1
|
Brotherton EE, Josland D, György C, Johnson EC, Chan DH, Smallridge MJ, Armes SP. Histidine-Functionalized Diblock Copolymer Nanoparticles Exhibit Enhanced Adsorption onto Planar Stainless Steel. Macromol Rapid Commun 2023; 44:e2200903. [PMID: 36534428 PMCID: PMC11497266 DOI: 10.1002/marc.202200903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA46 -PIPGMAy nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirm a spherical morphology while dynamic light scattering (DLS) analysis indicated that the z-average particle diameter can be adjusted by varying the target degree of polymerization for the core-forming PIPGMA block. Periodate oxidation is used to convert the cis-diol groups on PGEO5MA46 -PIPGMA500 and PGEO5MA46 -PIPGMA1000 nanoparticles into the analogous aldehyde-functionalized nanoparticles, which are then reacted with histidine via reductive amination. In each case, the extent of functionalization is more than 99% as determined by 1 H NMR spectroscopy. Aqueous electrophoresis studies indicate that such derivatization converts initially neutral nanoparticles into zwitterionic nanoparticles with an isoelectric point at pH 7. DLS studies confirm that such histidine-derivatized nanoparticles remain colloidally stable over a wide pH range. A quartz crystal microbalance is employed at 25°C to assess the adsorption of both the cis-diol- and histidine-functionalized nanoparticles onto planar stainless steel at pH 6. The histidine-bearing nanoparticles adsorb much more strongly than their cis-diol counterparts. For the highest adsorbed amount of 70.5 mg m-2 , SEM indicates a fractional surface coverage of 0.23 for the adsorbed nanoparticles.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Daniel Josland
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Csilla György
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Edwin C. Johnson
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Derek H.H. Chan
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | | | - Steven P. Armes
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| |
Collapse
|
2
|
Thambi T, Jung JM, Lee DS. Recent strategies to develop pH-sensitive injectable hydrogels. Biomater Sci 2023; 11:1948-1961. [PMID: 36723174 DOI: 10.1039/d2bm01519f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
"Smart" biomaterials that are responsive to pathological abnormalities are an appealing class of therapeutic platforms for the development of personalized medications. The development of such therapeutic platforms requires novel techniques that could precisely deliver therapeutic agents to the diseased tissues, resulting in enhanced therapeutic effects without harming normal tissues. Among various therapeutic platforms, injectable pH-responsive biomaterials are promising biomaterials that respond to the change in environmental pH. Aqueous solutions of injectable pH-responsive biomaterials exhibit a phase transition from sol-to-gel in response to environmental pH changes. The injectable pH-responsive hydrogel depot can provide spatially and temporally controlled release of various bioactive agents including chemotherapeutic drugs, peptides, and proteins. Therapeutic agents are imbibed into hydrogels by simple mixing without the use of toxic solvents and used for long-term storage or in situ injection using a syringe or catheter that could form a stable gel and acts as a controlled release depot in a minimally invasive manner. Tunable physicochemical properties of the hydrogels, such as biodegradability, ability to interact with drugs and mechanical properties, can control the release of the therapeutic agent. This review highlights the advances in the design and development of biodegradable and in situ forming injectable pH-responsive biomaterials that respond to the physiological conditions. Special attention has been paid to the development of amphoteric pH-responsive biomaterials and their utilization in biomedical applications. We also highlight key challenges and future directions of pH-responsive biomaterials in clinical translation.
Collapse
Affiliation(s)
- Thavasyappan Thambi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jae Min Jung
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Doo Sung Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Xue Y, Dong J, Li X. Fabricating switchable Pickering emulsions by dynamic covalent copolymer amphiphiles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Ventura-Hunter C, Lechuga-Islas VD, Ulbrich J, Kellner C, Schubert US, Saldívar-Guerra E, Rosales-Guzmán M, Guerrero-Sánchez C. Glycerol methacrylate-based copolymers: Reactivity ratios, physicochemical characterization and cytotoxicity. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Lin F, Zhao X, Yang S, He F, Qin W, Gong H, Yu G, Feng Y, Li J. Interfacial regulation and visualization of Pickering emulsion stabilized by Ca2+-triggered amphiphilic alginate-based fluorescent aggregates. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Lunn AM, Unnikrishnan M, Perrier S. Dual pH-Responsive Macrophage-Targeted Isoniazid Glycoparticles for Intracellular Tuberculosis Therapy. Biomacromolecules 2021; 22:3756-3768. [PMID: 34339606 DOI: 10.1021/acs.biomac.1c00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) is a global epidemic that kills over a million people every year, particularly in low-resource communities. Mycobacterium tuberculosis, the most common bacterium that causes TB, is difficult to treat, particularly in its latent phase, in part due to its ability to survive and replicate within the host macrophage. New therapeutic approaches resulting in better tolerated and shorter antibiotic courses that target intracellular bacteria are critical to effective treatment. The development of a novel, pH-responsive, mannosylated nanoparticle, covalently linked with isoniazid, a first-line TB antibiotic, is presented. This nanoparticle drug delivery agent has increased macrophage uptake and, upon exposure to the acidic phagolysosome, releases isoniazid through hydrolysis of a hydrazone bond, and disintegrates into a linear polymer. Full antibiotic activity is shown to be retained, with mannosylated isoniazid particles being the only treatment exhibiting complete bacterial eradication of intracellular bacteria, compared to an equivalent PEGylated system and free isoniazid. Such a system, able to effectively kill intracellular mycobacteria, holds promise for improved outcomes in TB infection.
Collapse
Affiliation(s)
- Andrew M Lunn
- Department of Chemistry, The University of Warwick, Gibbet Hill, Coventry CV4 7AL, U.K
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick, Gibbet Hill, Coventry CV4 7AL, U.K.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
7
|
Concurrent ring-opening and atom transfer radical polymerization for synthesis of block copolymers, and their comprehensive chromatographic characterization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
An AIE polymer prepared via aldehyde-hydrazine step polymerization and the application in Cu2+ and S2− detection. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Xue Y, Li X, Dong J. Interfacial characteristics of block copolymer micelles stabilized Pickering emulsion by confocal laser scanning microscopy. J Colloid Interface Sci 2020; 563:33-41. [DOI: 10.1016/j.jcis.2019.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 11/30/2022]
|
10
|
Smyth P, Gibson TJ, Irvine G, Black G, Lavery D, Semsarilar M, Scott CJ, Themistou E. pH-Responsive benzaldehyde-functionalized PEG-based polymeric nanoparticles for drug delivery: Effect of preparation method on morphology, dye encapsulation and attachment. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Dong Q, Sun C, Chen F, Yang Z, Li R, Wang C, Luo C. Influence of Cyclodextrins on Thermosensitive and Fluorescent Properties of Pyrenyl-Containing PDMAA. Polymers (Basel) 2019; 11:E1569. [PMID: 31561626 PMCID: PMC6835872 DOI: 10.3390/polym11101569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022] Open
Abstract
A series of pyrenyl-containing PDMAA copolymers were prepared by free radical copolymerization of dimethylacrylamide (DMAA) with pyrenebutanoyloxy ethyl methacrylate (PyBEMA). The structure of as-prepared copolymers was characterized by UV, FT-IR and 1H NMR spectroscopy. The effect of cyclodextrins (α-CD, β-CD and γ-CD) on the thermosensitivity and fluorescence of the copolymers in aqueous solutions were investigated. It was found that the as-prepared copolymers exhibit lower critical solution temperature (LCST)-type thermosensitivity. Cloud point (Tcp) decreases with the increasing molar content of PyBEMA unit in the copolymers. Tcp of the copolymers increases after the CD is added from half molar to equivalent amount relative to pyrenyl moiety, and that further adding twice equivalent CD results in a slight decrease in Tcp. The copolymers exhibit a pyrene emission located at 377 nm and a broad excimer emission centered at 470 nm. The copolymers in water present a stronger excimer emission (Intensity IE) relative to monomer emission (Intensity IM) than that in ethanol. The IE/IM values decrease after the addition of equivalent α-CD, β-CD and γ-CD into the copolymers in aqueous solution, respectively. The IE/IM values abruptly increase as the copolymers' concentration is over 0.2 mg/L whether in ethanol solution or aqueous solution with or without CD, from which can probably be inferred that intra-polymeric pyrene aggregates dominate for solution concentration below 0.2 mg/L and inter-polymeric pyrene aggregates dominate over 0.2 mg/L. Furthermore, the formation of the CD pseudopolyrotaxanes makes it possible to form pyrene aggregates. For high concentration of 5 g/L, the copolymers and their inclusion complexes completely exhibit an excimer emission. The IE values abruptly increased as the temperature went up to Tcp, which indicates that the IE values can be used to research phase separation of polymers.
Collapse
Affiliation(s)
- Qiujing Dong
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
- Anhui Provincial Key Laboratory for Degradation and Monitoring of the Pollution of the Environment, Fuyang 236037, China.
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200433, China.
| | - Changrui Sun
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
- Anhui Provincial Key Laboratory for Degradation and Monitoring of the Pollution of the Environment, Fuyang 236037, China.
| | - Fangyuan Chen
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
- Anhui Provincial Key Laboratory for Degradation and Monitoring of the Pollution of the Environment, Fuyang 236037, China.
| | - Zheng Yang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
- Anhui Provincial Key Laboratory for Degradation and Monitoring of the Pollution of the Environment, Fuyang 236037, China.
| | - Ruiqian Li
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
- Anhui Provincial Key Laboratory for Degradation and Monitoring of the Pollution of the Environment, Fuyang 236037, China.
| | - Chang Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
- Anhui Provincial Key Laboratory for Degradation and Monitoring of the Pollution of the Environment, Fuyang 236037, China.
| | - Chunhua Luo
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
- Anhui Provincial Key Laboratory for Degradation and Monitoring of the Pollution of the Environment, Fuyang 236037, China.
| |
Collapse
|
12
|
Cui S, Yu L, Ding J. Semi-bald Micelles and Corresponding Percolated Micelle Networks of Thermogels. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01014] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|