. Experiments and theoretical calculations both suggest that ZnX2 is crucial for ultralong RTP: (a) the metal coordination and X...π bonds in coordination polymers fix the bpp molecules and suppress the nonradiative transitions; (b) the spin-orbital coupling of coordination polymers is largely enhanced relative to the bpp because of the heavy atom effect; and (c) the charge transfer exists between halogens and bpp ligand. Therefore, this work not only presents metal-halide coordination polymers with excitation wavelength- and time-dependent RTP properties, but also provides a facile method for the new types of dynamic multicolor afterglow materials.
Collapse
Affiliation(s)
- Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Zhenhong Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
28
|
Yan F, Yi C, Hao Z, Wang Y, Xu M, Zhou K, Shi F, Xu J. Solid-state carbon dots with orange phosphorescence and tunable fluorescence via in-situ growth in phthalimide crystal matrix. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Rao L, Zhang Q, Sun B, Wen M, Zhang J, Zhong G, Fu T, Niu X. Multicolor Luminescent Carbon Dots: Tunable Photoluminescence, Excellent Stability, and Their Application in Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3132. [PMID: 36144918 PMCID: PMC9503501 DOI: 10.3390/nano12183132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Carbon dots (CDs) are attracting much interest due to their excellent photoelectric properties and wide range of potential applications. However, it is still a challenge to regulate their bandgap emissions to achieve full-color CDs with high emissions. Herein, we propose an approach for producing full-color emissive CDs by employing a solvent engineering strategy. By only tuning the volume ratio of water and dimethylformamide (H2O/DMF), the photoluminescence (PL) emission wavelengths of the CDs can be changed from 451 to 654 nm. Different fluorescence features of multicolor CDs were systematically investigated. XRD, SEM, TEM, Abs/PL/PLE, XPS, and PL decay lifetime characterizations provided conclusive evidence supporting the extent to which the solvent controlled the dehydration and carbonization processes of the precursors, leading to a variation in their emission color from red to blue. The as-prepared CDs exhibited excellent and stable fluorescence performance even after being heated at 80 °C for 48 h and with UV light continuously irradiated for 15 h. Based on their excellent fluorescent properties and photothermal stability, bright multicolor light-emitting diodes with a high CRI of up to 91 were obtained. We anticipate that these full-color emissive CDs are beneficial for applications in lighting, display, and other fields.
Collapse
Affiliation(s)
- Longshi Rao
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Qing Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Bin Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Mingfu Wen
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Jiayang Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Guisheng Zhong
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Ting Fu
- Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaodong Niu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| |
Collapse
|
30
|
Zhao S, Chen L, Yang Y, Liu X. Research progress of phosphorescent probe for biological imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Lei M, Zheng J, Yang Y, Yan L, Liu X, Xu B. Carbon Dots-Based Delayed Fluorescent Materials: Mechanism, Structural Regulation and Application. iScience 2022; 25:104884. [PMID: 36039289 PMCID: PMC9418853 DOI: 10.1016/j.isci.2022.104884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Delayed fluorescent (DF) materials have high internal quantum efficiency because of the triplet excitons involved in the radiation transition, and the spin-forbidden transition can effectively improve their luminescent lifetime. Compared with traditional afterglow materials including metal-containing inorganic coordination compounds and organic compounds, the DF materials based on carbon dots (CDs) have drawn extensive attention because of their advantages of low toxicity, environmental friendliness, stable luminescence, easy preparation and low cost. Most CDs-based DF materials can be realized by embedding CDs in matrix with covalent bonds, hydrogen bonds or/and other supramolecular interactions. Recently, matrix-free self-protective CDs-based DF materials are emerging. This review systematically summarizes the DF mechanism and structural regulation strategies of CDs-based DF materials, and the applications of CDs-based DF materials in anti-counterfeiting, information encryption, temperature sensing and other fields are introduced. Finally, the existing problems and future potentials of CDs-based DF materials are proposed and prospected.
Collapse
Affiliation(s)
- Mingxiu Lei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jingxia Zheng
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Corresponding author
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Corresponding author
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| |
Collapse
|
32
|
Liang P, Zheng Y, Zhang X, Wei H, Xu X, Yang X, Lin H, Hu C, Zhang X, Lei B, Wong WY, Liu Y, Zhuang J. Carbon Dots in Hydroxy Fluorides: Achieving Multicolor Long-Wavelength Room-Temperature Phosphorescence and Excellent Stability via Crystal Confinement. NANO LETTERS 2022; 22:5127-5136. [PMID: 35700100 DOI: 10.1021/acs.nanolett.2c00603] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) have aroused widespread interest in the construction of room-temperature phosphorescent (RTP) materials. However, it is a great challenge to obtain simultaneous multicolor long-wavelength RTP emission and excellent stability in CD-based RTP materials. Herein, a novel and universal "CDs-in-YOHF" strategy is proposed to generate multicolor and long-wavelength RTP by confining various CDs in the Y(OH)xF3-x (YOHF) matrix. The mechanism of the triplet emission of CDs is related to the space confinement, the formation of hydrogen bonds and C-F bonds, and the electron-withdrawing fluorine atoms. Remarkably, the RTP lifetime of orange-emissive CDs-o@YOHF is the longest among the reported single-CD-matrix composites for emission above 570 nm. Furthermore, CDs-o@YOHF exhibited higher RTP performance at long wavelength in comparison to CDs-o@matrix (matrix = PVA, PU, urea, silica). The resulting CDs@YOHF shows excellent photostability, thermostability, chemical stability, and temporal stability, which is rather favorable for information security, especially in a complex environment.
Collapse
Affiliation(s)
- Ping Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| | - Yihao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Haopeng Wei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| | - Xiaokai Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| | - Xianfeng Yang
- Analytical and Testing Center, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Huihong Lin
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, People's Republic of China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong People's Republic of China
- Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| |
Collapse
|
33
|
Liu Y, Zheng C, Yang B. Phosphorus and Nitrogen Codoped Carbonized Polymer Dots with Multicolor Room Temperature Phosphorescence for Anticounterfeiting Painting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8304-8311. [PMID: 35771763 DOI: 10.1021/acs.langmuir.2c00738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visible spectral afterglow materials offer unprecedented potential for a myriad of applications due to their long luminescence characteristics, but it is still insufficient to prepare matrix-free materials with multicolor afterglow including the blue color. In this study, we successfully developed phosphorus and nitrogen codoped carbonized polymer dots (CPDs) with multicolor room temperature phosphorescence (RTP) including the blue color by microwave-assisted chemical reactions under different reaction time. After ceasing UV light, all four prepared CPDs were able to emit vivid RTP with a maximum absolute phosphorescence quantum yield (QY) of 59.41% and a maximum lifetime of about 1 s (yellow CPDs). With the increase of microwave reaction time, the RTP color of CPDs showed a gradual blue shift from yellow to blue. The reason why the RTP color of CPDs showed a gradual blue shift was the decrease of C═O units as the extension of the microwave reaction time. In view of their fascinating multicolor RTP properties, potential applications of the four CPDs in the field of anticounterfeiting painting were presented and demonstrated. This work would inspire other researchers to enrich multicolor afterglow materials.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Chengyu Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
34
|
Facile Synthesis of Multi-Emission Nitrogen/Boron Co-Doped Carbon Dots from Lignin for Anti-Counterfeiting Printing. Polymers (Basel) 2022; 14:polym14142779. [PMID: 35890555 PMCID: PMC9316793 DOI: 10.3390/polym14142779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022] Open
Abstract
The transformation of lignin with natural aromatic structure into value-added carbon dots (CDs) achieves a win-win situation for low-cost production of novel nanomaterials and reasonable disposal of biomass waste. However, it remains challenging to produce multi-emission CDs from biomass for advanced applications. Herein, a green and facile approach to preparing multi-emission CDs from alkali lignin via N and B co-doping is developed. The obtained N and B co-doped CDs (NB-CDs) show multi-emission fluorescence centers at 346, 428 and 514 nm under different excitations. As the doping amount of N and B increases, the fluorescence emission band gradually shifts to 428 and 514 nm, while that at 346 nm decreases. The fluorescence mechanism is explored through the research of the structure, composition and optical performance of NB-CDs in combination with density functional theory (DFT) calculations. It demonstrates that the effect of doping with B-containing functional groups on the fluorescence emission behavior is multivariate, which may be the crucial contribution to the unique multi-emission fluorescence of CDs. The multi-emission NB-CDs with prominent stability are applied for multilevel anti-counterfeiting printing. It provides a promising direction for the sustainable and advanced application of biomass-derived CDs, and the theoretical results highlight a new insight into the deep understanding of the multi-emission fluorescence mechanism.
Collapse
|
35
|
Matrix-free nitrogen-doped carbon dots with room temperature phosphorescence for information encryption and temperature detection. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Meng Z, Wu Y, Ren J, Li X, Zhang S, Wu S. Upconversion Nanoparticle-Integrated Bilayer Inverse Opal Photonic Crystal Film for the Triple Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12562-12570. [PMID: 35230796 DOI: 10.1021/acsami.1c25059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical anticounterfeiting plays a vital role in information security because it can be recognized by the naked eye and is difficult to imitate. Herein, a hydrophilic modified upconversion nanoparticle (M-UCNP)-integrated bilayer inverse opal photonic crystal (IOPC) film was designed in which the luminescent M-UCNPs were deposited on the surface of the optimized bilayer structure with double photonic stop bands. The structure which can modulate light to produce structural colors can also enhance the upconversion luminescence (UCL) to improve the anticounterfeiting effect synergistically. On the one hand, the reflection colors from green to blue were observed in the specular angles on the front (540-layer) of the film. Meanwhile, the scattering colors under nonspecular angles from red to blue on the back (808-layer) appeared in the natural light. On the other hand, the bilayer structure in which the 808-layer functions as a "secondary excitation source" to improve the intensity of the excitation light on M-UCNPs and the 540-layer reflects the emission light of the M-UCNPs to enhance the UCL intensity endows the film with good night vision ability. Finally, the dual-mode structural colors and enhanced UCL of the patterned film work together to realize triple anticounterfeiting in banknotes.
Collapse
Affiliation(s)
- Zhipeng Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yue Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jie Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
37
|
|
38
|
Wang W, Mei R, Zhao Q, Liu C, Chen H, Su S, Wang S. Activated Triplet Exciton Release for Highly Efficient Room-Temperature Phosphorescence Based on S,N-Doped Polymeric Carbon Nitride. J Phys Chem Lett 2022; 13:726-732. [PMID: 35025526 DOI: 10.1021/acs.jpclett.1c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymeric carbon nitride (PCN) shows great potential applications in the areas of sustainable energy (photocatalysis and photoelectric conversion, as well as other important catalytic reactions), biosensing, biomedicine, devices, and more, but efficient phosphorescence is very scarce because of the lack of an effective synthetic method and an unsettled phosphorescent mechanism. Herein, we report a strategy to promote efficient phosphorescence to activate triplet exciton release by introduction of S and N elements. PCN could be synthesized by thiourea or urea (named S,N-PCN and N-PCN, respectively) at a relatively low reaction temperature (260 °C). S,N-PCN exhibits phosphorescence quantum yield (4.15%) higher than that (0.41%) for N-PCN. The introduction of C=S and C≡N groups in S,N-PCN networks could boost the intersystem crossing (ISC), leading to small singlet-triplet energy (ΔEST) up to more triplet exciton generation. Considering the excellent optical stability of PCN, a preliminary application of visible-light-excited PCN in advanced anticounterfeiting is proposed.
Collapse
Affiliation(s)
- Wenhai Wang
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P.R. China
| | - Ruolan Mei
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P.R. China
| | - Qixiao Zhao
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P.R. China
| | - Cong Liu
- Key Laboratory of the oretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Hongyu Chen
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P.R. China
| | - Shichen Su
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P.R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, P.R. China
| | - Shuangpeng Wang
- Instituted of Applied Physics and Materials Engineering, University of Macau, 999078, Macau
| |
Collapse
|
39
|
Deneff JI, Rohwer LES, Butler KS, Valdez NR, Rodriguez MA, Luk TS, Sava Gallis DF. Covert MOF-Based Photoluminescent Tags via Tunable Linker Energetics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3038-3047. [PMID: 34995439 DOI: 10.1021/acsami.1c20432] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Optical anticounterfeiting tags utilize the photoluminescent properties of materials to encode unique patterns, enabling identification and validation of important items and assets. These tags must combine optical complexity with ease of production and authentication to both prevent counterfeiting and to remain practical for widespread use. Metal-organic frameworks (MOFs) based on polynuclear, rare earth clusters are ideal materials platforms for this purpose, combining fine control over structure and composition, with tunable, complex energy transfer mechanisms via both linker and metal components. Here we report the design and synthesis of a set of heterometallic MOFs based on combinations of Eu, Nd, and Yb with the tetratopic linker 1,3,6,8-tetrakis(4-carboxyphenyl)pyrene. The energetics of this linker facilitate the intentional concealment of the visible emissions from Eu while retaining the infrared emissions of Nd and Yb, creating an optical tag with multiple covert elements. Unique to the materials system reported herein, we document the occurrence of a previously not observed 11-metal cluster correlated with the presence of Yb in the MOFs, coexisting with a commonly encountered 9-metal cluster. We demonstrate the utility of these materials as intricate optical tags with both rapid and in-depth screening techniques, utilizing orthogonal identifiers across composition, emission spectra, and emission decay dynamics. This work highlights the important effect of linker selection in controlling the resulting photoluminescent properties in MOFs and opens an avenue for the targeted design of highly complex, multifunctional optical tags.
Collapse
Affiliation(s)
- Jacob I Deneff
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Lauren E S Rohwer
- Advanced Packaging/Integration Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Nichole R Valdez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mark A Rodriguez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Ting S Luk
- Nanostructure Physics Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
40
|
Lei M, Xie Y, Chen L, Liu X, Yang Y, Zheng J, Li Q. Surface state modulation of blue-emitting carbon dots with high quantum yield and high product yield. RSC Adv 2022; 12:27431-27441. [PMID: 36276008 PMCID: PMC9513825 DOI: 10.1039/d2ra05623b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Carbon dots (CDs) with high quantum yield (QY) and product yield (PY) were achieved benefited from higher content of CO bond, pyrrolic N, and pyridinic N, as well as lower content of amino N and crosslinking structure of CDs.
Collapse
Affiliation(s)
- Mingxiu Lei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanting Xie
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Xinghua Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Jingxia Zheng
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Qiang Li
- Intervention Department of the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
41
|
Miao W, Zou WS, Zhao Q, Wang Y, Chen X, Wu S, Liu Z, Xu T. Coupling room-temperature phosphorescence carbon dots onto active layer for highly efficient photodynamic antibacterial chemotherapy and enhanced membrane properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Zhu L, Shen D, Wang Q, Luo KH. Green Synthesis of Tunable Fluorescent Carbon Quantum Dots from Lignin and Their Application in Anti-Counterfeit Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56465-56475. [PMID: 34784479 DOI: 10.1021/acsami.1c16679] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lignin converted to carbon quantum dots (CQDs) attracts tremendous attention for large-scale production of carbon nanomaterials and value-added disposal of biomass wastes (such as the black liquor from pulping industry and the residue from hydrolysis of biomass). The green synthesis of lignin-derived CQDs is reported via a facile two-step method with the adjustment of acid additives containing N or S. The resulting series of CQDs exhibit bright fluorescence in gradient colors from blue to yellowish green, among which the N, S co-doped CQDs with the addition of 2,4-diaminobenzene sulfonic acid show an optimal fluorescence quantum yield (QY) of 30.5%. The red-shift photoluminescence emission behaviors of these CQDs can be attributed to the increased graphitization degree and reduced optical energy band gaps (2.47 → 2.17 eV) with regard to the incorporation of various heteroatoms. The improved fluorescence QYs are consistent with the variation trend of the increased N/C content in the CQDs. The yellowish green-emissive CQDs with bright fluorescence, strong water solubility, and excellent chemical stability perform well in anti-counterfeiting printing. The promising and sustainable approach for the synthesis of tunable fluorescent CQDs exhibits the value-added utilization of lignin for the fluorescence ink production.
Collapse
Affiliation(s)
- Lingli Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| | - Qi Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310087, Zhejiang, P. R. China
| | - Kai Hong Luo
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| |
Collapse
|
43
|
Tang G, Wang C, Zhang K, Wang Y, Yang B. Deep-Blue Room-Temperature Phosphorescent Carbon Dots/Silica Microparticles from a Single Raw Material. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13187-13193. [PMID: 34726927 DOI: 10.1021/acs.langmuir.1c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Blue-emitting room-temperature phosphorescence (RTP) materials have always been one of the major challenges in the field of RTP materials. Deep-blue (430 nm) RTP emitting silica microparticles were prepared via a one-step hydrothermal reaction from a single raw material of 3-aminopropyltriethoxysilane (APTES). APTES provided amino groups and ethyl groups as a nitrogen and carbon source, which was further condensed to be nitrogen-contained carbon dots (CDs). Besides, the siloxane side of APTES was hydrolyzed and formed silica microparticles. The CDs with the potential chromophores (C═O and C-N etc.) were connected to SiO2 via Si-C bonds of APTES. The covalent bonds and the rigid silica network effectively restricted the motions of potential chromophores of the CDs and reduced the energy gap between the singlet state and triplet state, which was favorable to the RTP. It was believed that this work will guide researchers to realize other blue or deep-blue RTP materials.
Collapse
Affiliation(s)
- Guoqiang Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Congcong Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
44
|
Tang S, Yang T, Zhao Z, Zhu T, Zhang Q, Hou W, Yuan WZ. Nonconventional luminophores: characteristics, advancements and perspectives. Chem Soc Rev 2021; 50:12616-12655. [PMID: 34610056 DOI: 10.1039/d0cs01087a] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonconventional luminophores devoid of remarkable conjugates have attracted considerable attention due to their unique luminescence behaviors, updated luminescence mechanism of organics and promising applications in optoelectronic, biological and medical fields. Unlike classic luminogens consisting of molecular segments with greatly extended electron delocalization, these unorthodox luminophores generally possess nonconjugated structures based on subgroups such as ether (-O-), hydroxyl (-OH), halogens, carbonyl (CO), carboxyl (-COOH), cyano (CN), thioether (-S-), sulfoxide (SO), sulfone (OSO), phosphate, and aliphatic amine, as well as their grouped functionalities like amide, imide, anhydride and ureido. They can exhibit intriguing intrinsic luminescence, generally featuring concentration-enhanced emission, aggregation-induced emission, excitation-dependent luminescence and prevailing phosphorescence. Herein, we review the recent progress in exploring these nonconventional luminophores and discuss the current challenges and future perspectives. Notably, different mechanisms are reviewed and the clustering-triggered emission (CTE) mechanism is highlighted, which emphasizes the clustering of the above mentioned electron rich moieties and consequent electron delocalization along with conformation rigidification. The CTE mechanism seems widely applicable for diversified natural, synthetic and supramolecular systems.
Collapse
Affiliation(s)
- Saixing Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianjia Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianwen Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wubeiwen Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| |
Collapse
|
45
|
Liang YC, Cao Q, Liu KK, Peng XY, Sui LZ, Wang SP, Song SY, Wu XY, Zhao WB, Deng Y, Lou Q, Dong L, Shan CX. Phosphorescent Carbon-Nanodots-Assisted Förster Resonant Energy Transfer for Achieving Red Afterglow in an Aqueous Solution. ACS NANO 2021; 15:16242-16254. [PMID: 34623793 DOI: 10.1021/acsnano.1c05234] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Water-soluble red afterglow imaging agents based on ecofriendly nanomaterials have potential application in time-gated afterglow bioimaging due to their larger penetration depth and nondurable excitation. Herein, red afterglow imaging agents consisted of Rhodamine B (RhB) and carbon nanodots (CNDs) have been designed and demonstrated. In these agents, CNDs act as energy donors, and RhB acts as an energy acceptor. Both of them are confined into a hydrophilic silica shell to form a CNDs-RhB@silica nanocomposite. The phosphorescence emission spectrum of the CNDs and the absorption spectrum of the RhB match well, and efficient energy transfer from the CNDs to the RhB via Förster resonant energy transfer process can be achieved, with a transfer efficiency can reach 99.2%. Thus, the as-prepared nanocomposite can emit a red afterglow in aqueous solution, and the afterglow spectrum of CNDs-RhB@silica nanocomposite can extend to the first near-infrared window (NIR-I). The luminescence lifetime and afterglow quantum yield (QY) of the CNDs-RhB@silica can reach 0.91 s and 3.56%, respectively, which are the best results in red afterglow region. Time-gated in vivo afterglow imaging has been demonstrated by using the CNDs-RhB@silica as afterglow agents.
Collapse
Affiliation(s)
- Ya-Chuan Liang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xue-Yuan Peng
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Lai-Zhi Sui
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuang-Peng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xue-Ying Wu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Deng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
46
|
WU Y, LI F, LI Q, LI S, ZHAO G, SUN X, LIU P, HE G, HAN Y, CHENG L, LUO S. Acetylene hydrochlorination over tin nitrogen based catalysts: effect of nitrogen carbon-dots as nitrogen precursor. Turk J Chem 2021; 45:1463-1475. [PMID: 34849060 PMCID: PMC8596526 DOI: 10.3906/kim-2102-67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2021] [Indexed: 11/03/2022] Open
Abstract
The catalysts comprising the main active compounds of Sn-Nx were synthesized using trichlorophenylstannane ((C6H5)Cl3Sn), nitrogen carbon-dots (NCDs), and activated carbon (AC) as starting materials, and the activity and stability of catalysts was evaluated in the acetylene hydrochlorination. According to the results on the physical and chemical properties of catalysts (TEM, XRD, BET, XPS and TG), it is concluded that NCDs@AC can increase (C6H5)Cl3Sn dispersity, retard the coke deposition of (C6H5)Cl3Sn/AC and lessen the loss of (C6H5)Cl3Sn, thereby further promoting the stability of (C6H5)Cl3Sn/AC. Based on the characterization results of C2H2-TPD and HCl adsorption experiments, we proposed that the existence of Sn-Nx can effectively strengthen the reactants adsorption of catalysts. By combing the FT-IR, C2H2-TPD and Rideal-Eley mechanism, the catalytic mechanism, in which C2H2 is firstly adsorbed on (C6H5)Cl3Sn to form (C6H5)Cl3Sn-C2H2 and then reacted with HCl to produce vinyl chloride, is proposed.
Collapse
Affiliation(s)
- Yibo WU
- College of Chemistry and Enviromental Engineering, Pingding Shan University, Pingding ShanChina
- College of Chemistry and Chemical Engineering, Taiyuan University of technology, TaiyuanChina
| | - Fuxiang LI
- College of Chemistry and Chemical Engineering, Taiyuan University of technology, TaiyuanChina
| | - Qingbin LI
- College of Chemistry and Enviromental Engineering, Pingding Shan University, Pingding ShanChina
| | - Songtian LI
- College of Chemistry and Enviromental Engineering, Pingding Shan University, Pingding ShanChina
| | - Ganqing ZHAO
- College of Chemistry and Enviromental Engineering, Pingding Shan University, Pingding ShanChina
| | - Xuerong SUN
- College of Chemistry and Enviromental Engineering, Pingding Shan University, Pingding ShanChina
| | - Peisong LIU
- College of Chemistry and Enviromental Engineering, Pingding Shan University, Pingding ShanChina
| | - Guoxv HE
- College of Chemistry and Enviromental Engineering, Pingding Shan University, Pingding ShanChina
| | - Yongjun HAN
- College of Chemistry and Enviromental Engineering, Pingding Shan University, Pingding ShanChina
| | - Liping CHENG
- College of Chemistry and Enviromental Engineering, Pingding Shan University, Pingding ShanChina
| | - Shiying LUO
- College of Chemistry and Enviromental Engineering, Pingding Shan University, Pingding ShanChina
| |
Collapse
|
47
|
Zheng Y, Wei H, Liang P, Xu X, Zhang X, Li H, Zhang C, Hu C, Zhang X, Lei B, Wong WY, Liu Y, Zhuang J. Near-Infrared-Excited Multicolor Afterglow in Carbon Dots-Based Room-Temperature Afterglow Materials. Angew Chem Int Ed Engl 2021; 60:22253-22259. [PMID: 34390105 DOI: 10.1002/anie.202108696] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 12/13/2022]
Abstract
Room-temperature afterglow (RTA) materials with long lifetime have shown tremendous application prospects in many fields. However, there is no general design strategy to construct near-infrared (NIR)-excited multicolor RTA materials. Herein, we report a universal approach based on the efficient radiative energy transfer that supports the reabsorption from upconversion materials (UMs) to carbon dots-based RTA materials (CDAMs). Thus, the afterglow emission (blue, cyan, green, and orange) of various CDAMs can be activated by UMs under the NIR continuous-wave laser excitation. The efficient radiative energy transfer ensured the persistent multicolor afterglow up to 7 s, 6 s, 5 s, and 0.5 s by naked eyes, respectively. Given the unusual afterglow properties, we demonstrated preliminary applications in fingerprint recognition and information security. This work provides a new avenue for the activation of NIR-excited afterglow in CDAMs and will greatly expand the applications of RTA materials.
Collapse
Affiliation(s)
- Yihao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Haopeng Wei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ping Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaokai Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Huihong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Chenlu Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
48
|
Zheng Y, Wei H, Liang P, Xu X, Zhang X, Li H, Zhang C, Hu C, Zhang X, Lei B, Wong W, Liu Y, Zhuang J. Near‐Infrared‐Excited Multicolor Afterglow in Carbon Dots‐Based Room‐Temperature Afterglow Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yihao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou 510642 China
| | - Haopeng Wei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou 510642 China
| | - Ping Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou 510642 China
| | - Xiaokai Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou 510642 China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- School of Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Huihong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Chenlu Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou 510642 China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou 510642 China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou 510642 China
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong China
- Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou 510642 China
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou 510642 China
| |
Collapse
|
49
|
Li D, Ushakova EV, Rogach AL, Qu S. Optical Properties of Carbon Dots in the Deep-Red to Near-Infrared Region Are Attractive for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102325. [PMID: 34365728 DOI: 10.1002/smll.202102325] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 05/02/2023]
Abstract
Carbon dots (CDs) represent a recently emerged class of luminescent materials with a great potential for biomedical theranostics, and there are a lot of efforts to shift their absorption and emission toward deep-red (DR) to near-infrared (NIR) region falling in the biological transparency window. This review offers comprehensive insights into the synthesis strategies aimed to achieve this goal, and the current approaches of modulating the optical properties of CDs over the DR to NIR region. The underlying mechanisms of their absorption, photoluminescence, and chemiluminescence, as well as the related photophysical processes of photothermal conversion and formation of reactive oxygen species are considered. The already available biomedical applications of CDs, such as in the photoacoustic imaging and photothermal therapy, photodynamic therapy, and their use as bioimaging agents and drug carriers are then shortly summarized.
Collapse
Affiliation(s)
- Di Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Elena V Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
50
|
Wang Y, Jiang K, Du J, Zheng L, Li Y, Li Z, Lin H. Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout. NANO-MICRO LETTERS 2021; 13:198. [PMID: 34529154 PMCID: PMC8446126 DOI: 10.1007/s40820-021-00718-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Near-infrared (NIR), particularly NIR-containing dual-/multi-mode afterglow, is very attractive in many fields of application, but it is still a great challenge to achieve such property of materials. Herein, we report a facile method to prepare green and NIR dual-mode afterglow of carbon dots (CDs) through in situ embedding o-CDs (being prepared from o-phenylenediamine) into cyanuric acid (CA) matrix (named o-CDs@CA). Further studies reveal that the green and NIR afterglows of o-CDs@CA originate from thermal activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) of o-CDs, respectively. In addition, the formation of covalent bonds between o-CDs and CA, and the presence of multiple fixation and rigid effects to the triplet states of o-CDs are confirmed to be critical for activating the observed dual-mode afterglow. Due to the shorter lifetime and insensitiveness to human vision of the NIR RTP of o-CDs@CA, it is completely covered by the green TADF during directly observing. The NIR RTP signal, however, can be readily captured if an optical filter (cut-off wavelength of 600 nm) being used. By utilizing these unique features, the applications of o-CDs@CA in anti-counterfeiting and information encryption have been demonstrated with great confidentiality. Finally, the as-developed method was confirmed to be applicable to many other kinds of CDs for achieving or enhancing their afterglow performances.
Collapse
Affiliation(s)
- Yuci Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Kai Jiang
- International Joint Research Center for Photo-Responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| | - Jiaren Du
- International Joint Research Center for Photo-Responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Licheng Zheng
- International Joint Research Center for Photo-Responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yike Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Zhongjun Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Hengwei Lin
- International Joint Research Center for Photo-Responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|