1
|
Hu X, Zhao X, Lv X, Wu YB, Bu Y, Lu G. Ab Initio Metadynamics Simulations of Hexafluoroisopropanol Solvent Effects: Synergistic Role of Solvent H-Bonding Networks and Solvent-Solute C-H/π Interactions. Chemistry 2023; 29:e202203879. [PMID: 36575142 DOI: 10.1002/chem.202203879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The solvent effects in Friedel-Crafts cycloalkylation of epoxides and Cope rearrangement of aldimines were investigated by using ab initio molecular dynamics simulations. Explicit molecular treatments were applied for both reactants and solvents. The reaction mechanisms were elucidated via free energy calculations based on metadynamics simulations. The results reveal that both reactions proceed in a concerted fashion. Key solvent-substrate interactions are identified from the structures of transition states with explicit solvent molecules. The remarkable promotion effect of hexafluoroisopropanol solvent is ascribed to the synergistic effect of H-bonding networks and C-H/π interactions with substrates.
Collapse
Affiliation(s)
- Xinmin Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xia Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province, and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
2
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
3
|
Current Trends on C–C Bond Formation Through Regioselective Hydroarylation of Alkynes and Alkenes Using Metal Free Catalysts. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Tian FX, Qu J. Studies on the Origin of the Stabilizing Effects of Fluorinated Alcohols and Weakly Coordinated Fluorine-Containing Anions on Cationic Reaction Intermediates. J Org Chem 2022; 87:1814-1829. [PMID: 35020378 DOI: 10.1021/acs.joc.1c02361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many synthetic methods that use fluorinated alcohols as solvents have been reported, and the fluorinated alcohols have been found to be crucial to the success of these methods. In addition, there have been reports indicating that adding a weakly coordinated fluorine-containing anion, such as BF4-, PF6-, or SbF6-, to fluorinated alcohols can improve yields. The boosting effect of fluorinated alcohols is attributed mainly to hydrogen bond activation. A few studies have suggested that the very polar fluorinated alcohols can stabilize cationic reaction intermediates. However, how they do so and why weakly coordinated fluorine-containing anions improve yields have not been studied in depth. Here, we used quaternary ammonium cations, a quaternary phosphonium cation, and a triaryl-substituted carbocation as models for short-lived cationic intermediates and studied the possible interactions of these cations with fluorinated alcohols and BF4-, PF6-, or SbF6-. On the basis of the results, we propose that the C-F dipoles of fluorinated alcohols and the E-F dipoles (where E is B, P, or Sb) of weakly coordinated fluorine-containing anions stabilized these cations by intermolecular charge-dipole interactions. We deduced that in the same fashion the C-F and E-F dipoles can thermodynamically stabilize cationic reaction intermediates.
Collapse
Affiliation(s)
- Feng-Xian Tian
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin Qu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Peddinti RK, Gairola D. Methanesulfonic Acid Catalyzed Friedel–Crafts Reaction of Electron-Rich Arenes with N-Arylmaleimides: A Highly Efficient Metal-Free Route To Access 3-Arylsuccinimides. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractFriedel–Crafts reaction is widely used for the C–C bond forming reaction to enable the direct connection of electron-rich arenes to electron-deficient olefins with high regioselectivity. Herein, a highly efficient, metal-free, and environmentally benign F–C strategy of electron-rich arenes with N-arylmaleimides has been developed for the construction of 3-arylsuccinimides in the presence of a green reagent methanesulfonic acid under mild reaction conditions. This highly facile and high-yielding protocol has compatibility with different electron-rich arenes.
Collapse
|
6
|
Hor S, Oyama KI, Koga N, Tsukamoto M. Brønsted acid-catalyzed 1,4-addition of 1,3,5-trimethoxybenzene to maleimides and acrylates. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
An XD, Yang S, Qiu B, Yang TT, Li XJ, Xiao J. Photoredox-Enabled Synthesis of β-Substituted Pyrroles from Pyrrolidines. J Org Chem 2020; 85:9558-9565. [PMID: 32567860 DOI: 10.1021/acs.joc.0c00459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The merger of photoredox-initiated enamine-imine tautomerization and nucleophilic addition processes to access β-substituted pyrroles from pyrrolidines has been achieved. The significant advantage of this method is suppressing the Friedel-Crafts reaction, which usually occurs between N-aryl pyrrolidines and the highly electrophilic ketoesters. The good functional group tolerance, high atom economy, and high regioselectivity as well as easy handling conditions make it an appealing alternative to synthesize β-substituted pyrroles.
Collapse
Affiliation(s)
- Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuo Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Qiu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting-Ting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xian-Jiang Li
- Shandong Kangqiao Biotechnology Co. Ltd., Binzhou 256500, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
8
|
Wang W, Cao X, Xiao W, Shi X, Zuo X, Liu L, Chang W, Li J. Stereospecific Synthesis of cis-2,5-Disubstituted Pyrrolidines via N,O-Acetals Formed by Hydroamination Cyclization–Hydroalkoxylation of Homopropargylic Sulfonamides in HFIP. J Org Chem 2020; 85:7045-7059. [DOI: 10.1021/acs.joc.0c00403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Weilin Wang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Weiguo Xiao
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoyu Shi
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaodan Zuo
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lingyan Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Weixing Chang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 94#, Nankai District, Tianjin 300071, P. R. China
| |
Collapse
|
9
|
Shen YB, Wang LX, Sun YM, Dong FY, Yu L, Liu Q, Xiao J. Hexafluoroisopropanol-Mediated Redox-Neutral α-C(sp 3)-H Functionalization of Cyclic Amines via Hydride Transfer. J Org Chem 2020; 85:1915-1926. [PMID: 31823616 DOI: 10.1021/acs.joc.9b02606] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hexafluoroisopropanol has been demonstrated as the versatile promoter for redox-neutral α-C(sp3)-H functionalization of cyclic amines via the cascade [1,5]-hydride transfer/cyclization strategy. A wide range of cyclic amines are functionalized into bioactive tetrahydroquinolines, quinazolines, benzoxazines, and benzotriazepines in moderate to excellent yields. This protocol features additive-free conditions, operational simplicity, and wide substrate scope.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , China
| | | |
Collapse
|
10
|
Xu Q, Li B, Ma Y, Sun F, Gao Y, Ye N. K 2S 2O 8-HFIP synergistically promoted para-selective sp 3 C-H bond diarylation of glycine esters. Org Biomol Chem 2020; 18:666-670. [PMID: 31894805 DOI: 10.1039/c9ob02489a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free K2S2O8-HFIP synergistically promoted double Friedel-Crafts alkylation between a glycine derivative and N-substituted aniline was developed to efficiently synthesize diarylmethane derivatives with high para-selectivity. The reaction proceeded smoothly in the absence of any metal and ligand, and exhibited a good tolerance of functional groups.
Collapse
Affiliation(s)
- Qingfeng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Bang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yujie Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Fei Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yanan Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
11
|
Zhang X, Cao WB, Li HY, Xu XP, Ji SJ. Synthesis of Polysubstituted Maleimides via Metal-Free Cascade Reaction of Isocyanides and α-Diazoketones. J Org Chem 2019; 84:16237-16244. [DOI: 10.1021/acs.joc.9b02830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
An X, Xiao J. Fluorinated Alcohols: Magic Reaction Medium and Promoters for Organic Synthesis. CHEM REC 2019; 20:142-161. [DOI: 10.1002/tcr.201900020] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/07/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao‐De An
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural University
| | - Jian Xiao
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural University
| |
Collapse
|
13
|
Ciccolini C, De Crescentini L, Mantellini F, Santeusanio S, Favi G. Zn(II)-Catalyzed Addition of Aromatic/Heteroaromatic C(sp 2)-H to Azoalkenes: A Polarity-Reversed Arylation of Carbonyl Compounds. Org Lett 2019; 21:4388-4391. [PMID: 31117718 DOI: 10.1021/acs.orglett.9b01628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An umpolung α-(hetero)arylation strategy that involves the Michael-type reaction between electron-rich (hetero)aromatic substrates and azoalkenes is developed. The reaction proceeds under very mild conditions at room temperature and in the presence of inexpensive, nontoxic ZnCl2 catalyst to provide access to otherwise inaccessible hydrazone structures. Subsequent hydrolysis of these latter to ketones as well as other valuable synthetic transformations to a variety of heterocyclic scaffolds demonstrate the usefulness of this protocol.
Collapse
Affiliation(s)
- Cecilia Ciccolini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Italy
| |
Collapse
|
14
|
Liang YX, Meng XH, Yang M, Mehfooz H, Zhao YL. Zn(OAc)2-catalyzed tandem cyclization of isocyanides, α-diazoketones, and anhydrides: a general route to polysubstituted maleimides. Chem Commun (Camb) 2019; 55:12519-12522. [DOI: 10.1039/c9cc05802h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A zinc-catalyzed three-component reaction of isocyanides, α-diazoketones, and anhydrides has been realized as a novel and efficient method for the synthesis of polysubstituted maleimides.
Collapse
Affiliation(s)
- Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Haroon Mehfooz
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|