1
|
Ash J, Kang JY. Catalyst-free thiophosphorylation of in situ formed ortho-quinone methides. Org Biomol Chem 2023; 21:2370-2374. [PMID: 36852656 DOI: 10.1039/d2ob02169b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A metal-, chloride reagent and base-free thiophosphorylation reaction of in situ formed ortho-quinone methide (o-QM) to synthesize functionalized thiophosphates has been developed. The reaction is an atom-economical process, producing water as the sole byproduct. (EtO)2P(O)SH functions as both a Brønsted acid and nucleophilic thiolate to produce the o-QM intermediate and the thiophosphate product, respectively. The aza o-QMs were also successfully thiophosphorylated in the presence of catalytic TsOH to form sulfonamido thiophosphates.
Collapse
Affiliation(s)
- Jeffrey Ash
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154-4003, USA.
| | - Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154-4003, USA.
| |
Collapse
|
2
|
Xiong B, Si L, Zhu L, Wu R, Liu Y, Xu W, Zhang F, Tang KW, Wong WY. Room-Temperature ZnBr 2 -Catalyzed Regioselective 1,6-Hydroarylation of Electron-Rich Arenes to para-Quinone Methides: Synthesis of Unsymmetrical Triarylmethanes. Chem Asian J 2023; 18:e202201156. [PMID: 36507597 DOI: 10.1002/asia.202201156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
A mild and efficient Zn(II)-catalyzed regioselective 1,6-hydroarylation of para-quinone methides (p-QMs) with electron-rich arenes protocol is reported. A variety of electron-rich arenes and para-quinone methides are well tolerated under mild conditions, delivering a broad range of triarylmethanes in good to excellent yields. The present method also works well for the hydroarylation of p-QMs with other nucleophiles, such as aniline, indole and phenol derivatives, offering the corresponding triarylmethanes with good yields under the standard conditions. The possible mechanism for the formation of C(sp3 )-C(sp2 ) bonds in hydroarylation reactions has been explored by step-by-step control experiments, and the reaction may follow a second-order manner in a chemical kinetic study.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, 414006, Yueyang, P. R. China.,Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Hong Kong, P. R. China
| | - Lulu Si
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, 414006, Yueyang, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, 414006, Yueyang, P. R. China.,Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Hong Kong, P. R. China
| | - Rong Wu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, 414006, Yueyang, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, 414006, Yueyang, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, 414006, Yueyang, P. R. China
| | - Fan Zhang
- College of Chemistry and Chemical Engineering, Jishou University, 416000, Jishou, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, 414006, Yueyang, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
3
|
Koszelewski D, Kowalczyk P, Samsonowicz-Górski J, Hrunyk A, Brodzka A, Łęcka J, Kramkowski K, Ostaszewski R. Synthesis and Antimicrobial Activity of the Pathogenic E. coli Strains of p-Quinols: Additive Effects of Copper-Catalyzed Addition of Aryl Boronic Acid to Benzoquinones. Int J Mol Sci 2023; 24:ijms24021623. [PMID: 36675139 PMCID: PMC9862949 DOI: 10.3390/ijms24021623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
A mild and efficient protocol for the synthesis of p-quinols under aqueous conditions was developed. The pivotal role of additives in the copper-catalyzed addition of aryl boronic and heteroaryl boronic acids to benzoquinones was observed. It was found that polyvinylpyrrolidone (PVP) was the most efficient additive used for the studied reaction. The noteworthy advantages of this procedure include its broad substrate scope, high yields up to 91%, atom economy, and usage of readily available starting materials. Another benefit of this method is the reusability of the catalytic system up to four times. Further, the obtained p-quinols were characterized on the basis of their antimicrobial activities against E. coli. Antimicrobial activity was further compared with the corresponding 4-benzoquinones and 4-hydroquinones. Among tested compounds, seven derivatives showed an antimicrobial activity profile similar to that observed for commonly used antibiotics such as ciprofloxacin, bleomycin, and cloxacillin. In addition, the obtained p-quinols constitute a suitable platform for further modifications, allowing for a convenient change in their biological activity profile.
Collapse
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Correspondence: (D.K.); (P.K.); Tel.: +48-223432012 (D.K.); +48-227653301 (P.K.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
- Correspondence: (D.K.); (P.K.); Tel.: +48-223432012 (D.K.); +48-227653301 (P.K.)
| | - Jan Samsonowicz-Górski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anastasiia Hrunyk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Justyna Łęcka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 Str., 15-089 Białystok, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Guha S, Prabakar T, Sen S. Blue Light-Emitting Diode-Induced Direct C-H Functionalization of 1,4-Quinones with Aryl and Alkyl Boronic Acids. J Org Chem 2022; 87:15421-15434. [PMID: 36322678 DOI: 10.1021/acs.joc.2c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A direct functionalization of numerous 1,4-quinones with various aryl boronic acids is reported under blue light-emitting diodes (LEDs). This reaction occurs at room temperature in an open flask without any catalysts, base, and oxidants in acetonitrile (ACN) and is scalable in grams. With diverse 1,4-quinones like 1,4-benzo-, naphtho-, anthra-, and 4-bromonaphthoquinones as substrates, facile cross coupling reactions occur with aryl and alkyl boronic acids without assistance from any photocatalysts. 2-Alkylated cyclohexene-1,4-diones were obtained when the 1,4-quinones were reacted with alkyl boronic acids under standard reaction conditions. However, slight warming of the reaction mixture afforded the desired alkylated 1,4-quinones. The reaction is believed to proceed through the blue LED-induced radical formation of the aryl rings assisted by the 1,4-quinones.
Collapse
Affiliation(s)
- Souvik Guha
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Greater Noida, UP 201314, India
| | - Tejas Prabakar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Greater Noida, UP 201314, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Greater Noida, UP 201314, India
| |
Collapse
|
5
|
Xiong B, Si L, Liu Y, Xu W, Jiang T, Cao F, Tang KW, Wong WY. Metal-free, Phosphoric Acid-catalyzed Regioselective 1,6-Hydroarylation of para-Quinone Methides with Indoles in Water. Chem Asian J 2022; 17:e202200042. [PMID: 35246930 DOI: 10.1002/asia.202200042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/19/2022] [Indexed: 11/08/2022]
Abstract
An efficient, cheap and green protocol for the highly regioselective 1,6-hydroarylation of para -quinone methides ( p -QMs) with indoles at the C-3 position has been established by phosphoric acid catalysis in water under the transition-metal-free reaction conditions. A wide range of indole derivatives and para -quinone methides ( p -QMs) are compatible for the reaction, affording the corresponding 1,6-hydroarylation products with good to excellent yields. The possible mechanism of the reaction has been explored by step-by-step control experiments. The protocol is convenient for practical application, leading a safe, green and feasible way for the formation of C-3 diarylmethyl functionalized indole derivatives.
Collapse
Affiliation(s)
- Biquan Xiong
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Lulu Si
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Yu Liu
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Weifeng Xu
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Tao Jiang
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Fan Cao
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Ke-Wen Tang
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Wai-Yeung Wong
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, Hung Hom, Hong Kong, HONG KONG
| |
Collapse
|
6
|
Mane BB, Waghmode SB. Iron-Catalyzed Ring Opening of Cyclopropanols and Their 1,6-Conjugate Addition to p-Quinone Methides. J Org Chem 2021; 86:17774-17781. [PMID: 34813312 DOI: 10.1021/acs.joc.1c02059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel iron-catalyzed ring opening of cyclopropanols and their 1,6-conjugate addition to p-quinone methides for accessing substituted phenols is disclosed. In this protocol, various cyclopropanols are converted to alkyl radicals and undergo 1,6-conjugate addition to p-quinone methides toward C-C bond formation. The salient features of this methodology include operationally simple and mild reaction conditions, environmentally benign protocol, high efficiency, inexpensive catalyst, good to excellent yield, and a wide range of substrate scope.
Collapse
Affiliation(s)
- Baliram B Mane
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| |
Collapse
|
7
|
Xu S, Xie J, Liu Y, Xu W, Tang KW, Xiong B, Wong WY. Silver-Catalyzed Regioselective Phosphorylation of para-Quinone Methides with P(III)-Nucleophiles. J Org Chem 2021; 86:14983-15003. [PMID: 34665625 DOI: 10.1021/acs.joc.1c01703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple and efficient method for the silver-catalyzed regioselective phosphorylation of para-quinone methides (p-QMs) with P(III)-nucleophiles (P(OR)3, ArP(OR)2, Ar2P-OR) has been established via Michaelis-Arbuzov-type reaction. A broad range of P(III)-nucleophiles and para-quinone methides are well tolerated under the mild conditions, giving the expected diarylmethyl-substituted organophosphorus compounds with good to excellent yields. Moreover, a series of corresponding enantiomers can be obtained by employing dialkyl arylphosphonite (ArP(OR)2) as substrates. The control experiments and 31P NMR tracking experiments were also performed to gain insights for the plausible reaction mechanism. This protocol may have significant implications for the formation of C(sp3)-P bonds in Michaelis-Arbuzov-type reactions.
Collapse
Affiliation(s)
- Shipan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
8
|
Terashima K, Kawasaki-Takasuka T, Yamazaki T. Construction of fully substituted carbon centers containing a heteroatom and a CF 3 group via in situ generated p-quinone methides. Org Biomol Chem 2021; 19:1305-1314. [PMID: 33503080 DOI: 10.1039/d0ob02469d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1,6-Conjugate additions of in situ generated δ-CF3-δ-substituted p-quinone methides have been achieved with a variety of heteronucleophiles under mild conditions, which led to facile and practical construction of fully substituted carbon centers including a heteroatom and a CF3 group. In particular, it was revealed that some amines themselves worked for efficient cleavage of the TBS protective group, and addition of a catalytic amount of an appropriate Brønsted acid was found to sometimes improve the progress of the desired process.
Collapse
Affiliation(s)
- Kyu Terashima
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| | - Takashi Yamazaki
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| |
Collapse
|
9
|
Yu J, Chen S, Liu K, Yuan L, Mei L, Chai Z, Shi W. Uranyl-catalyzed hydrosilylation of para-quinone methides: access to diarylmethane derivatives. Org Biomol Chem 2021; 19:1575-1579. [PMID: 33514996 DOI: 10.1039/d0ob02455d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and convenient uranyl-catalyzed reductive hydrosilylation reaction of para-quinone methides (p-QMs) was developed by employing silane as the reductant. The hydrosilylation procedure using the UO2(NO3)2·6H2O/Et3SiH catalytic system proceeded smoothly and provided an expedient method for the construction of various diarylmethane derivatives in one step with good to excellent yields.
Collapse
Affiliation(s)
- Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Siyu Chen
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China. and Engineering Laboratory of Advanced Energy materials, Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
10
|
Yadav A, Kumar D, Mishra MK, Deeksha, Tripathi CB. Catalytic Enantioselective Synthesis of Aryl–Methyl Organophosphorus Compounds. J Org Chem 2021; 86:2000-2011. [DOI: 10.1021/acs.joc.0c02675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Arun Yadav
- Medicinal and Process Chemistry Division, CSIR−Central Drug Research Institute, Lucknow 226031, India
- Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dileep Kumar
- Medicinal and Process Chemistry Division, CSIR−Central Drug Research Institute, Lucknow 226031, India
| | - Manish Kumar Mishra
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Deeksha
- Medicinal and Process Chemistry Division, CSIR−Central Drug Research Institute, Lucknow 226031, India
| | - Chandra Bhushan Tripathi
- Medicinal and Process Chemistry Division, CSIR−Central Drug Research Institute, Lucknow 226031, India
- Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Wang D, Kan L, Ma Y, Liu L. NaO tBu-Catalyzed Hydrophosphonylation of δ-CN- δ-aryl-disubstituted para-Quinone Methides with Phosphine Oxides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Wang L, Yang F, Xu X, Jiang J. Organocatalytic 1,6-hydrophosphination of para-quinone methides: enantioselective access to chiral 3-phosphoxindoles bearing phosphorus-substituted quaternary carbon stereocenters. Org Chem Front 2021. [DOI: 10.1039/d0qo01638a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient organocatalytic enantioselective 1,6-hydrophosphonylation of para-quinone methides has been achieved for the construction of phosphorus-substituted quaternary carbon stereocenters.
Collapse
Affiliation(s)
- Lisheng Wang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning
- P. R. China
- Medicinal College
| | - Fuxing Yang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning
- P. R. China
| | - Xiaoping Xu
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning
- P. R. China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning
- P. R. China
| |
Collapse
|
13
|
Shirsath SR, Ghotekar GS, Bahadur V, Gonnade RG, Muthukrishnan M. Silver-Catalyzed Cascade Cyclization/1,6-Conjugate Addition of Homopropargyl Sulfonamides to p-Quinone Methides: An Approach to Diverse 3-Diarylmethine Substituted Dihydropyrroles. J Org Chem 2020; 85:15038-15050. [DOI: 10.1021/acs.joc.0c01922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sachin R. Shirsath
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ganesh S. Ghotekar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vir Bahadur
- Centre for Materials Characterization, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh G. Gonnade
- Centre for Materials Characterization, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M. Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Yu J, Chen S, Liu K, Yuan L, Zhao Y, Chai Z, Mei L. Facile construction of diverse diarylmethane scaffolds via uranyl-catalyzed 1,6-addition reaction. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Yuan H, Kowah JA, Jiang J. Base-promoted hydrophosphination of para-quinone methides under ultrasonic irradiation: A rapid and efficient synthesis of diarylmethyl phosphorus oxides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Lima CGS, Pauli FP, Costa DCS, de Souza AS, Forezi LSM, Ferreira VF, de Carvalho da Silva F. para
-Quinone Methides as Acceptors in 1,6-Nucleophilic Conjugate Addition Reactions for the Synthesis of Structurally Diverse Molecules. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901796] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Carolina G. S. Lima
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| | - Fernanda P. Pauli
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| | - Dora C. S. Costa
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| | - Acácio S. de Souza
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| | - Luana S. M. Forezi
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| | - Vitor F. Ferreira
- Departamento de Tecnologia Farmacêutica; Universidade Federal Fluminense; 24241-000 Niterói RJ Brazil
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| |
Collapse
|
17
|
Tian AQ, Liu S, Ren ZL, Wang L, Li DS. Metal–organic frameworks of Cu2(TPTC)-catalyzed cascade C–S coupling/Csp2–H hydroxylation reaction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01860-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Yang Q, Liu N, Yan J, Ren Z, Wang L. Visible Light‐ and Heat‐Promoted C−O Coupling Reaction of Phenols and Aryl Halides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900666] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qing‐Qing Yang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials College of Materials and Chemical EngineeringChina Three Gorges University Yichang Hubei 443002 China
| | - Na Liu
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials College of Materials and Chemical EngineeringChina Three Gorges University Yichang Hubei 443002 China
| | - Jia‐Ying Yan
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials College of Materials and Chemical EngineeringChina Three Gorges University Yichang Hubei 443002 China
| | - Zhi‐Lin Ren
- College of Chemical EngineeringHubei University of Arts and Science, Xiangyang Hubei 441053 China
| | - Long Wang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials College of Materials and Chemical EngineeringChina Three Gorges University Yichang Hubei 443002 China
- Material Analysis and Testing CenterChina Three Gorges University Yichang Hubei 443002 China
| |
Collapse
|
19
|
Wang JY, Hao WJ, Tu SJ, Jiang B. Recent developments in 1,6-addition reactions of para-quinone methides (p-QMs). Org Chem Front 2020. [DOI: 10.1039/d0qo00387e] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we provide a comprehensive overview of recent progress in this rapidly growing field by summarizing the 1,6-conjugate addition and annulation reactions of p-QMs with consideration of their mechanisms and applications.
Collapse
Affiliation(s)
- Jia-Yin Wang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
20
|
Ghotekar GS, Shirsath SR, Shaikh AC, Muthukrishnan M. 1,6-Conjugate addition initiated formal [4+2] annulation of p-quinone methides with sulfonyl allenols: a unique access to spiro[5.5]undeca-1,4-dien-3-one scaffolds. Chem Commun (Camb) 2020; 56:5022-5025. [DOI: 10.1039/d0cc01005g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An expedient one-pot synthesis of carbocyclic spiro[5.5]undeca-1,4-dien-3-ones via 1,6-conjugate addition initiated formal [4+2] annulation sequences by employing p-quinone methides and sulfonyl allenols.
Collapse
Affiliation(s)
- Ganesh S. Ghotekar
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Sachin R. Shirsath
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Aslam C. Shaikh
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - M. Muthukrishnan
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
21
|
Nan GM, Li X, Yao TY, Yan TX, Wen LR, Li M. InCl3-catalyzed 5-exo-dig cyclization/1,6-conjugate addition of N-propargylamides with p-QMs to construct oxazole derivatives. Org Biomol Chem 2020; 18:1780-1784. [DOI: 10.1039/c9ob02651g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An InCl3-catalyzed tandem intramolecular 5-exo-dig cyclization/1,6-conjugate addition/aromatization of N-propargylamides with p-QMs to produce oxazoles tethering diarylmethane has been successfully developed.
Collapse
Affiliation(s)
- Guang-Ming Nan
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang
- Yili Normal University
- Yining 835000
- China
| | - Xue Li
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang
- Yili Normal University
- Yining 835000
- China
| | - Tian-Yu Yao
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science & Technology
- Qingdao 266042
- China
| | - Ting-Xun Yan
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science & Technology
- Qingdao 266042
- China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science & Technology
- Qingdao 266042
- China
| | - Ming Li
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang
- Yili Normal University
- Yining 835000
- China
- State Key Laboratory Base of Eco-Chemical Engineering
| |
Collapse
|
22
|
Terashima K, Kawasaki-Takasuka T, Agou T, Kubota T, Yamazaki T. Construction of trifluoromethylated quaternary stereocenters via p-quinone methides. Chem Commun (Camb) 2020; 56:3031-3034. [DOI: 10.1039/c9cc08936e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of a new synthetic method for the construction of quaternary centers with a CF3 group was realized by way of 1,6-addition of various nucleophiles to highly reactive δ-trifluoromethylated p-quinone methides generated in situ.
Collapse
Affiliation(s)
- Kyu Terashima
- Division of Applied Chemistry
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Koganei 184-8588
- Japan
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Koganei 184-8588
- Japan
| | - Tomohiro Agou
- Department of Biomolecular Functional Engineering
- Ibaraki University
- Hitachi 316-8511
- Japan
| | - Toshio Kubota
- Department of Biomolecular Functional Engineering
- Ibaraki University
- Hitachi 316-8511
- Japan
| | - Takashi Yamazaki
- Division of Applied Chemistry
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Koganei 184-8588
- Japan
| |
Collapse
|
23
|
Yu C, Patureau FW. Regioselective Oxidative Arylation of Fluorophenols. Angew Chem Int Ed Engl 2019; 58:18530-18534. [PMID: 31584740 PMCID: PMC6916641 DOI: 10.1002/anie.201910352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Indexed: 11/08/2022]
Abstract
A metal free and highly regioselective oxidative arylation reaction of fluorophenols is described. The relative position of the fluoride leaving group (i.e., ortho or para) controls the 1,2 or 1,4 nature of the arylated quinone product, lending versatility and generality to this oxidative, defluorinative, arylation concept.
Collapse
Affiliation(s)
- Congjun Yu
- Institute of Organic Chemistry, RWTH, Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH, Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
24
|
Affiliation(s)
- Congjun Yu
- Institut für Organische ChemieRWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Frederic W. Patureau
- Institut für Organische ChemieRWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
25
|
Liu N, Chao F, Yan J, Huang N, Ren Z, Wang L. Metal‐Organic Frameworks of Cu
3
(BTC)
2
Catalyzed Cascade C‐H Activation/C‐S Coupling/C‐O Cyclization Reaction Strategy: One‐Pot Efficient Synthesis of Phenoxathiines. ChemistrySelect 2019. [DOI: 10.1002/slct.201903494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Na Liu
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - Fei Chao
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - Jiaying Yan
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - Nian‐Yu Huang
- Hubei Key Laboratory of Natural Products Research and DevelopmentChina Three Gorges University, Yichang Hubei 443002 China
| | - Zhi‐Lin Ren
- College of Chemical EngineeringHubei University of Arts and Science, Xiangyang Hubei 441053 China
| | - Long Wang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
- Material Analysis and Testing CenterChina Three Gorges University, Yichang Hubei 443002, China
| |
Collapse
|
26
|
Liu N, Tian A, Ren Z, Wang L. Efficient Synthesis of Sulfonyl Diphenylsulfides Catalyzed via Cu–MOF of PCN‐6’. ChemistrySelect 2019. [DOI: 10.1002/slct.201902713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Na Liu
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials,College of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - An−Qi Tian
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials,College of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - Zhi‐Lin Ren
- College of Chemical EngineeringHubei University of Arts and Science, Xiangyang Hubei 441053 China
| | - Long Wang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials,College of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| |
Collapse
|
27
|
Liu Z, Xu H, Yao T, Zhang J, Liu L. Catalyst-Enabled Chemodivergent Construction of Alkynyl- and Vinyl-Substituted Diarylmethanes from p-Quinone Methides and Alkynes. Org Lett 2019; 21:7539-7543. [DOI: 10.1021/acs.orglett.9b02810] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenli Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Haofeng Xu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Tengfei Yao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Junliang Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
28
|
Aher YN, Pawar AB. Catalyst- and reagent-free 1,6-hydrophosphonylation of p-quinone methides: a practical approach for the synthesis of diarylmethyl phosphine oxides. Org Biomol Chem 2019; 17:7536-7546. [PMID: 31369029 DOI: 10.1039/c9ob01326a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed a catalyst-, reagent-, and additive-free protocol with 100% atom economy for the synthesis of diarylmethyl phosphine oxides via 1,6-hydrophosphonylation of p-quinone methides using water as a green solvent. The reaction showed broad scope with excellent functional group tolerance. The practicability of this method was demonstrated by carrying out the reaction on the gram scale whereby product was obtained in high yield by the filtration technique avoiding chromatographic purification.
Collapse
Affiliation(s)
- Yogesh N Aher
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Amit B Pawar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
29
|
Zhang B, Liu L, Mao S, Zhou MD, Wang H, Li L. Base-Catalyzed 1,6-Hydrophosphonylation of p
-Quinone Methides with Diphenylphosphane Oxide/Phosphites. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bin Zhang
- School of Chemistry and Materials Science; Liaoning Shihua University; Dandong Road 1, Fushun 113001 P. R. China
| | - Lu Liu
- School of Chemistry and Materials Science; Liaoning Shihua University; Dandong Road 1, Fushun 113001 P. R. China
| | - Shukuan Mao
- School of Chemistry and Materials Science; Liaoning Shihua University; Dandong Road 1, Fushun 113001 P. R. China
| | - Ming-Dong Zhou
- School of Chemistry and Materials Science; Liaoning Shihua University; Dandong Road 1, Fushun 113001 P. R. China
| | - He Wang
- School of Chemistry and Materials Science; Liaoning Shihua University; Dandong Road 1, Fushun 113001 P. R. China
| | - Lei Li
- School of Chemistry and Materials Science; Liaoning Shihua University; Dandong Road 1, Fushun 113001 P. R. China
| |
Collapse
|
30
|
Xiong B, Wang G, Zhou C, Liu Y, Xu W, Xu WY, Yang CA, Tang KW. Base-Catalyzed Stereoselective 1,6-Conjugated Addition/Aromatization of P(O)-H Compounds with para
-Quinone Methides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; 414006 Yueyang P.R.China
| | - Gang Wang
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; 414006 Yueyang P.R.China
| | - Congshan Zhou
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; 414006 Yueyang P.R.China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; 414006 Yueyang P.R.China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; 414006 Yueyang P.R.China
| | - Wen-Yuan Xu
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; 414006 Yueyang P.R.China
| | - Chang-An Yang
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; 414006 Yueyang P.R.China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; 414006 Yueyang P.R.China
| |
Collapse
|
31
|
Prasad SS, Singh DK, Kim I. One-Pot, Three-Component Approach to Diarylmethylphosphonates: A Direct Entry to Polycyclic Aromatic Systems. J Org Chem 2019; 84:6323-6336. [PMID: 30990320 DOI: 10.1021/acs.joc.9b00668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new type of three-component reaction was developed consisting of aldehydes, electron-rich (hetero)arenes, and trialkyl phosphite, which provided facile access to a wide range of diarylmethylphosphonates under mild reaction conditions. Simple one- or two-step synthetic manipulation of the resulting compounds enabled us to reach several polycyclic (hetero)aromatic systems efficiently.
Collapse
Affiliation(s)
- Sure Siva Prasad
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences , Yonsei University , 85 Songdogwahak-ro , Yeonsu-gu, Incheon 21983 , Republic of Korea
| | - Dileep Kumar Singh
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences , Yonsei University , 85 Songdogwahak-ro , Yeonsu-gu, Incheon 21983 , Republic of Korea
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences , Yonsei University , 85 Songdogwahak-ro , Yeonsu-gu, Incheon 21983 , Republic of Korea
| |
Collapse
|
32
|
Jiang C, Chen Y, Huang G, Ni C, Liu X, Lu H. Scandium(III)-Catalysed Decarboxylative Addition of β-
Ketoacids to para
-Quinone Methides: Evidence for 1,6-Addition and Base-Assisted Decarboxylation Tandem Process. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800729] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chunhui Jiang
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; 2 Mengxi Road, Zhenjiang Jiangsu 212003 China
| | - Yayun Chen
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; 2 Mengxi Road, Zhenjiang Jiangsu 212003 China
| | - Gaokui Huang
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; 2 Mengxi Road, Zhenjiang Jiangsu 212003 China
| | - Cheng Ni
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; 2 Mengxi Road, Zhenjiang Jiangsu 212003 China
| | - Xiaoqian Liu
- School of pharmaceutical and life science; Changzhou University
| | - Hongfei Lu
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; 2 Mengxi Road, Zhenjiang Jiangsu 212003 China
| |
Collapse
|
33
|
Huang J, Liu N, Lu T, Dou X. Synthesis of meta
-Arylated Phenol Derivatives by Rhodium(I)-Catalyzed Arylation of Quinone Monoacetal. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianhang Huang
- Department of Organic Chemistry, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 People's Republic of China
| | - Na Liu
- Department of Organic Chemistry, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 People's Republic of China
| | - Tao Lu
- Department of Organic Chemistry, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 People's Republic of China
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 People's Republic of China
| | - Xiaowei Dou
- Department of Organic Chemistry, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 People's Republic of China
| |
Collapse
|