1
|
Ghosh P, Kwon NY, Byun Y, Mishra NK, Park JS, Kim IS. Cobalt(II)-Catalyzed C–H Alkylation of N-Heterocycles with 1,4-Dihydropyridines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Jung Su Park
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Ramachandran K, Anbarasan P. Rhodium-Catalyzed C2-Alkylation of Indoles with Cyclopropanols Using N, N-Dialkylcarbamoyl as a Traceless Directing Group. Org Lett 2022; 24:6745-6749. [DOI: 10.1021/acs.orglett.2c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
3
|
Wang T, Chen X, Zhu D, Chung LW, Xu M. Rhodium(I) Carbene‐Promoted Enantioselective C−H Functionalization of Simple Unprotected Indoles, Pyrroles and Heteroanalogues: New Mechanistic Insights. Angew Chem Int Ed Engl 2022; 61:e202207008. [DOI: 10.1002/anie.202207008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tian‐Yi Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences and School of Pharmacy University of Chinese Academy of Sciences Shanghai 201203 China
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiao‐Xuan Chen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Dong‐Xing Zhu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences and School of Pharmacy University of Chinese Academy of Sciences Shanghai 201203 China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Ming‐Hua Xu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences and School of Pharmacy University of Chinese Academy of Sciences Shanghai 201203 China
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
4
|
Xu MH, Wang TY, Chen XX, Zhu DX, Chung LW. Rhodium(I) Carbene‐Promoted Enantioselective C‐H Functionalization of Simple Unprotected Indoles, Pyrroles and Heteroanalogues: New Mechanistic Insights. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming-Hua Xu
- Southern University of Science and Technology Department of Chemistry No. 1088, Xueyuan Road 518055 Shenzhen CHINA
| | - Tian-Yi Wang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences State Key Laboratory of Drug Research CHINA
| | - Xiao-Xuan Chen
- Southern University of Science and Technology Chemistry CHINA
| | - Dong-Xing Zhu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences State Key Laboratory of Drug Research CHINA
| | - Lung Wa Chung
- Southern University of Science and Technology Chemistry CHINA
| |
Collapse
|
5
|
Empel C, Jana S, Langletz T, Koenigs RM. Rhodium-Catalyzed C-H Methylation and Alkylation Reactions by Carbene-Transfer Reactions. Chemistry 2022; 28:e202104321. [PMID: 35015327 PMCID: PMC9302633 DOI: 10.1002/chem.202104321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/18/2022]
Abstract
In this combined computational and experimental study, the C-H functionalization of 2-phenyl pyridine with diazoalkanes was investigated. Initial evaluation by computational methods allowed the evaluation of different metal catalysts and diazoalkanes and their compatibility in this C-H functionalization reaction. With these findings, suitable reaction conditions for the C-H methylation reactions were quickly identified by using highly reactive TMS diazomethane and C-H alkylation reactions with donor/acceptor diazoalkanes, which is applied to a broad scope on alkylation reactions of 2-aryl pyridines with TMS diazomethane and donor/acceptor diazoalkane (51 examples, up to 98 % yield).
Collapse
Affiliation(s)
- Claire Empel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| | - Sripati Jana
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| | - Tim Langletz
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| |
Collapse
|
6
|
Ramachandran K, Anbarasan P. Cp*Co III-catalyzed C2-alkylation of indole derivatives with substituted cyclopropanols. Chem Commun (Camb) 2022; 58:10536-10539. [DOI: 10.1039/d2cc03719j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and efficient Cp*CoIII-catalyzed C2-alkylation of N-pyridylindoles has been achieved utilizing cyclopropanols as an alkylating reagent.
Collapse
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India
| |
Collapse
|
7
|
Chandra D, Manisha, Sharma U. Recent Advances in the High-Valent Cobalt-Catalyzed C-H Functionalization of N-Heterocycles. CHEM REC 2021; 22:e202100271. [PMID: 34932274 DOI: 10.1002/tcr.202100271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/21/2021] [Indexed: 12/18/2022]
Abstract
Direct functionalization of heterocycles using C-H activation widely relies on the precious metal complexes. In past decade, the use of earth abundant and inexpensive transition metal to functionalize heterocycles has become an attractive alternate strategy. This concept is also interesting due to the unique reactivity pattern of these inexpensive metals. In this context we and other research groups have utilized the high-valent cobalt complexes as an inexpensive and readily available catalyst for the functionalization of heterocycles. In this review, we intend to brief recent progress made in the area of high-valent cobalt complexes catalyzed C-H functionalization of N-containing heterocycles.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manisha
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Ghorai J, Kesavan A, Anbarasan P. Cp*Co(III)-catalyzed C2-thiolation and C2,C3-dithiolation of substituted indoles with N-(arylthio)succinimide. Chem Commun (Camb) 2021; 57:10544-10547. [PMID: 34553717 DOI: 10.1039/d1cc03760a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A general and efficient Cp*CoIII-catalyzed C2-thiolation and C2,C3-dithiolation of indole derivatives has been achieved employing N-(aryl/alkylthio)succinimide as a thiolating reagent. This external oxidant-free method utilizes only catalytic amounts of additive and tolerates various functional groups to afford various thiolated products in good yields. Control experiments revealed the importance of the Cp*CoIII-catalyst for both C2- and C3-thiolation.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - Arunachalam Kesavan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India.
| |
Collapse
|
9
|
Sar S, Das R, Sen S. Blue LED Induced Manganese (I) Catalysed Direct C2−H Activation of Pyrroles with Aryl Diazoesters. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Saibal Sar
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| | - Ranajit Das
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| |
Collapse
|
10
|
Chowdhury R, Mendoza A. N-Hydroxyphthalimidyl diazoacetate (NHPI-DA): a modular methylene linchpin for the C-H alkylation of indoles. Chem Commun (Camb) 2021; 57:4532-4535. [PMID: 33956022 PMCID: PMC8101283 DOI: 10.1039/d1cc01026c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Despite the extensive studies on the reactions between conventional diazocompounds and indoles, these are still limited by the independent synthesis of the carbene precursors, the specific catalysts, and the required multi-step manipulation of the products. In this work, we explore redox-active carbenes in the expedited and divergent synthesis of functionalized indoles. NHPI-DA displays unusual efficiency and selectivity to yield insertion products that can be swiftly elaborated into boron and carbon substituents that are particularly problematic in carbene-mediated reactions.
Collapse
Affiliation(s)
- Rajdip Chowdhury
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| | - Abraham Mendoza
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
11
|
Bera S, Biswas A, Samanta R. Straightforward Construction and Functionalizations of Nitrogen-Containing Heterocycles Through Migratory Insertion of Metal-Carbenes/Nitrenes. CHEM REC 2021; 21:3411-3428. [PMID: 33913245 DOI: 10.1002/tcr.202100061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Nitrogen-containing heterocycles are widely found in various biologically active substrates, pharmaceuticals, natural products and organic materials. Consequently, the continuous effort has been devoted towards the development of straightforward, economical, environmentally acceptable, efficient and ingenious methods for the synthesis of various N-containing heterocycles and their functionalizations. Arguably, one of the most prominent direct strategy is regioselective C-H bond functionalizations which provide the step and atom economical approaches in the presence of suitable coupling partners. In this context, site-selective migratory insertion of metal carbenes/nitrenes to the desired C-H bonds has proven as a useful tool to access various functionalized nitrogen heterocycles. In this personal account, we highlight some of our contemporary development toward constructing N-containing heterocycles and their direct functionalizations via transition metal catalysed C-H bond functionalizations based on migratory insertion of metal-carbenes and nitrenes.
Collapse
Affiliation(s)
- Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Aniruddha Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
12
|
Reddy PM, Ramachandran K, Anbarasan P. Palladium-catalyzed diastereoselective synthesis of 2,2,3-trisubstituted dihydrobenzofurans via intramolecular trapping of O-ylides with activated alkenes. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Nunewar S, Kumar S, Talakola S, Nanduri S, Kanchupalli V. Co(III), Rh(III) & Ir(III)‐Catalyzed Direct C−H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chem Asian J 2021; 16:443-459. [DOI: 10.1002/asia.202001219] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Srilakshmi Talakola
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| |
Collapse
|
14
|
Liu J, Xu G, Tang S, Chen Q, Sun J. Site-Selective Functionalization of 7-Azaindoles via Carbene Transfer and Isolation of N-Aromatic Zwitterions. Org Lett 2020; 22:9376-9380. [DOI: 10.1021/acs.orglett.0c03653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Junheng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
15
|
Chandra D, Dhiman AK, Parmar D, Sharma U. Alkylation, alkenylation, and alkynylation of heterocyclic compounds through group 9 (Co, Rh, Ir) metal-catalyzed C-H activation. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1839849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Diksha Parmar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| |
Collapse
|
16
|
Nag E, Gorantla SMNVT, Arumugam S, Kulkarni A, Mondal KC, Roy S. Tridentate Nickel(II)-Catalyzed Chemodivergent C-H Functionalization and Cyclopropanation: Regioselective and Diastereoselective Access to Substituted Aromatic Heterocycles. Org Lett 2020; 22:6313-6318. [PMID: 32806181 DOI: 10.1021/acs.orglett.0c02138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Schiff-base nickel(II)-phosphene-catalyzed chemodivergent C-H functionalization and cyclopropanation of aromatic heterocycles is reported in moderate to excellent yields and very good regioselectivity and diastereoselectivity. The weak, noncovalent interaction between the phosphene ligand and Ni center facilitates the ligand dissociation, generating the electronically and coordinatively unsaturated active catalyst. The proposed mechanisms for the reported reactions are in good accord with the experimental results and theoretical calculations, providing a suitable model of stereocontrol for the cyclopropanation reaction.
Collapse
Affiliation(s)
- Ekta Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | | | - Selvakumar Arumugam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Aditya Kulkarni
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Kartik Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| |
Collapse
|
17
|
Rao MK, Reddy KN, Sridhar B, Reddy BS. ortho-Alkylation of 2-arylindazoles with α-diazocarbonyl compounds. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Li Z, Xie J, Wu L, Suleman M, Lu P, Wang Y. Co(III)-catalyzed reaction between 3-diazoindolin-2-imines and 1-pyrimidinylindoles for the synthesis of 2,3′-biindoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Das D, Sahoo G, Biswas A, Samanta R. Rh
III
‐Catalyzed Synthesis of Highly Substituted 2‐Pyridones using Fluorinated Diazomalonate. Chem Asian J 2020; 15:360-364. [DOI: 10.1002/asia.201901620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Debapratim Das
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Gopal Sahoo
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Aniruddha Biswas
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Rajarshi Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
20
|
Reddy ACS, Reddy PM, Anbarasan P. Diastereoselective Palladium Catalyzed Carbenylative Amination of
ortho
‐Vinylanilines with 3‐Diazoindolin‐2‐ones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Pazhamalai Anbarasan
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
21
|
Zhang L, Zhao J, Mou Q, Teng D, Meng X, Sun B. Rhodium(III)‐Catalyzed Direct C−H Alkylation of Ferrocenes with Diazo Compounds under Weakly Coordinating Approach. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lulu Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical EngineeringQingdao University of Science & Technology Qingdao 266042 People's Republic of China
| | - Jiakai Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical EngineeringQingdao University of Science & Technology Qingdao 266042 People's Republic of China
| | - Qi Mou
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical EngineeringQingdao University of Science & Technology Qingdao 266042 People's Republic of China
| | - Dawei Teng
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical EngineeringQingdao University of Science & Technology Qingdao 266042 People's Republic of China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical EngineeringTianjin University of Technology Tianjin 300384 People's Republic of China
| | - Bo Sun
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical EngineeringQingdao University of Science & Technology Qingdao 266042 People's Republic of China
| |
Collapse
|
22
|
Bhat AH, Alavi S, Grover HK. Tandem Carbenoid C-H Functionalization/Conia-ene Cyclization of N-Propargyl Indoles Generates Pyrroloindoles under Cooperative Rh(II)/Zn(II) Catalysis. Org Lett 2020; 22:224-229. [PMID: 31854993 DOI: 10.1021/acs.orglett.9b04210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The decomposition of diazodicarbonyl compounds in the presence of various metal catalysts has become a reliable method for the functionalization of indoles via carbenoid intermediates. Exploiting the nucleophilic reactivity of the in situ generated malonic ester product formed, we herein report a tandem C-H functionalization/Conia-ene cyclization of N-alkyne tethered indoles. This double functionalization of diazodicarbonyls generates a range of pyrrolo[1,2-a]-, pyrido[1,2-a]-, and azepino[1,2-a]indole products with good synthetic efficiency.
Collapse
Affiliation(s)
- Aabid H Bhat
- Department of Chemistry , Memorial University of Newfoundland , St. John's , Newfoundland A1B 3X7 , Canada
| | - Sima Alavi
- Department of Chemistry , Memorial University of Newfoundland , St. John's , Newfoundland A1B 3X7 , Canada
| | - Huck K Grover
- Department of Chemistry , Memorial University of Newfoundland , St. John's , Newfoundland A1B 3X7 , Canada
| |
Collapse
|
23
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Wang Z, Xu G, Tang S, Shao Y, Sun J. Catalyst-Controlled Selective Alkylation/Cyclopropanation of Indoles with Vinyl Diazoesters. Org Lett 2019; 21:8488-8491. [DOI: 10.1021/acs.orglett.9b03323] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhen Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
25
|
Ciszewski ŁW, Durka J, Gryko D. Photocatalytic Alkylation of Pyrroles and Indoles with α-Diazo Esters. Org Lett 2019; 21:7028-7032. [DOI: 10.1021/acs.orglett.9b02612] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Łukasz W. Ciszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224 Warsaw, Poland
| | - Jakub Durka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224 Warsaw, Poland
- Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224 Warsaw, Poland
| |
Collapse
|
26
|
Ghorai J, Anbarasan P. Metal-Free Directed Diastereoselective C2,C3-Cyclopropanation of Substituted Indoles with Diazoesters. Org Lett 2019; 21:3431-3435. [DOI: 10.1021/acs.orglett.9b01197] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|