1
|
Hooten M, Banerjee A, Dutt M. Multiscale, Multiresolution Coarse-Grained Model via a Hybrid Approach: Solvation, Structure, and Self-Assembly of Aromatic Tripeptides. J Chem Theory Comput 2024; 20:1689-1703. [PMID: 37931005 DOI: 10.1021/acs.jctc.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Short aromatic peptides have been observed to assemble into diverse nanostructures, including fibers, tubes, and vesicles, using computational techniques. However, the computational studies have employed top-down coarse-grained (CG) models, which are unable to capture the assembly along with the conformation, packing, and organization of the peptides within the aggregates in a manner that is consistent with the all atom (AA) representation of the molecules. In this study, a hybrid structure- and force-based approach is adapted to develop a bottom-up CG force field of triphenylalanine using reference data from AA trajectories. This approach follows a flexible methodology to approximate the chemical complexity of the underlying AA representation with the chosen CG representation. Two CG models are developed with distinct representations of the aromatic side chains. The first uses a simple single-bead representation, while the second uses a three-bead representation to more accurately represent the planarity of the ring. The one-bead model yields nanorods, while the three-bead model results in nanospheres. The role of different chemical groups in the assembly of nanostructures is identified, along with the importance of steric effects on the packing of the peptides within assemblies.
Collapse
Affiliation(s)
- Mason Hooten
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Akash Banerjee
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Meenakshi Dutt
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Mushnoori S, Lu CY, Schmidt K, Dutt M. A coarse-grained Molecular Dynamics study of phase behavior in Co-assembled lipomimetic oligopeptides. J Mol Graph Model 2023; 125:108624. [PMID: 37699315 DOI: 10.1016/j.jmgm.2023.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Multicomponent biomolecular aggregates, i.e., systems consisting of more than one type of biomolecular component co-assembling into one aggregate, provide an interesting design space for engineering unique biomaterials. In this study, we examine the co-assembly of two lipomimetic oligopeptide block copolymers selected for their lipid-like amphiphilicity and highly similar architectures into nanofibers via coarse-grained MD simulations. We focus on the behavior of these peptides due to incremental differences in size by selecting two peptides that differ in length by exactly one amino acid residue. We find that the longer peptide sequence displays greater self-association properties.
Collapse
Affiliation(s)
- Srinivas Mushnoori
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ-08854, USA
| | - Chien Y Lu
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ-08854, USA
| | - Kassandra Schmidt
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ-08854, USA
| | - Meenakshi Dutt
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ-08854, USA.
| |
Collapse
|
3
|
Wang X, Wang Y, Wang J, Li Z, Zhang J, Li J. In silico Design of Photoresponsive Peptide-based Hydrogel with Controllable Structural and Rheological Properties. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Abraham BL, Mensah SG, Gwinnell BR, Nilsson BL. Side-chain halogen effects on self-assembly and hydrogelation of cationic phenylalanine derivatives. SOFT MATTER 2022; 18:5999-6008. [PMID: 35920399 DOI: 10.1039/d2sm00713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low molecular weight (LMW) supramolecular hydrogels have great potential as next-generation biomaterials for drug delivery, tissue engineering, and regenerative medicine. The design of LMW gelators is complicated by the lack of understanding regarding how the chemical structure of the gelator correlates to self-assembly potential and emergent hydrogel material properties. The fluorenylmethyloxycarbonyl-phenylalanine (Fmoc-Phe) motif is a privileged scaffold that is prone to undergo self-assembly into self-supporting hydrogel networks. Cationic Fmoc-Phe-DAP derivatives modified with diaminopropane (DAP) at the C-terminus have been developed that self-assemble into hydrogel networks in aqueous solutions of sufficient ionic strength. We report herein the impact of side-chain halogenation on the self-assembly and hydrogelation properties of Fmoc-Phe-DAP derivatives. A systematic study of the self-assembly and hydrogelation of monohalogenated Fmoc-Phe-DAP derivatives with F, Cl, or Br atoms in the ortho, meta, or para positions of the phenyl side chain reveal significant differences in self-assembly and gelation potential, nanoscale assembly morphology, and hydrogel viscoelastic properties as a function of halogen identity and substitution position. These results demonstrate the profound impact that subtle changes to the chemical scaffold can have on the behavior of LMW supramolecular gelators and illustrate the ongoing difficulty of predicting the emergent self-assembly and hydrogelation behavior of LMW gelators that differ even modestly in chemical structure.
Collapse
Affiliation(s)
- Brittany L Abraham
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Samantha G Mensah
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | | | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
5
|
Pérez-Madrigal MM, Gil AM, Casanovas J, Jiménez AI, Macor LP, Alemán C. Self-assembly pathways in a triphenylalanine peptide capped with aromatic groups. Colloids Surf B Biointerfaces 2022; 216:112522. [PMID: 35561635 DOI: 10.1016/j.colsurfb.2022.112522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/25/2022]
Abstract
Peptide derivatives and, most specifically, their self-assembled supramolecular structures are being considered in the design of novel biofunctional materials. Although the self-assembly of triphenylalanine homopeptides has been found to be more versatile than that of homopeptides containing an even number of residues (i.e. diphenylalanine and tetraphenylalanine), only uncapped triphenylalanine (FFF) and a highly aromatic analog blocked at both the N- and C-termini with fluorenyl-containing groups (Fmoc-FFF-OFm), have been deeply studied before. In this work, we have examined the self-assembly of a triphenylalanine derivative bearing 9-fluorenylmethyloxycarbonyl and benzyl ester end-capping groups at the N- and C-termini, respectively (Fmoc-FFF-OBzl). The antiparallel arrangement clearly dominates in β-sheets formed by Fmoc-FFF-OBzl, whereas the parallel and antiparallel dispositions are almost isoenergetic in Fmoc-FFF-OFm β-sheets and the parallel one is slightly favored for FFF. The effects of both the peptide concentration and the medium on the self-assembly process have been examined considering Fmoc-FFF-OBzl solutions in a wide variety of solvent:co-solvent mixtures. In addition, Fmoc-FFF-OBzl supramolecular structures have been compared to those obtained for FFF and Fmoc-FFF-OFm under identical experimental conditions. The strength of π-π stacking interactions involving the end-capping groups plays a crucial role in the nucleation and growth of supramolecular structures, which determines the resulting morphology. Finally, the influence of a non-invasive external stimulus, ultrasounds, on the nucleation and growth of supramolecular structures has been examined. Overall, FFF-based peptides provide a wide range of supramolecular structures that can be of interest in the biotechnological field.
Collapse
Affiliation(s)
- Maria M Pérez-Madrigal
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Ana M Gil
- Departamento de Quimica Organica, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jordi Casanovas
- Departament de Química, Universitat de Lleida, Escola Politècnica Superior, C/ Jaume II no. 69, 25001 Lleida, Spain
| | - Ana I Jiménez
- Departamento de Quimica Organica, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Lorena P Macor
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Carlos Alemán
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Banerjee A, Lu CY, Dutt M. A hybrid coarse-grained model for structure, solvation and assembly of lipid-like peptides. Phys Chem Chem Phys 2021; 24:1553-1568. [PMID: 34940778 DOI: 10.1039/d1cp04205j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reconstituted photosynthetic proteins which are activated upon exposure to solar energy hold enormous potential for powering future solid state devices and solar cells. The functionality and integration of these proteins into such devices has been successfully enabled by lipid-like peptides. Yet, a fundamental understanding of the organization of these peptides with respect to the photosynthetic proteins and themselves remains unknown and is critical for guiding the design of such light-activated devices. This study investigates the relative organization of one such peptide sequence V6K2 (V: valine and K: lysine) within assemblies. Given the expansive spatiotemporal scales associated with this study, a hybrid coarse-grained (CG) model which captures the structure, conformation and aggregation of the peptide is adopted. The CG model uses a combination of iterative Boltzmann inversion and force matching to provide insight into the relative organization of V6K2 in assemblies. The CG model reproduces the structure of a V6K2 peptide sequence along with its all atom (AA) solvation structure. The relative organization of multiple peptides in an assembly, as captured by CG simulations, is in agreement with corresponding results from AA simulations. Also, a backmapping procedure reintroduces the AA details of the peptides within the aggregates captured by the CG model to demonstrate the relative organization of the peptides. Furthermore, a large number of peptides self-assemble into an elongated micelle in the CG simulation, which is consistent with experimental findings. The coarse-graining procedure is tested for transferability to longer peptide sequences, and hence can be extended to other amphiphilic peptide sequences.
Collapse
Affiliation(s)
- Akash Banerjee
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | - Chien Yu Lu
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | - Meenakshi Dutt
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
7
|
Alessandri R, Grünewald F, Marrink SJ. The Martini Model in Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008635. [PMID: 33956373 PMCID: PMC11468591 DOI: 10.1002/adma.202008635] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The Martini model, a coarse-grained force field initially developed with biomolecular simulations in mind, has found an increasing number of applications in the field of soft materials science. The model's underlying building block principle does not pose restrictions on its application beyond biomolecular systems. Here, the main applications to date of the Martini model in materials science are highlighted, and a perspective for the future developments in this field is given, particularly in light of recent developments such as the new version of the model, Martini 3.
Collapse
Affiliation(s)
- Riccardo Alessandri
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
- Present address:
Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Fabian Grünewald
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| | - Siewert J. Marrink
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| |
Collapse
|
8
|
Mushnoori S, Lu CY, Schmidt K, Zang E, Dutt M. Peptide-based vesicles and droplets: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:053002. [PMID: 32942264 DOI: 10.1088/1361-648x/abb995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Peptide assembly is an increasingly important field of study due to the versatility, tunability and vast design space of amino acid based biomolecular assemblies. Peptides can be precisely engineered to possess various useful properties such as the ability to form supramolecular assemblies, desired response to pH, or thermal stability. These peptide supramolecular assemblies have diverse morphologies including vesicles, nanotubes, nanorods and ribbons. Of specific interest is the domain of engineering peptides that aggregate into spherical nanostructures due to their encapsulation properties: the ability to hold, transport and release chemical payloads in a controllable manner. This is invaluable to the fields of nanomedicine and targeted drug delivery. In this review, the state of the art in the domain of peptide-based vesicles and nanospheres is summarized. Specifically, an overview of the assembly of peptides into nanovesicles and nanospheres is provided. Both aromatic as well as aliphatic side chain amino acids are discussed. The domain of aromatic side chained amino acid residues is largely dominated by phenylalanine based peptides and variants thereof. Tyrosine also demonstrates similar aggregation properties. Both experimentally and computationally driven approaches are discussed. The domain of aliphatic amino acid residues based vesicles and droplets is broader, and details multiple amino acid residues such as alanine, valine, lysine, glycine, proline, and aspartic acid. Finally, a discussion on potential future directions is provided.
Collapse
Affiliation(s)
- Srinivas Mushnoori
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | - Chien Y Lu
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | - Kassandra Schmidt
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | - Ethan Zang
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | - Meenakshi Dutt
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| |
Collapse
|
9
|
Wang Y, An Y, Shmidov Y, Bitton R, Deshmukh SA, Matson JB. A combined experimental and computational approach reveals how aromatic peptide amphiphiles self-assemble to form ion-conducting nanohelices. MATERIALS CHEMISTRY FRONTIERS 2020; 4:3022-3031. [PMID: 33163198 PMCID: PMC7643854 DOI: 10.1039/d0qm00369g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reported here is a combined experimental-computational strategy to determine structure-property-function relationships in persistent nanohelices formed by a set of aromatic peptide amphiphile (APA) tetramers with the general structure K S XEK S , where KS= S-aroylthiooxime modified lysine, X = glutamic acid or citrulline, and E = glutamic acid. In low phosphate buffer concentrations, the APAs self-assembled into flat nanoribbons, but in high phosphate buffer concentrations they formed nanohelices with regular twisting pitches ranging from 9-31 nm. Coarse-grained molecular dynamics simulations mimicking low and high salt concentrations matched experimental observations, and analysis of simulations revealed that increasing strength of hydrophobic interactions under high salt conditions compared with low salt conditions drove intramolecular collapse of the APAs, leading to nanohelix formation. Analysis of the radial distribution functions in the final self-assembled structures led to several insights. For example, comparing distances between water beads and beads representing hydrolysable KS units in the APAs indicated that the KS units in the nanohelices should undergo hydrolysis faster than those in the nanoribbons; experimental results verified this hypothesis. Simulation results also suggested that these nanohelices might display high ionic conductivity due to closer packing of carboxylate beads in the nanohelices than in the nanoribbons. Experimental results showed no conductivity increase over baseline buffer values for unassembled APAs, a slight increase (0.4 × 102 μS/cm) for self-assembled APAs under low salt conditions in their nanoribbon form, and a dramatic increase (8.6 × 102 μS/cm) under high salt conditions in their nanohelix form. Remarkably, under the same salt conditions, these self-assembled nanohelices conducted ions 5-10-fold more efficiently than several charged polymers, including alginate and DNA. These results highlight how experiments and simulations can be combined to provide insight into how molecular design affects self-assembly pathways; additionally, this work highlights how this approach can lead to discovery of unexpected properties of self-assembled nanostructures.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yaxin An
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
10
|
Ribeiro AC, Souza GA, Pereira DH, Cordeiro DS, Miranda RS, Custódio R, Martins TD. Phe-Phe Di-Peptide Nanostructure Self-Assembling Modulated by Luminescent Additives. ACS OMEGA 2019; 4:606-619. [PMID: 31459351 PMCID: PMC6648563 DOI: 10.1021/acsomega.8b02732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/26/2018] [Indexed: 05/17/2023]
Abstract
In this work, supramolecular l-l-diphenylalanine (Phe-Phe) nanostructures were self-assembled in solvents of distinct polarity and in the presence of luminescent additives of distinct conjugation length that physically adhere to the nanostructures to provide growth environments of distinct properties. When the additive is poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], an electron donor polymer, and solvent is tetrahydrofuran (THF), Phe-Phe vesicle-like structures are obtained, whereas in water and in the presence of a similar additive in structure, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene], nanotubes are formed. In contrast, when 9-vinyl-carbazole, an electron acceptor additive is used, nanotubes are formed even when THF is the solvent. The same structures are obtained when the additive is the macromolecule poly(vinyl carbazole). The morphologies of these self-assembled structures were observed by scanning electron microscopy, and their photophysical behavior was determined by steady-state fluorescence spectroscopy and time-resolved fluorescence spectroscopy. These data analyzed altogether inform about the formation mechanisms of such structures and about the influence that distinct interactions exert on self-assembling and charge-transfer processes through formation of complexes between the luminescent additives and the Phe-Phe nano- and microstructures.
Collapse
Affiliation(s)
- Antonio
C. C. Ribeiro
- Chemistry
Institute, Federal University of Goias, Campus II—Samambaia, P.O. Box 24242, Goiania 74690-970, Brazil
| | - Geovany A. Souza
- Chemistry
Institute, Federal University of Goias, Campus II—Samambaia, P.O. Box 24242, Goiania 74690-970, Brazil
| | - Douglas Henrique Pereira
- Chemistry
Collegiate, Federal University of Tocantins, Campus Gurupi-Badejós, P.O. Box 66, Gurupi 77 402-970, Brazil
| | - Diericon S. Cordeiro
- Chemistry
Institute, Federal University of Goias, Campus II—Samambaia, P.O. Box 24242, Goiania 74690-970, Brazil
| | - Ramon S. Miranda
- Chemistry
Institute, Federal University of Goias, Campus II—Samambaia, P.O. Box 24242, Goiania 74690-970, Brazil
| | - Rogério Custódio
- Institute
of Chemistry, University of Campinas, Barão Geraldo, P.O. Box 6154, Campinas 13083-970, São Paulo, Brazil
| | - Tatiana D. Martins
- Chemistry
Institute, Federal University of Goias, Campus II—Samambaia, P.O. Box 24242, Goiania 74690-970, Brazil
| |
Collapse
|