1
|
Le Dot M, Giacoletto N, Morlet-Savary F, Graff B, Monnier V, Gigmes D, Nechab M, Dumur F, Gerard P, Lalevée J. Synergistic Approach of Type I Hybrid Complexes for highly efficient Metal-based Initiating Strategies: Toward low energy-consuming polymerization for Thermoplastic Composite Implementation. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
2
|
Abdel-Shakour M, Chowdhury TH, Matsuishi K, Moritomo Y, Islam A. Chemical passivation of the under coordinated Pb 2+ defects in inverted planar perovskite solar cells via β-diketone Lewis base additives. Photochem Photobiol Sci 2021; 20:357-367. [PMID: 33721271 DOI: 10.1007/s43630-021-00023-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Hybrid organic-inorganic perovskite solar cells (PSCs) are promising new generations of solar cells, which is low in cost with high power conversion efficiency (PCE). However, PSCs suffer from structural defects generated from the under coordinated ions at the surface, which limits their photovoltaic performances. Herein we report, two β-diketone Lewis base additives 2,4-pentanedione and 3-methyl-2,4-nonanedione within the chlorobenzene anti-solvent to passivate the surface defects generated from the under coordinated Pb2+ ions in CH3NH3PbI3 perovskite films. The incorporation of the two β-diketone passivators could successfully enhance the open-circuit voltage of the PSCs by 52 mV and 17 mV for 3-methyl-2,4-nonanedione and 2,4-pentanedione, respectively, with improved PCE by 45% for 3-methyl-2,4-nonanedione compared to the pristine PSC. This enhancement in the photovoltaic performance of the PSCs can be attributed to passivation of the defects through the interaction between two carbonyl groups of the β-diketone Lewis base additives and the under coordinated Pb2+ defects in the perovskite film, which improved the PSCs PCE and stability.
Collapse
Affiliation(s)
- Muhammad Abdel-Shakour
- Photovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, 305-0047, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Towhid H Chowdhury
- Photovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, 305-0047, Japan
| | - Kiyoto Matsuishi
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yutaka Moritomo
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Ashraful Islam
- Photovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, 305-0047, Japan. .,Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
3
|
Arar A, Wisson L, Lalevée J. New Pure Organic and Peroxide-Free Redox Initiating Systems for Polymerization in Mild Conditions. Polymers (Basel) 2021; 13:polym13020301. [PMID: 33477848 PMCID: PMC7832862 DOI: 10.3390/polym13020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/16/2022] Open
Abstract
Redox initiating systems (RISs) are highly worthwhile for polymerization in mild conditions (at room temperature—RT) without external thermal or light activation. With high performance redox initiating systems RIS, the free radical polymerization FRP can even be carried out under air and without inhibitors/stabilizers removal from the monomers/resins. However, efficient RISs are still based on peroxides or metal complexes. In this work, a pure organic and peroxide-free RIS is presented based on the interaction of a well-selected triarylamine derivative (T4epa) with iodonium salt used as reducing and oxidizing agents, respectively. The redox polymerization (Redox FRP) was followed through pyrometry and thermal imaging experiments. Remarkably, a full control of the work time as well as a high reactivity is observed for mild conditions.
Collapse
|
4
|
Arar A, Mousawi AA, Morlet-Savary F, Lalevée J. Peroxide-free redox initiating systems for polymerization in mild conditions. Polym Chem 2021. [DOI: 10.1039/d1py00172h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox free radical polymerization (RFRP) is considered as a cost-effective technique for the production of polymers in a very short time scale and without any energy consumption.
Collapse
Affiliation(s)
- Ahmad Arar
- Université de Haute-Alsace
- CNRS
- IS2M UMR 7361
- F-68100 Mulhouse
- France
| | - Assi Al Mousawi
- Université de Haute-Alsace
- CNRS
- IS2M UMR 7361
- F-68100 Mulhouse
- France
| | | | - Jacques Lalevée
- Université de Haute-Alsace
- CNRS
- IS2M UMR 7361
- F-68100 Mulhouse
- France
| |
Collapse
|
5
|
Taylor M, Pullar RC, Parkin IP, Piccirillo C. Nanostructured titanium dioxide coatings prepared by Aerosol Assisted Chemical Vapour Deposition (AACVD). J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Recent Advances on Copper Complexes as Visible Light Photoinitiators and (Photo) Redox Initiators of Polymerization. Catalysts 2020. [DOI: 10.3390/catal10090953] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metal complexes are used in numerous chemical and photochemical processes in organic chemistry. Metal complexes have not been excluded from the interest of polymerists to convert liquid resins into solid materials. If iridium complexes have demonstrated their remarkable photochemical reactivity in polymerization, their high costs and their attested toxicities have rapidly discarded these complexes for further developments. Conversely, copper complexes are a blooming field of research in (photo) polymerization due to their low cost, easy syntheses, long-living excited state lifetimes, and their remarkable chemical and photochemical stabilities. Copper complexes can also be synthesized in solution and by mechanochemistry, paving the way towards the synthesis of photoinitiators by Green synthetic approaches. In this review, an overview of the different copper complexes reported to date is presented. Copper complexes are versatile candidates for polymerization, as these complexes are now widely used not only in photopolymerization, but also in redox and photoassisted redox polymerization processes.
Collapse
|
7
|
Arar A, Mousawi AA, Boyadjian C, Garra P, Fouassier JP, Lalevée J. Diphenylsilane‐Manganese Acetylacetonate Redox Initiating Systems: Toward Amine‐Free and Peroxide‐Free Systems. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ahmad Arar
- Université de Haute‐AlsaceCNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
| | - Assi Al Mousawi
- Université de Haute‐AlsaceCNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
- American University of BeirutMaroun Semaan Faculty of Engineering and ArchitectureBaha & Walid Bassatne Department of Chemical Engineering and Advanced Energy P. O. Box 11‐0236 Riad El‐Solh Beirut 1107 2020 Lebanon
| | - Cassia Boyadjian
- American University of BeirutMaroun Semaan Faculty of Engineering and ArchitectureBaha & Walid Bassatne Department of Chemical Engineering and Advanced Energy P. O. Box 11‐0236 Riad El‐Solh Beirut 1107 2020 Lebanon
| | - Patxi Garra
- Université de Haute‐AlsaceCNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
| | - Jean Pierre Fouassier
- Université de Haute‐AlsaceCNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
| | - Jacques Lalevée
- Université de Haute‐AlsaceCNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
| |
Collapse
|
8
|
High Performance Redox Initiating Systems Based on the Interaction of Silane with Metal Complexes: A Unique Platform for the Preparation of Composites. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25071602. [PMID: 32244467 PMCID: PMC7180824 DOI: 10.3390/molecules25071602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Currently, Redox Initiating Systems (RISs) of Free Radical Polymerization (FRP) are mainly based on the interaction of aromatic amines with peroxides (e.g., dibenzoyl peroxide (BPO)) that can be both toxic and unstable. In the present work, we aim to replace these hazardous substances in new RIS that can be peroxide-free and amine-free. Our redox two components (2K) initiating system is based on diphenylsilane (DPS) as reducing agent combined with different metal complexes (Mn(acac)2, Cu(AAEMA)2 or Fe(acac)3) as oxidizing agents. For the new proposed RIS, an excellent reactivity is found for the polymerization of benchmark methacrylate monomers under mild conditions (redox polymerization done under air and at room temperature); remarkably, it is also possible to finely control the gel time. Different techniques (optical pyrometry, Real-Time FTIR spectroscopy, Cyclic Voltammetry and Electron Spin Resonance (ESR)) were used to follow the polymerization processes but also to shed some light on the new redox chemical mechanisms.
Collapse
|
9
|
Recent Advances on Visible Light Metal-Based Photocatalysts for Polymerization under Low Light Intensity. Catalysts 2019. [DOI: 10.3390/catal9090736] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In recent years, polymerization processes activated by light have attracted a great deal of interest due to the wide range of applications in which this polymerization technique is involved. Parallel to the traditional industrial applications ranging from inks, adhesives, and coatings, the development of high-tech applications such as nanotechnology and 3D-printing have given a revival of interest to this polymerization technique known for decades. To initiate a photochemical polymerization, the key element is the molecule capable to interact with light, i.e., the photoinitiator and more generally the photoinitiating system, as a combination of several components is often required to create the reactive species responsible for the polymerization process. With the aim of reducing the photoinitiator content while optimizing the polymerization yield and/or the polymerization speed, photocatalytic systems have been developed, enabling the photosensitizer to be regenerated during the polymerization process. In this review, an overview of the photocatalytic systems developed for polymerizations carried out under a low light intensity and visible light is provided. Over the years, a wide range of organometallic photocatalysts has been proposed, addressing both the polymerization efficiency and/or the toxicity, as well as environmental issues.
Collapse
|
10
|
Redox two-component initiated free radical and cationic polymerizations: Concepts, reactions and applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Wang D, Garra P, Szillat F, Fouassier JP, Lalevée J. Silane Based Redox Initiating Systems: Toward a Safer Amine-Free, Peroxide-Free, and Metal-Free Approach. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dengxia Wang
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, Strasbourg F-67081, France
- Shandong Institute of Nonmetallic Materials, Jinan 250031, China
| | - Patxi Garra
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, Strasbourg F-67081, France
| | | | | | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, Strasbourg F-67081, France
| |
Collapse
|
12
|
Garra P, Baralle A, Graff B, Schrodj G, Morlet-Savary F, Dietlin C, Fouassier JP, Lalevée J. Radical Cations in Versatile High Performance Initiating Systems for Thermal, Redox, and Photopolymerizations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Patxi Garra
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Alexandre Baralle
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Bernadette Graff
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Gautier Schrodj
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Fabrice Morlet-Savary
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Céline Dietlin
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Jean-Pierre Fouassier
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Garra P, Dumur F, Nechab M, Morlet-Savary F, Dietlin C, Graff B, Doronina EP, Sidorkin VF, Gigmes D, Fouassier JP, Lalevée J. Peroxide-Free and Amine-Free Redox Free Radical Polymerization: Metal Acetylacetonates/Stable Carbonyl Compounds for Highly Efficient Synthesis of Composites. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patxi Garra
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Frédéric Dumur
- Aix-Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| | - Malek Nechab
- Aix-Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| | - Fabrice Morlet-Savary
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Céline Dietlin
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Bernadette Graff
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Evgeniya Pavlovna Doronina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky, 1, Irkutsk 664033, Russian Federation
| | - Valery F. Sidorkin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky, 1, Irkutsk 664033, Russian Federation
| | - Didier Gigmes
- Aix-Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| | - Jean-Pierre Fouassier
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Garra P, Morlet-Savary F, Dietlin C, Fouassier JP, Lalevée J. Charge-Transfer Complexes as New Inhibitors/Photoinitiators for On-Demand Amine/Peroxide Redox Polymerization. ACS OMEGA 2018; 3:6827-6832. [PMID: 31458852 PMCID: PMC6644477 DOI: 10.1021/acsomega.8b00971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/14/2018] [Indexed: 06/10/2023]
Abstract
Redox free-radical polymerizations have widespread applications but still clearly suffer from poor time control of the reaction. Currently, the workability (delay of the gel time) in redox polymerization after mixing is possible thanks to two main types of inhibitors (radical scavengers): phenols and nitroxides. Out of this trend, we propose in this work an alternative strategy for time delaying of the redox polymerization, which is based on charge-transfer complexes (CTCs). Thanks to iodonium salt complexation, the amine (here 4-N,N-trimethylaniline) is proposed to be stored in a CTC equilibrium and is slowly released over a period of time (as a result of the consumption of free amines by peroxides). This alternative strategy allowed us to double the gel time (e.g., from 60 to 120 s) while maintaining a high polymerization efficiency (performance comparable to reference nitroxides). More interestingly, the CTCs involved in this retarding strategy are photoresponsive under visible LED@405 nm and can be used on demand as photoinitiators, allowing (i) spectacular increases in polymerization efficiencies (from 50 °C without light to 120 °C under mild irradiation conditions); (ii) drastic reduction of the oxygen-inhibited layer (already 45% C=C conversion at a 2 μm distance from the top surface) compared to the nonirradiated sample (thick inhibited layer of more than 45 μm); and (iii) external control of the redox polymerization gel time due to the possible light activation.
Collapse
Affiliation(s)
- Patxi Garra
- Université
de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, 67081 Strasbourg, France
| | - Fabrice Morlet-Savary
- Université
de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, 67081 Strasbourg, France
| | - Céline Dietlin
- Université
de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, 67081 Strasbourg, France
| | - Jean-Pierre Fouassier
- Université
de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, 67081 Strasbourg, France
| | - Jacques Lalevée
- Université
de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, 67081 Strasbourg, France
| |
Collapse
|
15
|
Garra P, Dumur F, Nechab M, Morlet-Savary F, Dietlin C, Graff B, Gigmes D, Fouassier JP, Lalevée J. Stable copper acetylacetonate-based oxidizing agents in redox (NIR photoactivated) polymerization: an opportunity for the one pot grafting from approach and an example on a 3D printed object. Polym Chem 2018. [DOI: 10.1039/c8py00341f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stable Cu(ii) ox. agent for redox (graft) polymerization.
Collapse
Affiliation(s)
- Patxi Garra
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| | - Frédéric Dumur
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| | - Malek Nechab
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| | - Fabrice Morlet-Savary
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| | - Céline Dietlin
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| | - Bernadette Graff
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| | - Didier Gigmes
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| | - Jean-Pierre Fouassier
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| |
Collapse
|