1
|
Dolai A, Bhunia S, Jana SK, Bera S, Mandal S, Samanta S. Photoisomerization and Light-Controlled Antibacterial Activity of Fluoroquinolone-Azoisoxazole Hybrids. Chembiochem 2024; 25:e202300851. [PMID: 38409655 DOI: 10.1002/cbic.202300851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Photopharmacology holds a huge untapped potential to locally treat diseases involving photoswitchable drugs via the elimination of drugs' off-target effects. The growth of this field has created a pressing demand to develop such light-active drugs. We explored the potential for creating photoswitchable antibiotic hybrids by attaching pharmacophores norfloxacin/ciprofloxacin and azoisoxazole (photoswitch). All compounds exhibited a moderate to a high degree of bidirectional photoisomerization, long thermal cis half-lives, and impressive photoresistance. Gram-negative pathogens were found to be insensitive to these hybrids, while against Gram-positive pathogens, all hybrids in their trans states exhibited antibacterial activity that is comparable to that of the parent drugs. Notably, the toxicity of the irradiated hybrid 6 was found to be 2-fold lower than the nonirradiated trans isomer, indicating that the pre-inactivated cis-enriched drug can be employed for the site-specific treatment of bacterial infection using light, which could potentially eliminate the unwanted exposure of toxic antibiotics to both beneficial and untargeted harmful microbes in our body. Molecular docking revealed different binding affinity of the cis and trans isomers with the topoisomerase IV enzyme, due to their different shapes.
Collapse
Affiliation(s)
- Anirban Dolai
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Santosh Kumar Jana
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Satyajit Bera
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| |
Collapse
|
2
|
Bhunia S, Jana SK, Sarkar S, Das A, Mandal S, Samanta S. Direct Growth Control of Antibiotic-Resistant Bacteria Using Visible-Light-Responsive Novel Photoswitchable Antibiotics. Chemistry 2024; 30:e202303685. [PMID: 38217466 DOI: 10.1002/chem.202303685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
In addition to the discovery of new (modified) potent antibiotics to combat antibiotic resistance, there is a critical need to develop novel strategies that would restrict their off-target effects and unnecessary exposure to bacteria in our body and environment. We report a set of new photoswitchable arylazopyrazole-modified norfloxacin antibiotics that present a high degree of bidirectional photoisomerization, impressive fatigue resistance and reasonably high cis half-lives. The irradiated isomers of most compounds were found to exhibit nearly equal or higher antibacterial activity than norfloxacin against Gram-positive bacteria. Notably, against norfloxacin-resistant S. aureus bacteria, the visible-light-responsive p-SMe-substituted derivative showed remarkably high antimicrobial potency (MIC of 0.25 μg/mL) in the irradiated state, while the potency was reduced by 24-fold in case of its non-irradiated state. The activity was estimated to be retained for more than 7 hours. This is the first report to demonstrate direct photochemical control of the growth of antibiotic-resistant bacteria and to show the highest activity difference between irradiated and non-irradiated states of a photoswitchable antibiotic. Additionally, both isomers were found to be non-harmful to human cells. Molecular modellings were performed to identify the underlying reason behind the high-affinity binding of the irradiated isomer to topoisomerase IV enzyme.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Santosh Kumar Jana
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Soumik Sarkar
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Arpan Das
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| |
Collapse
|
3
|
Testolin G, Richter J, Ritter A, Prochnow H, Köhnke J, Brönstrup M. Optical Modulation of Antibiotic Resistance by Photoswitchable Cystobactamids. Chemistry 2022; 28:e202201297. [PMID: 35771231 DOI: 10.1002/chem.202201297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 01/07/2023]
Abstract
The rise of antibiotic resistance causes a serious health care problem, and its counterfeit demands novel, innovative concepts. The combination of photopharmacology, enabling a light-controlled reversible modulation of drug activity, with antibiotic drug design has led to first photoswitchable antibiotic compounds derived from established scaffolds. In this study, we converted cystobactamids, gyrase-inhibiting natural products with an oligoaryl scaffold and highly potent antibacterial activities, into photoswitchable agents by inserting azobenzene in the N-terminal part and/or an acylhydrazone moiety near the C-terminus, yielding twenty analogs that contain mono- as well as double-switches. Antibiotic and gyrase inhibition properties could be modulated 3.4-fold and 5-fold by light, respectively. Notably, the sensitivity of photoswitchable cystobactamids towards two known resistance factors, the peptidase AlbD and the scavenger protein AlbA, was light-dependent. While irradiation of an analog with an N-terminal azobenzene with 365 nm light led to less degradation by AlbD, the AlbA-mediated inactivation was induced. This provides a proof-of-principle that resistance towards photoswitchable antibiotics can be optically controlled.
Collapse
Affiliation(s)
- Giambattista Testolin
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Jana Richter
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Antje Ritter
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Hans Prochnow
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Jesko Köhnke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF) Site Hannover-Braunschweig, 38124, Braunschweig, Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159, Hannover, Germany
| |
Collapse
|
4
|
Zhang H, Qi Y, Zhao X, Li M, Wang R, Cheng H, Li Z, Guo H, Li Z. Dithienylethene-Bridged Fluoroquinolone Derivatives for Imaging-Guided Reversible Control of Antibacterial Activity. J Org Chem 2022; 87:7446-7455. [PMID: 35608344 DOI: 10.1021/acs.joc.2c00797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emerging field of photopharmacology has offered a promising alternative to guard against the bacterial resistance by effectively avoiding antibiotic accumulation in the body or environment. However, the degradation, toxicity, and thermal reversibility have always been an ongoing concern for potential applications of azobenzene-based photopharmacology. Developing novel photopharmacological agents based on a more matched switch is highly in demand and remains a major challenge. Herein, two novel dithienylethene-bridged dual-fluoroquinolone derivatives have been developed by introducing two fluoroquinolone drugs into both ends of the dithienylethene (DTE) switch, in which the fluoroquinolone acts as a fluorophore except for the pharmacodynamic component. For comparison, two monofluoroquinolone-DTE hybrids were also prepared by a similar strategy. As expected, these resultant DTE-based antibacterial agents displayed efficient photochromism and fluorescence switching behavior in dimethyl sulfoxide. Moreover, improved antibacterial activities compared to those of monofluoroquinolone derivatives and a maximum fourfold active difference against Escherichia coli (E. coli) for open and closed isomers and photoswitchable bacterial imaging for Staphylococcus aureus and E. coli were observed. The molecular docking to DNA gyrase gave a rationale for the discrepancies in antibacterial activity for both isomers. Therefore, these fluoroquinolone derivatives can act as interesting imaging-guided photopharmacological agents for further in vivo studies.
Collapse
Affiliation(s)
- Haining Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yueheng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xinru Zhao
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Manman Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ruyue Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Huiping Cheng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Zhuo Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Hui Guo
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|
5
|
Kobauri P, Galenkamp NS, Schulte AM, de Vries J, Simeth NA, Maglia G, Thallmair S, Kolarski D, Szymanski W, Feringa BL. Hypothesis-Driven, Structure-Based Design in Photopharmacology: The Case of eDHFR Inhibitors. J Med Chem 2022; 65:4798-4817. [PMID: 35258959 PMCID: PMC8958501 DOI: 10.1021/acs.jmedchem.1c01962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Photopharmacology
uses light to regulate the biological activity
of drugs. This precise control is obtained through the incorporation
of molecular photoswitches into bioactive molecules. A major challenge
for photopharmacology is the rational design of photoswitchable drugs
that show light-induced activation. Computer-aided drug design is
an attractive approach toward more effective, targeted design. Herein,
we critically evaluated different structure-based approaches for photopharmacology
with Escherichia coli dihydrofolate reductase (eDHFR)
as a case study. Through the iterative examination of our hypotheses,
we progressively tuned the design of azobenzene-based, photoswitchable
eDHFR inhibitors in five design–make–switch–test–analyze
cycles. Targeting a hydrophobic subpocket of the enzyme and a specific
salt bridge only with the thermally metastable cis-isomer emerged as the most promising design strategy. We identified
three inhibitors that could be activated upon irradiation and reached
potencies in the low-nanomolar range. Above all, this systematic study
provided valuable insights for future endeavors toward rational photopharmacology.
Collapse
Affiliation(s)
- Piermichele Kobauri
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nicole S Galenkamp
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Albert M Schulte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jisk de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nadja A Simeth
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Institute for Organic and Biomolecular Chemistry, University of Goettingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Giovanni Maglia
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| | - Dušan Kolarski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,DWI-Leibniz Institut für interaktive Materialien e.V., RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Wang Y, Zhou Q, He X, Zhang Y, Tan H, Xu J, Wang C, Wang W, Luo X, Chen J, Xu L. Dithienylethene metallodendrimers with high photochromic efficiency. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
The Search for New Antibacterial Agents among 1,2,3-Triazole Functionalized Ciprofloxacin and Norfloxacin Hybrids: Synthesis, Docking Studies, and Biological Activity Evaluation. Sci Pharm 2021. [DOI: 10.3390/scipharm90010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Among all modern antibiotics, fluoroquinolones are well known for their broad spectrums of activity and efficiency toward microorganisms and viruses. However, antibiotic resistance is still a problem, which has encouraged medicinal chemists to modify the initial structures in order to combat resistant strains. Our current work is aimed at synthesizing novel hybrid derivatives of ciprofloxacin and norfloxacin and applying docking studies and biological activity evaluations in order to find active promising molecules. We succeeded in the development of a synthetic method towards 1,2,3-triazole-substituted ciprofloxacin and norfloxacin derivatives. The structure and purity of the obtained compounds were confirmed by 1H NMR, 13C NMR, 19F NMR, LC/MS, UV-, IR- spectroscopy. Docking studies, together with in vitro research against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 27853, Candida albicans NCTC 885-653 revealed compounds in which activity exceeded the initial molecules.
Collapse
|
8
|
Huang Y, Chen W, Chung J, Yin J, Yoon J. Recent progress in fluorescent probes for bacteria. Chem Soc Rev 2021; 50:7725-7744. [PMID: 34013918 DOI: 10.1039/d0cs01340d] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Food fermentation, antibiotics, and pollutant degradation are closely related to bacteria. Bacteria play an irreplaceable role in life. However, some bacteria seriously threaten human health and cause large-scale infectious diseases. Therefore, there is a pressing need to develop strategies to accurately monitor bacteria. Technology based on molecular probes and fluorescence imaging is noninvasive, results in little damage, and has high specificity and sensitivity, so it has been widely applied in the detection of bacteria. In this review, we summarize the recent progress in bacterial detection using fluorescence. In particular, we generalize the mechanisms commonly used to design organic fluorescent probes for detecting and imaging bacteria. Moreover, a perspective regarding fluorescent probes for bacterial detection is discussed.
Collapse
Affiliation(s)
- Yurou Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Jeewon Chung
- Department of Chemistry and Nano Science, Ewha Womans University, 11-1 Daehyon-Dong, Sodaemun-Ku, Seoul 120-750, Korea.
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, 11-1 Daehyon-Dong, Sodaemun-Ku, Seoul 120-750, Korea.
| |
Collapse
|
9
|
Lauxen AI, Kobauri P, Wegener M, Hansen MJ, Galenkamp NS, Maglia G, Szymanski W, Feringa BL, Kuipers OP. Mechanism of Resistance Development in E. coli against TCAT, a Trimethoprim-Based Photoswitchable Antibiotic. Pharmaceuticals (Basel) 2021; 14:ph14050392. [PMID: 33919397 PMCID: PMC8143356 DOI: 10.3390/ph14050392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
During the last decades, a continuous rise of multi-drug resistant pathogens has threatened antibiotic efficacy. To tackle this key challenge, novel antimicrobial therapies are needed with increased specificity for the site of infection. Photopharmacology could enable such specificity by allowing for the control of antibiotic activity with light, as exemplified by trans/cis-tetra-ortho-chloroazobenzene-trimethoprim (TCAT) conjugates. Resistance development against the on (irradiated, TCATa) and off (thermally adapted, TCATd) states of TCAT were compared to that of trimethoprim (TMP) in Escherichia coli mutant strain CS1562. Genomics and transcriptomics were used to explore the acquired resistance. Although TCAT shows TMP-like dihydrofolate reductase (DHFR) inhibition in vitro, transcriptome analyses show different responses in acquired resistance. Resistance against TCATa (on) relies on the production of exopolysaccharides and overexpression of TolC. While resistance against TCATd (off) follows a slightly different gene expression profile, both indicate hampering the entrance of the molecule into the cell. Conversely, resistance against TMP is based on alterations in cell metabolism towards a more persister-like phenotype, as well as alteration of expression levels of enzymes involved in the folate biosynthesis. This study provides a deeper understanding of the development of new therapeutic strategies and the consequences on resistance development against photopharmacological drugs.
Collapse
Affiliation(s)
- Anna I. Lauxen
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands;
| | - Piermichele Kobauri
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Michael Wegener
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Nicole S. Galenkamp
- Groningen Biomolecular Science & Biotechnology Institute, University of Groningen, Nijenborg 4, 9747 AG Groningen, The Netherlands; (N.S.G.); (G.M.)
| | - Giovanni Maglia
- Groningen Biomolecular Science & Biotechnology Institute, University of Groningen, Nijenborg 4, 9747 AG Groningen, The Netherlands; (N.S.G.); (G.M.)
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands;
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| |
Collapse
|
10
|
Shchelik IS, Tomio A, Gademann K. Design, Synthesis, and Biological Evaluation of Light-Activated Antibiotics. ACS Infect Dis 2021; 7:681-692. [PMID: 33656844 DOI: 10.1021/acsinfecdis.1c00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The spatial and temporal control of bioactivity of small molecules by light (photopharmacology) constitutes a promising approach for study of biological processes and ultimately for the treatment of diseases. In this study, we investigated two different "caged" antibiotic classes that can undergo remote activation with UV-light at λ = 365 nm, via the conjugation of deactivating and photocleavable units through a short synthetic sequence. The two widely used antibiotics vancomycin and cephalosporin were thus enhanced in their performance by rendering them photoresponsive and thereby suppressing undesired off-site activity. The antimicrobial activity against Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 29213, S. aureus ATCC 43300 (MRSA), Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853 could be spatiotemporally controlled with light. Both molecular series displayed a good activity window. The vancomycin derivative displayed excellent values against Gram-positive strains after uncaging, and the next-generation caged cephalosporin derivative achieved good and broad activity against both Gram-positive and Gram-negative strains after photorelease.
Collapse
Affiliation(s)
- Inga S. Shchelik
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Tomio
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
Ozhogin IV, Zolotukhin PV, Mukhanov EL, Rostovtseva IA, Makarova NI, Tkachev VV, Beseda DK, Metelitsa AV, Lukyanov BS. Novel molecular hybrids of indoline spiropyrans and α-lipoic acid as potential photopharmacological agents: Synthesis, structure, photochromic and biological properties. Bioorg Med Chem Lett 2021; 31:127709. [PMID: 33242575 DOI: 10.1016/j.bmcl.2020.127709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022]
Abstract
Organic photochromic compounds are attracting great interest as photoswitchable components of various bioconjugates for using in photopharmacology, targeted drug delivery and bio-imaging. Here we report on the synthesis of two novel molecular hybrids of indoline spiropyrans and alpha-lipoic acid via an esterification reaction. Preliminary photochemical studies revealed photochromic activity of 5-methoxy-substituted spirocompounds in their acetonitrile solutions. Both hybrid spiropyrans along with their parent substances in the hybrids were tested for the short-term cytotoxicity on HeLa cell cultures. The results of cytotoxicity studies showed unpredictable biocompatibility of the hybrids in comparison with the parent hydroxyl-substituted spiropyrans and α-lipoic acid, especially at the relatively high concentration of 2 mM. Using flow cytometry, we demonstrated that the both hybrids induced antioxidant response in the model cells. After the 24 h treatment, the hybrids administered at lower (500 µM) concentration caused suppressed cytosolic ROS and/or induced cellular thiols. At higher concentration, one of the hybrids demonstrated properties qualitatively similar to alpha-lipoic acid, yet far more strong. Together, flow cytometry results suggested that both hybrids of spiropyrans possess emergent biochemical and signaling antioxidant properties, exceeding those of alpha-lipoic acid.
Collapse
Affiliation(s)
- Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation.
| | - Peter V Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Eugene L Mukhanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Valery V Tkachev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Akad. Semenova Ave., 142432 Chernogolovka, Moscow Region, Russian Federation
| | - Darya K Beseda
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| |
Collapse
|
12
|
Fu X, Yu J, Dai N, Huang Y, Lv F, Liu L, Wang S. Optical Tuning of Antibacterial Activity of Photoresponsive Antibiotics. ACS APPLIED BIO MATERIALS 2020; 3:4751-4755. [DOI: 10.1021/acsabm.0c00877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xuancheng Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiamu Yu
- The Experimental High School Attached to Beijing Normal University, Beijing 100032, P. R. China
| | - Nan Dai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Abboud M. Synthesis and characterization of 5,5′-bis-silylated dithienylethene as a new building block of novel photochromic periodic mesoporous organosilicas. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Li Z, Pei Y, Wang Y, Lu Z, Dai Y, Duan Y, Ma Y, Guo H. Blue-/NIR Light-Excited Fluorescence Switch Based on a Carbazole-Dithienylethene-BF 2bdk Triad. J Org Chem 2019; 84:13364-13373. [PMID: 31496250 DOI: 10.1021/acs.joc.9b01508] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The development of novel solid-state fluorescence switches, particularly triggered by visible light, is of increasing interest for the potential application in optical data storage and super-resolution fluorescence microscopies. In this study, two carbazole-dithienylethene-BF2bdk triads CDB1 and CDB2, suspending carbazole and BF2bdk moieties on both sides of dithienylethene unit, have been developed. They exhibit blue-/NIR light-controlled photochromism with solvent-dependent characteristics. Moreover, CDB1 (o) reveals blue-/NIR light-induced reversible fluorescent switching behaviors in toluene, chloroform, poly(methyl methacrylate) (PMMA) film, and powder state, while its analogue CDB2 (o) in the powder state exhibits no fluorescence due to a strong intermolecular π-π stacking interaction, and the fluorescent switching performance is observed only in toluene and PMMA film. The density functional theory calculations further validate the differences in their optical properties in the solution and powder states.
Collapse
|
15
|
Hassan SZ, Cheon HJ, Choi C, Yoon S, Kang M, Cho J, Jang YH, Kwon SK, Chung DS, Kim YH. Molecular Engineering of a Donor-Acceptor Polymer To Realize Single Band Absorption toward a Red-Selective Thin-Film Organic Photodiode. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28106-28114. [PMID: 31311263 DOI: 10.1021/acsami.9b08326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, we explore the strategy of realizing a red-selective thin-film organic photodiode (OPD) by synthesizing a new copolymer with a highly selective red-absorption feature. PCZ-Th-DPP, with phenanthrocarbazole (PCZ) and diketopyrrolopyrrole (DPP) as donor and acceptor units, respectively, was strategically designed/synthesized based on a time-dependent density functional theory calculation, which predicted the significant suppression of the band II absorption of PCZ-Th-DPP due to the extremely efficient intramolecular charge transfer. We demonstrate that the synthesized PCZ-Th-DPP exhibits not only a high absorption coefficient within the red-selective band I region, as theoretically predicted, but also a preferential face-on intermolecular structure in the thin-film state, which is beneficial for vertical charge extraction as an outcome of a glancing incidence X-ray diffraction study. By employing PCZ-Th-DPP as a photoactive layer of Schottky OPD, to fully match its absorption characteristic to the spectral response of the red-selective OPD, we demonstrate a genuine red-selective specific detectivity in the order of 1012 Jones while maintaining a thin active layer thickness of ∼300 nm. This work demonstrates the possibility of realizing a full color image sensor with a synthetic approach to the constituting active layers without optical manipulation.
Collapse
Affiliation(s)
- Syed Zahid Hassan
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Hyung Jin Cheon
- Department of Chemistry and RIGET , Gyeongsang National University , Jinju 52828 , Republic of Korea
| | - Changwon Choi
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Seongwon Yoon
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Mingyun Kang
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Jangwhan Cho
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Yun Hee Jang
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Soon-Ki Kwon
- Department of Materials Engineering and Convergence Technology and ERI , Gyeongsang National University , Jinju 660-701 , Republic of Korea
| | - Dae Sung Chung
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Yun-Hi Kim
- Department of Chemistry and RIGET , Gyeongsang National University , Jinju 52828 , Republic of Korea
| |
Collapse
|
16
|
Qiu S, Lu M, Cui S, Wang Z, Pu S. A bifunctional sensor based on diarylethene for the colorimetric recognition of Cu2+ and fluorescence detection of Cd2+. RSC Adv 2019; 9:29141-29148. [PMID: 35528443 PMCID: PMC9071842 DOI: 10.1039/c9ra04965g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022] Open
Abstract
A novel bifunctional sensor based on diarylethene with a benzyl carbazate unit was synthesized successfully. It not only served as a colorimetric sensor for the recognition of Cu2+ by showing changes in absorption spectra and solution color, but also acted as a fluorescent sensor for the detection of Cd2+ through obvious emission intensity enhancement and fluorescence color change. The sensor exhibited excellent selectivity and sensitivity towards Cu2+ and Cd2+, and the limits of detection for Cu2+ and Cd2+ were 8.36 × 10−8 mol L−1 and 1.71 × 10−7 mol L−1, respectively, which were much lower than those reported by the WHO and EPA in drinking water. Furthermore, its application in practical samples demonstrated that the sensor can be effectively applied for the detection of Cu2+ and Cd2+ in practical water samples. A bifunctional sensor for colorimetric recognition of Cu2+ and fluorescent detection of Cd2+ was synthesized. It not only showed high selectivity and sensitivity to Cu2+ and Cd2+, but also could be used in practical water samples with high accuracy.![]()
Collapse
Affiliation(s)
- Shouyu Qiu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Mengmeng Lu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Shiqiang Cui
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Zhen Wang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| |
Collapse
|