1
|
Donu D, Boyle E, Curry A, Cen Y. Biochemical Characterization and Inhibitor Discovery for Pf Sir2A - New Tricks for An Old Enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614941. [PMID: 39386451 PMCID: PMC11463419 DOI: 10.1101/2024.09.25.614941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The Sir2 enzyme from Plasmodium falciparum ( Pf Sir2A) is essential for the antigenic variation of this parasite, and its inhibition is expected to have therapeutic effects for malaria. Selective Pf Sir2A inhibitors are not available yet, partially due to the fact that this enzyme demonstrates extremely weak in vitro deacetylase activity, making the characterization of its inhibitors rather challenging. In the current study, we report the biochemical characterization and inhibitor discovery for this enzyme. Pf Sir2A exhibits greater enzymatic activity in the presence of DNA for both the peptide and histone protein substrates, suggesting that nucleosomes may be the real substrates of this enzyme. Indeed, it demonstrates robust deacetylase activity against nucleosome substrates, stemming primarily from the tight binding interactions with the nucleosome. In addition to DNA/nucleosome, free fatty acids (FFAs) are also identified as endogenous Pf Sir2A regulators. Myristic acid, a biologically relevant FFA, shows differential regulation of the two distinct activities of Pf Sir2A: activates deacetylation, but inhibits defatty-acylation. The structural basis of this differential regulation was further explored. Moreover, synthetic small molecule inhibitors of Pf Sir2A were discovered through the screening of a library of human sirtuin regulators. The mechanism of inhibition of the lead compounds were investigated. Collectively, the mechanistic insights and inhibitors described in this study will facilitate the future development of small molecule Pf Sir2A inhibitors as antimalarial agents.
Collapse
|
2
|
Zhou H, Liu A, Hu M, Zheng X, Kuang W, Xie Y. A Novel HPLC Method for Quality Inspection of NRK Biosynthesized β-Nicotinamide Mononucleotide. J Chromatogr Sci 2024; 62:241-248. [PMID: 36617938 DOI: 10.1093/chromsci/bmac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023]
Abstract
β-nicotinamide mononucleotide (NMN) has a good effect on delaying aging, repairing DNA and ameliorating metabolic disease. Biosynthesis with nicotinamide riboside kinase (NRK) takes a large part in NMN manufacture, but there is no available NMN quality standard and analytical method at present. In this study, we developed a specific high-performance liquid chromatography method for the assessment of NMN-related substances, including NMN and its potential impurities from NRK biological production and storage. Forced degradation study was performed under acid, base, oxidative, photolytic and thermal conditions. The separation of related substances was achieved on an Elite Hypersil ODS column using phosphate buffer-methanol gradient at a flow rate of 1.0 mL/min. The detection wavelength was maintained at 260 nm. The resolutions among all related substances were better than 1.5. Significant degradation was observed in basic and thermal conditions. All related substances showed good linearity with a coefficient of determination (R2) higher than 0.999. The accuracy values of all related substances were between 91.2% and 108.6%. Therefore, the validated analytical method is appropriate for inspecting the quality of NMN in its NRK biosynthetic manufacture and storage, thus further helping to unify NMN quality standards and facilitate related studies on NMN.
Collapse
Affiliation(s)
- Haoxuan Zhou
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.17 People's South Road, Chengdu 610041, China
| | - Ai Liu
- Research and Development Center, Chengdu Chuanyu Jianwei Biotechnology Co., Ltd., International Bio-town No. 18, Section 2, Bio-town Middle Road, Shuangliu District, Chengdu 610213, China
| | - Mingxing Hu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.17 People's South Road, Chengdu 610041, China
| | - Xinyue Zheng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.17 People's South Road, Chengdu 610041, China
| | - Weihong Kuang
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Yongmei Xie
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.17 People's South Road, Chengdu 610041, China
- Research and Development Center, Chengdu Chuanyu Jianwei Biotechnology Co., Ltd., International Bio-town No. 18, Section 2, Bio-town Middle Road, Shuangliu District, Chengdu 610213, China
| |
Collapse
|
3
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
4
|
Curry AM, Rymarchyk S, Herrington NB, Donu D, Kellogg GE, Cen Y. Nicotinamide riboside activates SIRT5 deacetylation. FEBS J 2023; 290:4762-4776. [PMID: 37289138 PMCID: PMC10592517 DOI: 10.1111/febs.16887] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Human sirtuins play important roles in various cellular events including DNA repair, gene silencing, mitochondrial biogenesis, insulin secretion and apoptosis. They regulate a wide array of protein and enzyme targets through their NAD+ -dependent deacetylase activities. Sirtuins are also thought to mediate the beneficial effects of low-calorie intake to extend longevity in diverse organisms from yeast to mammals. Small molecules mimicking calorie restriction to stimulate sirtuin activity are attractive therapeutics against age-related disorders such as cardiovascular diseases, diabetes and neurodegeneration. Little is known about one of the mitochondrial sirtuins, SIRT5. SIRT5 has emerged as a critical player in maintaining cardiac health and neuronal viability upon stress and functions as a tumour suppressor in a context-specific manner. Much has been debated about whether SIRT5 has evolved away from being a deacetylase because of its weak catalytic activity, especially in the in vitro testing. We have, for the first time, identified a SIRT5-selective allosteric activator, nicotinamide riboside (NR). It can increase SIRT5 catalytic efficiency with different synthetic peptide substrates. The mechanism of action was further explored using a combination of molecular biology and biochemical strategies. Based on the existing structural biology information, the NR binding site was also mapped out. These activators are powerful chemical probes for the elucidation of cellular regulations and biological functions of SIRT5. The knowledge gained in this study can be used to guide the design and synthesis of more potent, isotype-selective SIRT5 activators and to develop them into therapeutics for metabolic disorders and age-related diseases.
Collapse
Affiliation(s)
- Alyson M. Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540
| | - Stacia Rymarchyk
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446
| | - Noah B. Herrington
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540
| | - Glen E. Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0133
| |
Collapse
|
5
|
Emerging Role of Nicotinamide Riboside in Health and Diseases. Nutrients 2022; 14:nu14193889. [PMID: 36235542 PMCID: PMC9571518 DOI: 10.3390/nu14193889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Among all the NAD+ precursors, nicotinamide riboside (NR) has gained the most attention as a potent NAD+-enhancement agent. This recently discovered vitamin, B3, has demonstrated excellent safety and efficacy profiles and is orally bioavailable in humans. Boosting intracellular NAD+ concentrations using NR has been shown to provide protective effects against a broad spectrum of pathological conditions, such as neurodegenerative diseases, diabetes, and hearing loss. In this review, an integrated overview of NR research will be presented. The role NR plays in the NAD+ biosynthetic pathway will be introduced, followed by a discussion on the synthesis of NR using chemical and enzymatic approaches. NR’s effects on regulating normal physiology and pathophysiology will also be presented, focusing on the studies published in the last five years.
Collapse
|
6
|
Plasmodium falciparum Nicotinamidase as A Novel Antimalarial Target. Biomolecules 2022; 12:biom12081109. [PMID: 36009002 PMCID: PMC9405955 DOI: 10.3390/biom12081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Inhibition of Plasmodium falciparum nicotinamidase could represent a potential antimalarial since parasites require nicotinic acid to successfully recycle nicotinamide to NAD+, and importantly, humans lack this biosynthetic enzyme. Recently, mechanism-based inhibitors of nicotinamidase have been discovered. The most potent compound inhibits both recombinant P. falciparum nicotinamidase and parasites replication in infected human red blood cells (RBCs). These studies provide evidence for the importance of nicotinamide salvage through nicotinamidase as a central master player of NAD+ homeostasis in P. falciparum.
Collapse
|
7
|
Curry A, White D, Cen Y. Small Molecule Regulators Targeting NAD + Biosynthetic Enzymes. Curr Med Chem 2022; 29:1718-1738. [PMID: 34060996 PMCID: PMC8630097 DOI: 10.2174/0929867328666210531144629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a key player in many metabolic pathways as an activated carrier of electrons. In addition to being the cofactor for redox reactions, NAD+ also serves as the substrate for various enzymatic transformations such as adenylation and ADP-ribosylation. Maintaining cellular NAD+ homeostasis has been suggested as an effective anti-aging strategy. Given the importance of NAD+ in regulating a broad spectrum of cellular events, small molecules targeting NAD+ metabolism have been pursued as therapeutic interventions for the treatment of mitochondrial disorders and agerelated diseases. In this article, small molecule regulators of NAD+ biosynthetic enzymes will be reviewed. The focus will be given to the discovery and development of these molecules, the mechanism of action as well as their therapeutic potentials.
Collapse
Affiliation(s)
- Alyson Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Dawanna White
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA;,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA,Address correspondence to this author at the Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; Tel: 804-828-7405;
| |
Collapse
|
8
|
Curry AM, Barton E, Kang W, Mongeluzi DV, Cen Y. Development of Second Generation Activity-Based Chemical Probes for Sirtuins. Molecules 2020; 26:molecules26010011. [PMID: 33375102 PMCID: PMC7792806 DOI: 10.3390/molecules26010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
NAD+ (nicotinamide adenine dinucleotide)-dependent protein deacylases, namely, the sirtuins, are important cell adaptor proteins that alter cell physiology in response to low calorie conditions. They are thought to mediate the beneficial effects of calorie restriction to extend longevity and improve health profiles. Novel chemical probes are highly desired for a better understanding of sirtuin’s roles in various biological processes. We developed a group of remarkably simple activity-based chemical probes for the investigation of active sirtuin content in complex native proteomes. These probes harbor a thioacyllysine warhead, a diazirine photoaffinity tag, as well as a terminal alkyne bioorthogonal functional group. Compared to their benzophenone-containing counterparts, these new probes demonstrated improved labeling efficiency and sensitivity, shortened irradiation time, and reduced background signal. They were applied to the labeling of individual recombinant proteins, protein mixtures, and whole cell lysate. These cell permeable small molecule probes also enabled the cellular imaging of sirtuin activity change. Taken together, our study provides new chemical biology tools and future drug discovery strategies for perturbing the activity of different sirtuin isoforms.
Collapse
Affiliation(s)
- Alyson M. Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (A.M.C.); (E.B.); (W.K.); (D.V.M.)
| | - Elizabeth Barton
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (A.M.C.); (E.B.); (W.K.); (D.V.M.)
| | - Wenjia Kang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (A.M.C.); (E.B.); (W.K.); (D.V.M.)
| | - Daniel V. Mongeluzi
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (A.M.C.); (E.B.); (W.K.); (D.V.M.)
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (A.M.C.); (E.B.); (W.K.); (D.V.M.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
- Correspondence: ; Tel.: +1-804-828-7405
| |
Collapse
|
9
|
Makarov MV, Harris NW, Rodrigues M, Migaud ME. Scalable syntheses of traceable ribosylated NAD + precursors. Org Biomol Chem 2019; 17:8716-8720. [PMID: 31538639 PMCID: PMC6786760 DOI: 10.1039/c9ob01981b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide, NAD+, is an essential cofactor and substrate for many cellular enzymes. Its sustained intracellular levels have been linked to improved physiological end points in a range of metabolic diseases. Biosynthetic precursors to NAD+ include nicotinic acid, nicotinamide, the ribosylated parents and the phosphorylated form of the ribosylated parents. By combining solvent-assisted mechanochemistry and sealed reaction conditions, access to the ribosylated NAD+ precursors and to the isotopologues of NAD+ precursors was achieved in high yields and levels of purity. The latter is critical as it offers means to better trace biosynthetic pathways to NAD+, investigate the multifaceted roles of the intracellular NAD+ pools, and better exploit NAD+ biology.
Collapse
Affiliation(s)
- M V Makarov
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| | - N W Harris
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| | - M Rodrigues
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| | - M E Migaud
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| |
Collapse
|
10
|
Makarov MV, Migaud ME. Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives. Beilstein J Org Chem 2019; 15:401-430. [PMID: 30873226 PMCID: PMC6404419 DOI: 10.3762/bjoc.15.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
The β-anomeric form of nicotinamide riboside (NR+) is a precursor for nicotinamide adenine dinucleotide (NAD+), a redox cofactor playing a critical role in cell metabolism. Recently, it has been demonstrated that its chloride salt (NR+Cl-) has beneficial effects, and now NR+Cl- is available as a dietary supplement. Syntheses and studies of analogues and derivatives of NR+ are of high importance to unravel the role of NR+ in biochemical processes in living cells and to elaborate the next generation of NR+ derivatives and conjugates with the view of developing novel drug and food supplement candidates. This review provides an overview of the synthetic approaches, the chemical properties, and the structural and functional modifications which have been undertaken on the nicotinoyl riboside scaffold.
Collapse
Affiliation(s)
- Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave., Mobile, AL 36604, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave., Mobile, AL 36604, USA
| |
Collapse
|
11
|
The chemistry of the vitamin B3 metabolome. Biochem Soc Trans 2018; 47:131-147. [PMID: 30559273 DOI: 10.1042/bst20180420] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
The functional cofactors derived from vitamin B3 are nicotinamide adenine dinucleotide (NAD+), its phosphorylated form, nicotinamide adenine dinucleotide phosphate (NADP+) and their reduced forms (NAD(P)H). These cofactors, together referred as the NAD(P)(H) pool, are intimately implicated in all essential bioenergetics, anabolic and catabolic pathways in all forms of life. This pool also contributes to post-translational protein modifications and second messenger generation. Since NAD+ seats at the cross-road between cell metabolism and cell signaling, manipulation of NAD+ bioavailability through vitamin B3 supplementation has become a valuable nutritional and therapeutic avenue. Yet, much remains unexplored regarding vitamin B3 metabolism. The present review highlights the chemical diversity of the vitamin B3-derived anabolites and catabolites of NAD+ and offers a chemical perspective on the approaches adopted to identify, modulate and measure the contribution of various precursors to the NAD(P)(H) pool.
Collapse
|