1
|
Saha S, Tiwari R, Parameswaran P, Patidar R, Srivastava N, Ranjan N. Fluorescence based metabisulfite sensing: New aspects of ion sensing by a styryl benzothiazolium dye and understanding nitrite interference. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124821. [PMID: 39167898 DOI: 10.1016/j.saa.2024.124821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 08/23/2024]
Abstract
Detection of specific ions using fluorescent probes has relevance in several areas of therapeutics development and environmental science. Here, we provide new perspectives to the sensing of a styryl benzothiazolium-based fluorescent compound 1 and report that sensing properties are for sulfite ions in general with highest preference for metabisulfite ions (S2O52-) adding to its previously determined role as a bisulfite ion sensor. This probe exhibits its sensing action via an addition reaction in which the styryl double bond gets reduced. The interference studies highlighted that the sequence of addition of nitrite and metabisulfite has a bearing on the overall interference outcome. Spectroscopic studies revealed that the order of preferential sensing of sulfites and sulfide ion is S2O52- > HSO3- > SO32- > S2-. Although this probe displays robust sensing on its own through fluorescence quenching, its fluorescence emission can be enhanced at much lower concentrations in the presence of a G-quadruplex DNA without compromising the outcome of the sensing.
Collapse
Affiliation(s)
- Sayani Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Preethi Parameswaran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Rajesh Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India.
| |
Collapse
|
2
|
Korczak ML, Maslowska-Jarzyna K, Chmielewski MJ. A new generation of 1,8-diaminocarbazole building blocks for the construction of fluorescent anion receptors. RSC Adv 2024; 14:29883-29889. [PMID: 39301241 PMCID: PMC11411501 DOI: 10.1039/d4ra05420b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
We describe the synthesis of a new generation of 1,8-diaminocarbazole building blocks for the construction of anion receptors and fluorescent sensors. These new building blocks feature mildly electron-withdrawing ester substituents at positions 3 and 6 of the carbazole core, which improve anion affinities and significantly enhance solubilities, without compromising fluorescent response. To demonstrate the advantages of the new building blocks, three of them were converted into model diamide receptors R1-R3. The resulting ester-substituted receptors showed greatly improved solubilities and fluorescent response in comparison to their 3,6-dichloro-substituted predecessors, while retaining very high affinity and selectivity for oxyanions, particularly dihydrogen phosphate, even in partially aqueous solutions. In view of these promising results and the known synthetic versatility of primary amines, we envisage that the new building blocks will be useful for the construction of various classes of fluorescent anion receptors with improved solubility, affinity, and fluorescent response.
Collapse
Affiliation(s)
- Maria L Korczak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Krystyna Maslowska-Jarzyna
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| |
Collapse
|
3
|
Jurek P, Szymański MP, Szumna A. Remote control of anion binding by CH-based receptors. Chem Commun (Camb) 2024; 60:3417-3420. [PMID: 38441137 DOI: 10.1039/d3cc06038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We show that the substitution of tetra(benzimidazole)resorcin[4]arenes with electron withdrawing groups on the upper rim enhances anion binding at the opposite edge by more than three orders of magnitude. Moreover, selective anion binding at either the OH/NH or CH binding sites is demonstrated.
Collapse
Affiliation(s)
- Paulina Jurek
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Marek P Szymański
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Agnieszka Szumna
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
4
|
Bąk KM, Trzaskowski B, Chmielewski MJ. Anion-templated synthesis of a switchable fluorescent [2]catenane with sulfate sensing capability. Chem Sci 2024; 15:1796-1809. [PMID: 38303949 PMCID: PMC10829038 DOI: 10.1039/d3sc05086f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024] Open
Abstract
Anion templation strategies have facilitated the synthesis of various catenane and rotaxane hosts capable of strong and selective binding of anions in competitive solvents. However, this approach has primarily relied on positively charged precursors, limiting the structural diversity and the range of potential applications of the anion-templated mechanically interlocked molecules. Here we demonstrate the synthesis of a rare electroneutral [2]catenane using a powerful, doubly charged sulfate template and a complementary diamidocarbazole-based hydrogen bonding precursor. Owing to the unique three-dimensional hydrogen bonding cavity and the embedded carbazole fluorophores, the resulting catenane receptor functions as a sensitive fluorescent turn-ON sensor for the highly hydrophilic sulfate, even in the presence of a large excess of water. Importantly, the [2]catenane exhibits enhanced binding affinity and selectivity for sulfate over its parent macrocycle and other acyclic diamidocarbazole-based receptors. We demonstrate also, for the first time, that the co-conformation of the catenane may be controlled by reversible acid/base induced protonation and deprotonation of the anionic template, SO42-. This approach pioneers a new strategy to induce molecular motion of interlocked components using switchable anionic templates.
Collapse
Affiliation(s)
- Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
5
|
Butler SM, Hountondji M, Berry SN, Tan J, Macia L, Jolliffe KA. A macrocyclic fluorescent probe for the detection of citrate. Org Biomol Chem 2023; 21:8548-8553. [PMID: 37846461 DOI: 10.1039/d3ob01442h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
We present a macrocyclic fluorescent probe for the detection of citrate. This receptor binds citrate through hydrogen-bonding interactions in aqueous solutions, and exhibits a turn-on in fluorescence in response to binding. The presence of common biologically relevant dicarboxylate species does not significantly impact the fluorescence response. We have demonstrated the utility of this probe with the staining of murine splenocytes, and identified different basal levels of citrate present in immune cell subsets via flow cytometry analysis.
Collapse
Affiliation(s)
- Stephen M Butler
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, 2006, NSW, Australia
| | - Maria Hountondji
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, 2006, NSW, Australia
| | - Stuart N Berry
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
| | - Jian Tan
- The Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Laurence Macia
- The Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
- Sydney Cytometry, The University of Sydney, NSW 2006, Australia
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, 2006, NSW, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
MacDermott-Opeskin H, Clarke C, Wu X, Roseblade A, York E, Pacchini E, Roy R, Cranfield C, Gale PA, O'Mara ML, Murray M, Rawling T. Protonophoric and mitochondrial uncoupling activity of aryl-carbamate substituted fatty acids. Org Biomol Chem 2022; 21:132-139. [PMID: 36453203 DOI: 10.1039/d2ob02049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Aryl-urea substituted fatty acids are protonophores and mitochondrial uncouplers that utilise a urea-based synthetic anion transport moiety to carry out the protonophoric cycle. Herein we show that replacement of the urea group with carbamate, a functional group not previously reported to possess anion transport activity, produces analogues that retain the activity of their urea counterparts. Thus, the aryl-carbamate substituted fatty acids uncouple oxidative phosphorylation and inhibit ATP production by collapsing the mitochondrial proton gradient. Proton transport proceeds via self-assembly of the deprotonated aryl-carbamates into membrane permeable dimeric species, formed by intermolecular binding of the carboxylate group to the carbamate moiety. These results highlight the anion transport capacity of the carbamate functional group.
Collapse
Affiliation(s)
- Hugo MacDermott-Opeskin
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT, 0200, Australia
| | - Callum Clarke
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Xin Wu
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ariane Roseblade
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Edward York
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Ethan Pacchini
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Ritik Roy
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Charles Cranfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip A Gale
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute (SydneyNano), The University of Sydney, NSW, 2006, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT, 0200, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
7
|
Maslowska-Jarzyna K, Bąk KM, Zawada B, Chmielewski MJ. pH-Dependent transport of amino acids across lipid bilayers by simple monotopic anion carriers. Chem Sci 2022; 13:12374-12381. [PMID: 36382290 PMCID: PMC9629080 DOI: 10.1039/d2sc04346g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2023] Open
Abstract
The transport of amino acids across lipid membranes is vital for the proper functioning of every living cell. In spite of that, examples of synthetic transporters that can facilitate amino acid transport are rare. This is mainly because at physiological conditions amino acids predominantly exist as highly polar zwitterions and proper shielding of their charged termini, which is necessary for fast diffusion across lipophilic membranes, requires complex and synthetically challenging heteroditopic receptors. Here we report the first simple monotopic anion receptor, dithioamide 1, that efficiently transports a variety of natural amino acids across lipid bilayers at physiological pH. Mechanistic studies revealed that the receptor rapidly transports deprotonated amino acids, even though at pH 7.4 these forms account for less than 3% of the total amino acid concentration. We also describe a new fluorescent assay for the selective measurement of the transport of deprotonated amino acids into liposomes. The new assay allowed us to study the pH-dependence of amino acid transport and elucidate the mechanism of transport by 1, as well as to explain its exceptionally high activity. With the newly developed assay we screened also four other representative examples of monotopic anion transporters, of which two showed promising activity. Our results imply that heteroditopic receptors are not necessary for achieving high amino acid transport activities and that many of the previously reported anionophores might be active amino acid transporters. Based on these findings, we propose a new strategy for the development of artificial amino acid transporters with improved properties.
Collapse
Affiliation(s)
- Krystyna Maslowska-Jarzyna
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Bartłomiej Zawada
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| |
Collapse
|
8
|
Martínez‐Crespo L, Valkenier H. Transmembrane Transport of Bicarbonate by Anion Receptors. Chempluschem 2022; 87:e202200266. [PMID: 36414387 PMCID: PMC9827909 DOI: 10.1002/cplu.202200266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/13/2022] [Indexed: 01/31/2023]
Abstract
The development of synthetic anion transporters is motivated by their potential application as treatment for diseases that originate from deficient anion transport by natural proteins. Transport of bicarbonate is important for crucial biological functions such as respiration and digestion. Despite this biological relevance, bicarbonate transport has not been as widely studied as chloride transport. Herein we present an overview of the synthetic receptors that have been studied as bicarbonate transporters, together with the different assays used to perform transport studies in large unilamellar vesicles. We highlight the most active transporters and comment on the nature of the functional groups present in active and inactive compounds. We also address recent mechanistic studies that have revealed different processes that can lead to net transport of bicarbonate, as well as studies reported in cells and tissues, and comment on the key challenges for the further development of bicarbonate transporters.
Collapse
Affiliation(s)
- Luis Martínez‐Crespo
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK,Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK,Université Libre de Bruxelles (ULB) Engineering of Molecular NanoSystemsEcole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/64B-1050BrusselsBelgium
| | - Hennie Valkenier
- Université Libre de Bruxelles (ULB) Engineering of Molecular NanoSystemsEcole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/64B-1050BrusselsBelgium
| |
Collapse
|
9
|
Maslowska-Jarzyna K, Cataldo A, Marszalik A, Ignatikova I, Butler SJ, Stachowiak R, Chmielewski MJ, Valkenier H. Dissecting transmembrane bicarbonate transport by 1,8-di(thio)amidocarbazoles. Org Biomol Chem 2022; 20:7658-7663. [PMID: 36134504 DOI: 10.1039/d2ob01461k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic ionophores able to transport bicarbonate and chloride anions across lipid bilayers are appealing for their wide range of potential biological applications. We have studied the bicarbonate and chloride transport by carbazoles with two amido/thioamido groups using a bicarbonate-sensitive europium(III) probe in liposomes and found a highly remarkable transporter concentration dependence. This can be explained by a combination of two distinct transport mechanisms: HCO3-/Cl- exchange and a combination of unassisted CO2 diffusion and HCl transport, of which the respective contributions were quantified. The compounds studied were found to be highly potent HCl transporters. Based on the mechanistic insights on anion transport, we have tested the antimicrobial activity of these compounds and found a good correlation with their ion transport properties and a high activity against Gram-positive bacteria.
Collapse
Affiliation(s)
- Krystyna Maslowska-Jarzyna
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Alessio Cataldo
- Université libre de Bruxelles, Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, 1050 Brussels, Belgium.
| | - Anna Marszalik
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Ilona Ignatikova
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Stephen J Butler
- Loughborough University, Department of Chemistry, Epinal Way, LE11 3TU, Loughborough, UK
| | - Radosław Stachowiak
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Hennie Valkenier
- Université libre de Bruxelles, Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, 1050 Brussels, Belgium.
| |
Collapse
|
10
|
Valderrey V, Gawlitza K, Rurack K. Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics. Chemistry 2022; 28:e202104525. [PMID: 35224792 PMCID: PMC9310751 DOI: 10.1002/chem.202104525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Bifunctional fluorescent molecular oxoanion probes based on the benzoxadiazole (BD) chromophore are described which integrate a thiourea binding motif and a polymerizable 2-aminoethyl methacrylate unit in the 4,7-positions of the BD core. Concerted charge transfer in this electron donor-acceptor-donor architecture endows the dyes with strongly Stokes shifted (up to >250 nm) absorption and fluorescence. Binding of electron-rich carboxylate guests at the thiourea receptor leads to further analyte-induced red-shifts of the emission, shifting the fluorescence maximum of the complexes to ≥700 nm. Association constants for acetate are ranging from 1-5×105 M-1 in acetonitrile. Integration of one of the fluorescent probes through its polymerizable moiety into molecularly imprinted polymers (MIPs) grafted from the surface of submicron silica cores yielded fluorescent MIP-coated particle probes for the selective detection of antibiotics containing aliphatic carboxylate groups such as enoxacin (ENOX) at micromolar concentrations in highly polar solvents like acetonitrile.
Collapse
Affiliation(s)
- Virginia Valderrey
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Kornelia Gawlitza
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Knut Rurack
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| |
Collapse
|
11
|
Synthesis and anion binding properties of carbazole-based macrocycles with bis-sulfonamide and bis-amide groups. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Shu X, Xu Y, Liu L, Fan Y, Zhuang X, Huang C, Chen S, Zheng C, Jin Y, Xia C. Synthesis of new carbazole derivative extractants and study on extraction of perrhenate/pertechnetate. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Martínez-Crespo L, Halgreen L, Soares M, Marques I, Félix V, Valkenier H. Hydrazones in anion transporters: the detrimental effect of a second binding site. Org Biomol Chem 2021; 19:8324-8337. [PMID: 34523662 DOI: 10.1039/d1ob01279g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic anion transporters can be developed using anion receptors that are able to bind the anion and stabilize it in the lipophilic interior of a bilayer membrane, and they usually contain functional groups with acidic NHs, such as ureas, thioureas and squaramides. To assess the suitability of acylhydrazones as a new functional group for the preparation of anion transporters, we have studied a family of thioureas functionalized with these and related functional groups. 1H NMR titrations and DFT calculations indicate that the thioureas bearing acylhydrazone groups behave as chloride receptors with two separate binding sites, of which the acylhydrazone binds weaker than the thiourea. Chloride transport studies show that the additional binding site has a detrimental effect on thiourea-based transporters, and this phenomenon is also observed for bis(thio)ureas with two separate binding sites. We propose that the presence of a second anion binding unit hinders the transport activity of the thiourea due to additional interactions with the phospholipids of the membrane. In agreement with this hypothesis, extensive molecular dynamics simulations suggest that the molecules will tend to be positioned in the water/lipid interface, driven by the interaction of the NHs of the thiourea and of the acylhydrazone groups with the POPC polar head groups and water molecules. Moreover, the interaction energies show that the poorest transporters have indeed the strongest interactions with the membrane phospholipids, inhibiting chloride transport. This detrimental effect of additional functional groups on transport activity should be considered when designing new ion transporters, unless these groups cooperatively promote anion recognition and transmembrane transport.
Collapse
Affiliation(s)
- Luis Martínez-Crespo
- Université Libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| | - Lau Halgreen
- Université Libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| | - Márcio Soares
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Igor Marques
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Vítor Félix
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Hennie Valkenier
- Université Libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| |
Collapse
|
14
|
Bickerton LE, Johnson TG, Kerckhoffs A, Langton MJ. Supramolecular chemistry in lipid bilayer membranes. Chem Sci 2021; 12:11252-11274. [PMID: 34567493 PMCID: PMC8409493 DOI: 10.1039/d1sc03545b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.
Collapse
Affiliation(s)
- Laura E Bickerton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Toby G Johnson
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Aidan Kerckhoffs
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
15
|
Affiliation(s)
- Patrick Wang
- School of Chemistry, The University of Sydney, NSW, Australia
| | - Xin Wu
- School of Chemistry, The University of Sydney, NSW, Australia
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, NSW, Australia
- The University of Sydney Nano Institute (SydneyNano), The University of Sydney, NSW, Australia
| |
Collapse
|
16
|
Maslowska-Jarzyna K, Korczak ML, Wagner JA, Chmielewski MJ. Carbazole-Based Colorimetric Anion Sensors. Molecules 2021; 26:3205. [PMID: 34071969 PMCID: PMC8199442 DOI: 10.3390/molecules26113205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
Owing to their strong carbazole chromophore and fluorophore, as well as to their powerful and convergent hydrogen bond donors, 1,8-diaminocarbazoles are amongst the most attractive and synthetically versatile building blocks for the construction of anion receptors, sensors, and transporters. Aiming to develop carbazole-based colorimetric anion sensors, herein we describe the synthesis of 1,8-diaminocarbazoles substituted with strongly electron-withdrawing substituents, i.e., 3,6-dicyano and 3,6-dinitro. Both of these precursors were subsequently converted into model diamide receptors. Anion binding studies revealed that the new receptors exhibited significantly enhanced anion affinities, but also significantly increased acidities. We also found that rear substitution of 1,8-diamidocarbazole with two nitro groups shifted its absorption spectrum into the visible region and converted the receptor into a colorimetric anion sensor. The new sensor displayed vivid color and fluorescence changes upon addition of basic anions in wet dimethyl sulfoxide, but it was poorly selective; because of its enhanced acidity, the dominant receptor-anion interaction for most anions was proton transfer and, accordingly, similar changes in color were observed for all basic anions. The highly acidic and strongly binding receptors developed in this study may be applicable in organocatalysis or in pH-switchable anion transport through lipophilic membranes.
Collapse
Affiliation(s)
| | | | | | - Michał J. Chmielewski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (K.M.-J.); (M.L.K.); (J.A.W.)
| |
Collapse
|
17
|
Maslowska-Jarzyna K, Korczak ML, Chmielewski MJ. Boosting Anion Transport Activity of Diamidocarbazoles by Electron Withdrawing Substituents. Front Chem 2021; 9:690035. [PMID: 34095089 PMCID: PMC8172623 DOI: 10.3389/fchem.2021.690035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Artificial chloride transporters have been intensely investigated in view of their potential medicinal applications. Recently, we have established 1,8-diamidocarbazoles as a versatile platform for the development of active chloride carriers. In the present contribution, we investigate the influence of various electron-withdrawing substituents in positions 3 and 6 of the carbazole core on the chloride transport activity of these anionophores. Using lucigenin assay and large unilamellar vesicles as models, the 3,6-dicyano- and 3,6-dinitro- substituted receptors were found to be highly active and perfectly deliverable chloride transporters, with EC50,270s value as low as 22 nM for the Cl-/NO3 - exchange. Mechanistic studies revealed that diamidocarbazoles form 1:1 complexes with chloride in lipid bilayers and facilitate chloride/nitrate exchange by carrier mechanism. Furthermore, owing to its increased acidity, the 3,6-dinitro- substituted receptor acts as a pH-switchable transporter, with physiologically relevant apparent pKa of 6.4.
Collapse
Affiliation(s)
| | | | - Michał J. Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Pomorski R, García-Valverde M, Quesada R, Chmielewski MJ. Transmembrane anion transport promoted by thioamides. RSC Adv 2021; 11:12249-12253. [PMID: 35423746 PMCID: PMC8697034 DOI: 10.1039/d1ra01646f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
Thioamide groups represent useful hydrogen-bonding motifs for the development of active transmembrane anion transporters. Using a 1,8-di(thioamido)carbazole scaffold the superior performance of thioamides compared with the parent amides has been demonstrated.
Collapse
Affiliation(s)
- Robert Pomorski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warszawa Poland
| | | | - Roberto Quesada
- Departamento de Química, Universidad de Burgos Burgos 09001 Spain
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warszawa Poland
| |
Collapse
|
19
|
|
20
|
Davis JT, Gale PA, Quesada R. Advances in anion transport and supramolecular medicinal chemistry. Chem Soc Rev 2020; 49:6056-6086. [PMID: 32692794 DOI: 10.1039/c9cs00662a] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in anion transport by synthetic supramolecular systems are discussed in this article. Developments in the design of discrete molecular carriers for anions and supramolecular anion channels are reviewed followed by an overview of the use of these systems in biological systems as putative treatments for diseases such as cystic fibrosis and cancer.
Collapse
Affiliation(s)
- Jeffery T Davis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Philip A Gale
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia.
| | - Roberto Quesada
- Departmento de Química, Universidad de Burgos, 09001 Burgos, Spain.
| |
Collapse
|
21
|
Bąk KM, van Kolck B, Maslowska-Jarzyna K, Papadopoulou P, Kros A, Chmielewski MJ. Oxyanion transport across lipid bilayers: direct measurements in large and giant unilamellar vesicles. Chem Commun (Camb) 2020; 56:4910-4913. [PMID: 32238998 DOI: 10.1039/c9cc09888g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A simple di(thioamido)carbazole 1 serves as a potent multispecific transporter for various biologically relevant oxyanions, such as drugs, metabolites and model organic phosphate. The transport kinetics of a wide range of oxyanions can be easily quantified by a modified lucigenin assay in both large and giant unilamellar vesicles.
Collapse
Affiliation(s)
- Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| | - Bartjan van Kolck
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Krystyna Maslowska-Jarzyna
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| | - Panagiota Papadopoulou
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| |
Collapse
|
22
|
Kieser JM, Kinney ZJ, Gaffen JR, Evariste S, Harrison AM, Rheingold AL, Protasiewicz JD. Three Ways Isolable Carbenes Can Modulate Emission of NH-Containing Fluorophores. J Am Chem Soc 2019; 141:12055-12063. [PMID: 31322901 DOI: 10.1021/jacs.9b04864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluorescent molecules and materials that exhibit emission changes in response to analytes are of great interest across multiple disciplines. Herein, we investigate the response of NH-containing fluorophores carbazole and 2-phenylbenzimidazole (Ph-BIM) with two representative isolable singlet carbenes. Specifically, N-heterocyclic carbene 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and cyclic (alkyl)(amino)carbene (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene (EtCAAC) were discovered to afford three different types of reaction products with carbazole and Ph-BIM. Depending on the reaction pair, hydrogen bonding (1), NH-insertion (2,3), or proton transfer (4) products can be isolated, each displaying variable photophysical responses. These products have been structurally authenticated by single crystal X-ray diffraction and NMR spectrometric methods. Studies of the solution state behavior of 1-4 reveals that these adducts are labile and can reversibly dissociate to free carbenes and fluorophores to varying extents. These equilibria produce concentration dependent solution state behavior as identified and quantified via UV-visible absorption, emission, 1H DOSY, and NMR spectroscopic measurements.
Collapse
Affiliation(s)
- Jerod M Kieser
- Department of Chemistry , Case Western Reserve University , 2080 Adelbert Road , Cleveland , Ohio 44106 , United States
| | - Zacharias J Kinney
- Department of Chemistry , Case Western Reserve University , 2080 Adelbert Road , Cleveland , Ohio 44106 , United States
| | - Joshua R Gaffen
- Department of Chemistry , Case Western Reserve University , 2080 Adelbert Road , Cleveland , Ohio 44106 , United States
| | - Sloane Evariste
- Department of Chemistry , Case Western Reserve University , 2080 Adelbert Road , Cleveland , Ohio 44106 , United States
| | - Alexandra M Harrison
- Department of Chemistry , Case Western Reserve University , 2080 Adelbert Road , Cleveland , Ohio 44106 , United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - John D Protasiewicz
- Department of Chemistry , Case Western Reserve University , 2080 Adelbert Road , Cleveland , Ohio 44106 , United States
| |
Collapse
|
23
|
Liu X, Zhang Y, Fei X, Liao L, Fan J. 9,9′‐Bicarbazole: New Molecular Skeleton for Organic Light‐Emitting Diodes. Chemistry 2019; 25:4501-4508. [DOI: 10.1002/chem.201806314] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Xiang‐Yang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional, Materials & DevicesJoint International Research Laboratory of, Carbon-Based Functional Materials and DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou Jiangsu 215123 P.R. China
| | - Yuan‐Lan Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional, Materials & DevicesJoint International Research Laboratory of, Carbon-Based Functional Materials and DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou Jiangsu 215123 P.R. China
| | - Xiyu Fei
- Jiangsu Key Laboratory for Carbon-Based Functional, Materials & DevicesJoint International Research Laboratory of, Carbon-Based Functional Materials and DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou Jiangsu 215123 P.R. China
| | - Liang‐Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional, Materials & DevicesJoint International Research Laboratory of, Carbon-Based Functional Materials and DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou Jiangsu 215123 P.R. China
| | - Jian Fan
- Jiangsu Key Laboratory for Carbon-Based Functional, Materials & DevicesJoint International Research Laboratory of, Carbon-Based Functional Materials and DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou Jiangsu 215123 P.R. China
| |
Collapse
|