1
|
Li J, Hao Y, Wang H, Zhang M, He J, Ni P. Advanced Biomaterials Derived from Functional Polyphosphoesters: Synthesis, Properties, and Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51876-51898. [PMID: 39311719 DOI: 10.1021/acsami.4c11899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Polyphosphoesters (PPEs) represent an innovative class of biodegradable polymers, with the phosphate ester serving as the core repeating unit of their polymeric backbone. Recently, biomaterials derived from functionalized PPEs have garnered significant interest in biomedical applications because of their commendable biocompatibility, biodegradability, and the capacity for functional modification. This review commences with a brief overview of synthesis methodologies and the distinctive properties of PPEs, including thermoresponsiveness, degradability, stealth effect, and biocompatibility. Subsequently, the review delves into the latest applications of PPEs-based nanocarriers for drug or gene delivery and PPEs-based polymeric prodrugs and scaffolds in the biomedical field, presenting several illustrative examples for each application. By encapsulating the advancements of recent years, this review aims to offer an enhanced understanding and serve as a reference for the synthesis and biomedical applications of functional PPEs.
Collapse
Affiliation(s)
- Jintao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Dore MD, Rafique MG, Yang TP, Zorman M, Platnich CM, Xu P, Trinh T, Rizzuto FJ, Cosa G, Li J, Guarné A, Sleiman HF. Heat-activated growth of metastable and length-defined DNA fibers expands traditional polymer assembly. Nat Commun 2024; 15:4384. [PMID: 38782917 PMCID: PMC11116425 DOI: 10.1038/s41467-024-48722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Biopolymers such as nucleic acids and proteins exhibit dynamic backbone folding, wherein site-specific intramolecular interactions determine overall structure. Proteins then hierarchically assemble into supramolecular polymers such as microtubules, that are robust yet dynamic, constantly growing or shortening to adjust to cellular needs. The combination of dynamic, energy-driven folding and growth with structural stiffness and length control is difficult to achieve in synthetic polymer self-assembly. Here we show that highly charged, monodisperse DNA-oligomers assemble via seeded growth into length-controlled supramolecular fibers during heating; when the temperature is lowered, these metastable fibers slowly disassemble. Furthermore, the specific molecular structures of oligomers that promote fiber formation contradict the typical theory of block copolymer self-assembly. Efficient curling and packing of the oligomers - or 'curlamers' - determine morphology, rather than hydrophobic to hydrophilic ratio. Addition of a small molecule stabilises the DNA fibers, enabling temporal control of polymer lifetime and underscoring their potential use in nucleic-acid delivery, stimuli-responsive biomaterials, and soft robotics.
Collapse
Affiliation(s)
- Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | | | - Tianxiao Peter Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Marlo Zorman
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Casey M Platnich
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Pengfei Xu
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Tuan Trinh
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Felix J Rizzuto
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47906, USA
| | - Alba Guarné
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada.
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Nerantzaki M, Husser C, Ryckelynck M, Lutz JF. Exchanging and Releasing Information in Synthetic Digital Polymers Using a Strand-Displacement Strategy. J Am Chem Soc 2024; 146:6456-6460. [PMID: 38286022 DOI: 10.1021/jacs.3c13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Toehold-mediated strand displacement (TMSD) was tested as a tool to edit information in synthetic digital polymers. Uniform DNA-polymer biohybrid macromolecules were first synthesized by automated phosphoramidite chemistry and characterized by HPLC, mass spectrometry, and polyacrylamide gel electrophoresis (PAGE). These precursors were diblock structures containing a synthetic poly(phosphodiester) (PPDE) segment covalently attached to a single-stranded DNA sequence. Three types of biohybrids were prepared herein: a substrate containing an accessible toehold as well as input and output macromolecules. The substrate and the input macromolecules contained noncoded PPDE homopolymers, whereas the output macromolecule contained a digitally encoded segment. After hybridization of the substrate with the output, incubation in the presence of the input led to efficient TMSD and the release of the digital segment. TMSD can therefore be used to erase or rewrite information in self-assembled biohybrid superstructures. Furthermore, it was found in this work that the conjugation of DNA single strands to synthetic segments of chosen lengths greatly facilitates the characterization and PAGE visualization of the TMSD process.
Collapse
Affiliation(s)
- Maria Nerantzaki
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Claire Husser
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
4
|
Thiede J, Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Supramolecular assembly of pyrene-DNA conjugates: influence of pyrene substitution pattern and implications for artificial LHCs. Org Biomol Chem 2023; 21:7908-7912. [PMID: 37750811 PMCID: PMC10566252 DOI: 10.1039/d3ob01375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
The supramolecular self-assembly of pyrene-DNA conjugates into nanostructures is presented. DNA functionalized with different types of pyrene isomers at the 3'-end self-assemble into nano-objects. The shape of the nanostructures is influenced by the type of pyrene isomer appended to the DNA. Multilamellar vesicles are observed with the 1,6- and 1,8-isomers, whereas conjugates of the 2,7-isomer exclusively assemble into spherical nanoparticles. Self-assembled nano-spheres obtained with the 2,7-dialkynyl pyrene isomer were used for the construction of an artificial light-harvesting complex (LHC) in combination with Cy3 as the energy acceptor.
Collapse
Affiliation(s)
- Jan Thiede
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Simon Rothenbühler
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Simon M Langenegger
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
5
|
de Carvasal KP, Vergoten G, Vasseur JJ, Smietana M, Morvan F. Supramolecular Recognition of Phosphodiester-Based Donor and Acceptor Oligomers Forming Gels in Water. Biomacromolecules 2023; 24:756-765. [PMID: 36724436 DOI: 10.1021/acs.biomac.2c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inspired by automated DNA synthesis, electron-rich dialkoxynaphthalene (DAN) donor and electron-deficient naphthalene-tetracarboxylic diimide (NDI) acceptor phosphodiester-linked homohexamers were synthesized by the phosphoramidite method. Two types of hexamers were prepared, one with only one phosphodiester between the aromatics (i.e., DAN or NDI) and a second with two phosphodiesters around a propanediol between the aromatics, leading to the latter more flexible and more hydrophilic hexamers. The folding properties of these homohexamers alone or mixed together, in water only, were studied by UV-visible absorption spectroscopy and atomic force microscopy (AFM). AFM imaging revealed that a 1:1 mixture of hexaDAN and hexaNDI formed fibers by charge transfer donor-acceptor recognition leading to a hydrogel after drying. The organization of the resulting structures is strongly dependent on the nature of the complementary partner, leading to the formation of mono- or multilayer hydrogel networks with different compactness.
Collapse
Affiliation(s)
- Kévan Pérez de Carvasal
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - Gérard Vergoten
- Université de Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, Lille 59006, France
| | - Jean-Jacques Vasseur
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - Michael Smietana
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - François Morvan
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| |
Collapse
|
6
|
Nifant’ev IE, Ivchenko PV. Design, Synthesis and Actual Applications of the Polymers Containing Acidic P-OH Fragments: Part 1. Polyphosphodiesters. Int J Mol Sci 2022; 23:14857. [PMID: 36499185 PMCID: PMC9738169 DOI: 10.3390/ijms232314857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Among natural and synthetic polymers, main-chain phosphorus-containing polyacids (PCPAs) (polyphosphodiesters), stand in a unique position at the intersection of chemistry, physics, biology and medicine. The structural similarity of polyphosphodiesters PCPAs to natural nucleic and teichoic acids, their biocompatibility, mimicking to biomolecules providing the 'stealth effect', high bone mineral affinity of polyphosphodiesters resulting in biomineralization at physiological conditions, and adjustable hydrolytic stability of polyphosphodiesters are the basis for various biomedical, industrial and household applications of this type of polymers. In the present review, we discuss the synthesis, properties and actual applications of polyphosphodiesters.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
| | - Pavel V. Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
7
|
Rizzuto FJ, Dore MD, Rafique MG, Luo X, Sleiman HF. DNA Sequence and Length Dictate the Assembly of Nucleic Acid Block Copolymers. J Am Chem Soc 2022; 144:12272-12279. [PMID: 35762655 DOI: 10.1021/jacs.2c03506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The self-assembly of block copolymers is often rationalized by structure and microphase separation; pathways that diverge from this parameter space may provide new mechanisms of polymer assembly. Here, we show that the sequence and length of single-stranded DNA directly influence the self-assembly of sequence-defined DNA block copolymers. While increasing the length of DNA led to predictable changes in self-assembly, changing only the sequence of DNA produced three distinct structures: spherical micelles (spherical nucleic acids, SNAs) from flexible poly(thymine) DNA, fibers from semirigid mixed-sequence DNA, and networked superstructures from rigid poly(adenine) DNA. The secondary structure of poly(adenine) DNA strands drives a temperature-dependent polymerization and assembly mechanism: copolymers stored in an SNA reservoir form fibers after thermal activation, which then aggregate upon cooling to form interwoven networks. DNA is often used as a programming code that aids in nanostructure addressability and function. Here, we show that the inherent physical and chemical properties of single-stranded DNA sequences also make them an ideal material to direct self-assembled morphologies and select for new methods of supramolecular polymerization.
Collapse
Affiliation(s)
- Felix J Rizzuto
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 08B, Canada
| | - Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 08B, Canada
| | | | - Xin Luo
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 08B, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 08B, Canada
| |
Collapse
|
8
|
Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Complex DNA Architectonics─Self-Assembly of Amphiphilic Oligonucleotides into Ribbons, Vesicles, and Asterosomes. Bioconjug Chem 2022; 34:70-77. [PMID: 35357155 PMCID: PMC9854621 DOI: 10.1021/acs.bioconjchem.2c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The precise arrangement of structural subunits is a key factor for the proper shape and function of natural and artificial supramolecular assemblies. In DNA nanotechnology, the geometrically well-defined double-stranded DNA scaffold serves as an element of spatial control for the precise arrangement of functional groups. Here, we describe the supramolecular assembly of chemically modified DNA hybrids into diverse types of architectures. An amphiphilic DNA duplex serves as the sole structural building element of the nanosized supramolecular structures. The morphology of the assemblies is governed by a single subunit of the building block. The chemical nature of this subunit, i.e., polyethylene glycols of different chain length or a carbohydrate moiety, exerts a dramatic influence on the architecture of the assemblies. Cryo-electron microscopy revealed the arrangement of the individual DNA duplexes within the different constructs. Thus, the morphology changes from vesicles to ribbons with increasing length of a linear polyethylene glycol. Astoundingly, attachment of a N-acetylgalactosamine carbohydrate to the DNA duplex moiety produces an unprecedented type of star-shaped architecture. The novel DNA architectures presented herein imply an extension of the current concept of DNA materials and shed new light on the fast-growing field of DNA nanotechnology.
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Ioan Iacovache
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Simon M. Langenegger
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Benoît Zuber
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland,
| |
Collapse
|
9
|
Appukutti N, de Vries AH, Gudeangadi PG, Claringbold BR, Garrett MD, Reithofer MR, Serpell CJ. Sequence-complementarity dependent co-assembly of phosphodiester-linked aromatic donor–acceptor trimers. Chem Commun (Camb) 2022; 58:12200-12203. [DOI: 10.1039/d2cc00239f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequence-defined trimers of phosphodiester-linked aromatic donor–acceptors self-assemble according to monomer order, and co-assemble into new structures with their complementary sequence.
Collapse
Affiliation(s)
- Nadeema Appukutti
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Alex H. de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Prashant G. Gudeangadi
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Bini R. Claringbold
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Michelle D. Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Michael R. Reithofer
- Dept. of Inorganic Chemistry, University of Vienna, Wahringer Strabe. 42, 1090 Vienna, Austria
| | - Christopher J. Serpell
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| |
Collapse
|
10
|
Dore MD, Trinh T, Zorman M, de Rochambeau D, Platnich CM, Xu P, Luo X, Remington JM, Toader V, Cosa G, Li J, Sleiman HF. Thermosetting supramolecular polymerization of compartmentalized DNA fibers with stereo sequence and length control. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Jevric J, Langenegger SM, Häner R. Layered assembly of cationic and anionic supramolecular polymers. Chem Commun (Camb) 2021; 57:6648-6651. [PMID: 34128018 PMCID: PMC8259570 DOI: 10.1039/d1cc01466h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022]
Abstract
The chemical synthesis and the supramolecular assembly of an aromatic oligoamine are described. The self-assembly of the cationic oligomers in aqueous solution leads to the formation of vesicular objects. The assembly process of the oligomers is monitored by absorption and fluorescence spectroscopy and the formed vesicles are characterized by atomic force and transmission electron microscopy. The electrostatic complementarity of anionic supramolecular polymers sheets and the cationic vesicles is used for a layered assembly process.
Collapse
Affiliation(s)
- Jovana Jevric
- Department of Chemistry, Biochemistry and Pharmacy, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland.
| | - Simon M Langenegger
- Department of Chemistry, Biochemistry and Pharmacy, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland.
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmacy, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland.
| |
Collapse
|
12
|
Loth C, Charles L, Lutz JF, Nerantzaki M. Precisely Defined Aptamer- b-Poly(phosphodiester) Conjugates Prepared by Phosphoramidite Polymer Chemistry. ACS Macro Lett 2021; 10:481-485. [PMID: 35549221 DOI: 10.1021/acsmacrolett.1c00164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uniform conjugates combining a DNA aptamer (either anti-MUC1 or ATP aptamer) and a synthetic polymer segment were synthesized by automated phosphoramidite chemistry. This multistep growth polymer chemistry enables the use of both natural (i.e., nucleoside phosphoramidites) and non-natural monomers (e.g., alkyl- and oligo(ethylene glycol)-phosphoramidites). Thus, in the present work, six different aptamer-polymer conjugates were synthesized and characterized by ion-exchange HPLC, circular dichroism spectroscopy, and electrospray mass spectrometry. All these methods evidenced the formation of uniform molecules with precisely controlled chain-length and monomer sequences. Furthermore, aptamer folding was not affected by polymer bioconjugation. The method described herein is straightforward and allows covalent attachment of homopolymers and copolymers to biofunctional DNA aptamers.
Collapse
Affiliation(s)
- Capucine Loth
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Laurence Charles
- Aix Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille Cedex 20, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Maria Nerantzaki
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
13
|
Abstract
In biological systems, the storage and transfer of genetic information rely on sequence-controlled nucleic acids such as DNA and RNA. It has been realized for quite some time that this property is not only crucial for life but could also be very useful in human applications. For instance, DNA has been actively investigated as a digital storage medium over the past decade. Indeed, the "hard-disk of life" is an obvious choice and a highly optimized material for storing data. Through decades of nucleic acids research, technological tools for parallel synthesis and sequencing of DNA have been readily available. Consequently, it has already been demonstrated that different types of documents (e.g., texts, images, videos, and industrial data) can be stored in chemically synthesized DNA libraries. However, DNA is subject to biological constraints, and its molecular structure cannot be easily varied to match technological needs. In fact, DNA is not the only macromolecule that enables data storage. In recent years, it has been demonstrated that a wide variety of synthetic polymers can also be used for such a purpose. Indeed, modern polymer synthesis allows the preparation of synthetic macromolecules with precisely controlled monomer sequences. Altogether, about a dozens of synthetic digital polymers have already been described, and many more can be foreseen. Among them, sequence-defined poly(phosphodiester)s are one of the most promising options. These polymers are prepared by stepwise phosphoramidite chemistry like chemically synthesized oligonucleotides. However, they are constructed with non-natural building blocks and therefore share almost no structural characteristics with nucleic acids, except phosphate repeat units. Still, they contain readable digital messages that can be deciphered by nanopore sequencing or mass spectrometry sequencing. In this Account, we describe our recent research efforts in synthesizing and sequencing optimal abiological digital poly(phosphodiester)s. A major advantage of these polymers over DNA is that their molecular structure can easily be varied to tune their properties. During the last 5 years, we have engineered the molecular structure of these polymers to adjust crucial parameters such as the storage density, storage capacity, erasability, and readability. Consequently, high-capacity PPDE chains, containing hundreds of bits per chains, can now be synthesized and efficiently sequenced using a routine mass spectrometer. Furthermore, sequencing data can be automatically decrypted with the help of decoding software. This new type of coded matter can also be edited using practical physical triggers such as light and organized in space by programmed self-assembly. All of these recent improvements are summarized and discussed herein.
Collapse
Affiliation(s)
- Laurence Charles
- Aix Marseille Université, CNRS, Institute for Radical Chemistry, UMR 7273, 23 Av Escadrille Nomandie-Niemen, 13397 Marseille Cedex 20, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
14
|
Fadler RE, Al Ouahabi A, Qiao B, Carta V, König NF, Gao X, Zhao W, Zhang Y, Lutz JF, Flood AH. Chain Entropy Beats Hydrogen Bonds to Unfold and Thread Dialcohol Phosphates inside Cyanostar Macrocycles To Form [3]Pseudorotaxanes. J Org Chem 2021; 86:4532-4546. [PMID: 33636075 PMCID: PMC8063573 DOI: 10.1021/acs.joc.0c02887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recognition of substituted phosphates underpins many processes including DNA binding, enantioselective catalysis, and recently template-directed rotaxane synthesis. Beyond ATP and a few commercial substrates, however, little is known about how substituents effect organophosphate recognition. Here, we examined alcohol substituents and their impact on recognition by cyanostar macrocycles. The organophosphates were disubstituted by alcohols of various chain lengths, dipropanol, dihexanol, and didecanol phosphate, each accessed using modular solid-phases syntheses. Based on the known size-selective binding of phosphates by π-stacked dimers of cyanostars, threaded [3]pseudorotaxanes were anticipated. While seen with butyl substituents, pseudorotaxane formation was disrupted by competitive OH···O- hydrogen bonding between both terminal hydroxyls and the anionic phosphate unit. Crystallography also showed formation of a backfolded propanol conformation resulting in an 8-membered ring and a perched cyanostar assembly. Motivated by established entropic penalties accompanying ring formation, we reinstated [3]pseudorotaxanes by extending the size of the substituent to hexanol and decanol. Chain entropy overcomes the enthalpically favored OH···O- contacts to favor random-coil conformations required for seamless, high-fidelity threading of dihexanol and didecanol phosphates inside cyanostars. These studies highlight how chain length and functional groups on phosphate's substituents can be powerful design tools to regulate binding and control assembly formation during phosphate recognition.
Collapse
Affiliation(s)
- Rachel E Fadler
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Abdelaziz Al Ouahabi
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, 67034, France
| | - Bo Qiao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Veronica Carta
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Niklas F König
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, 67034, France
| | - Xinfeng Gao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Wei Zhao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yankai Zhang
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, 67034, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, 67034, France
| | - Amar H Flood
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Mondal T, Nerantzaki M, Flesch K, Loth C, Maaloum M, Cong Y, Sheiko SS, Lutz JF. Large Sequence-Defined Supramolecules Obtained by the DNA-Guided Assembly of Biohybrid Poly(phosphodiester)s. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tathagata Mondal
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Maria Nerantzaki
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Kevin Flesch
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Capucine Loth
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Mounir Maaloum
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Yidan Cong
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
16
|
Laurent E, Amalian JA, Schutz T, Launay K, Clément JL, Gigmes D, Burel A, Carapito C, Charles L, Delsuc MA, Lutz JF. Storing the portrait of Antoine de Lavoisier in a single macromolecule. CR CHIM 2021. [DOI: 10.5802/crchim.72] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Launay K, Amalian J, Laurent E, Oswald L, Al Ouahabi A, Burel A, Dufour F, Carapito C, Clément J, Lutz J, Charles L, Gigmes D. Precise Alkoxyamine Design to Enable Automated Tandem Mass Spectrometry Sequencing of Digital Poly(phosphodiester)s. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kévin Launay
- Aix Marseille Université CNRS Institute for Radical Chemistry UMR 7273 23 Av Escadrille Nomandie-Niemen 13397 Marseille Cedex 20 France
| | - Jean‐Arthur Amalian
- Aix Marseille Université CNRS Institute for Radical Chemistry UMR 7273 23 Av Escadrille Nomandie-Niemen 13397 Marseille Cedex 20 France
| | - Eline Laurent
- Université de Strasbourg CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Laurence Oswald
- Université de Strasbourg CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Abdelaziz Al Ouahabi
- Université de Strasbourg CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Alexandre Burel
- Université de Strasbourg CNRS Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) IPHC 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Florent Dufour
- Université de Strasbourg CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
- Université de Strasbourg CNRS Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) IPHC 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Christine Carapito
- Université de Strasbourg CNRS Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) IPHC 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Jean‐Louis Clément
- Aix Marseille Université CNRS Institute for Radical Chemistry UMR 7273 23 Av Escadrille Nomandie-Niemen 13397 Marseille Cedex 20 France
| | - Jean‐François Lutz
- Université de Strasbourg CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Laurence Charles
- Aix Marseille Université CNRS Institute for Radical Chemistry UMR 7273 23 Av Escadrille Nomandie-Niemen 13397 Marseille Cedex 20 France
| | - Didier Gigmes
- Aix Marseille Université CNRS Institute for Radical Chemistry UMR 7273 23 Av Escadrille Nomandie-Niemen 13397 Marseille Cedex 20 France
| |
Collapse
|
18
|
Roszak I, Oswald L, Al Ouahabi A, Bertin A, Laurent E, Felix O, Carvin-Sergent I, Charles L, Lutz JF. Synthesis and sequencing of informational poly(amino phosphodiester)s. Polym Chem 2021. [DOI: 10.1039/d1py01052b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inclusion of main-chain tertiary amines in digital poly(phosphodiester)s allows synthesis of molecularly-defined achiral polymers and simplifies tandem mass spectrometry sequencing.
Collapse
Affiliation(s)
- Ian Roszak
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Laurence Oswald
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Abdelaziz Al Ouahabi
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Annabelle Bertin
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
- BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
- Institute of Chemistry and Biochemistry − Organic Chemistry, Free University Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Eline Laurent
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Olivier Felix
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Isaure Carvin-Sergent
- Aix Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille Cedex 20, France
| | - Laurence Charles
- Aix Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille Cedex 20, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
19
|
Nerantzaki M, Loth C, Lutz JF. Chemical conjugation of nucleic acid aptamers and synthetic polymers. Polym Chem 2021. [DOI: 10.1039/d1py00516b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This minireview describes the synthesis, characterization and properties of aptamer–polymer conjugates. This new class of polymer bioconjugates combines the advantages of synthetic polymers and folded nucleic acids.
Collapse
Affiliation(s)
- Maria Nerantzaki
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| | - Capucine Loth
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| | - Jean-François Lutz
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| |
Collapse
|
20
|
Nifant’ev I, Siniavin A, Karamov E, Kosarev M, Kovalchuk S, Turgiev A, Nametkin S, Bagrov V, Tavtorkin A, Ivchenko P. A New Approach to Developing Long-Acting Injectable Formulations of Anti-HIV Drugs: Poly(Ethylene Phosphoric Acid) Block Copolymers Increase the Efficiency of Tenofovir against HIV-1 in MT-4 Cells. Int J Mol Sci 2020; 22:ijms22010340. [PMID: 33396968 PMCID: PMC7795142 DOI: 10.3390/ijms22010340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the world’s combined efforts, human immunodeficiency virus (HIV), the causative agent of AIDS, remains one of the world’s most serious public health challenges. High genetic variability of HIV complicates the development of anti-HIV vaccine, and there is an actual clinical need for increasing the efficiency of anti-HIV drugs in terms of targeted delivery and controlled release. Tenofovir (TFV), a nucleotide-analog reverse transcriptase inhibitor, has gained wide acceptance as a drug for pre-exposure prophylaxis or treatment of HIV infection. In our study, we explored the potential of tenofovir disoproxil (TFD) adducts with block copolymers of poly(ethylene glycol) monomethyl ether and poly(ethylene phosphoric acid) (mPEG-b-PEPA) as candidates for developing a long-acting/controlled-release formulation of TFV. Two types of mPEG-b-PEPA with numbers of ethylene phosphoric acid (EPA) fragments of 13 and 49 were synthesized by catalytic ring-opening polymerization, and used for preparing four types of adducts with TFD. Antiviral activity of [mPEG-b-PEPA]TFD or tenofovir disoproxil fumarate (TDF) was evaluated using the model of experimental HIV infection in vitro (MT-4/HIV-1IIIB). Judging by the values of the selectivity index (SI), TFD exhibited an up to 14-fold higher anti-HIV activity in the form of mPEG-b-PEPA adducts, thus demonstrating significant promise for further development of long-acting/controlled-release injectable TFV formulations.
Collapse
Affiliation(s)
- Ilya Nifant’ev
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (S.N.); (V.B.); (P.I.)
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia;
- Faculty of Chemistry, National Research University Higher School of Economics, Miasnitskaya Str. 20, 101000 Moscow, Russia
- Correspondence: ; Tel.: +7-495-939-4098
| | - Andrei Siniavin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology MHRF, 18 Gamaleya Str., 123098 Moscow, Russia; (A.S.); (E.K.); (A.T.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Eduard Karamov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology MHRF, 18 Gamaleya Str., 123098 Moscow, Russia; (A.S.); (E.K.); (A.T.)
| | - Maxim Kosarev
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (S.N.); (V.B.); (P.I.)
| | - Sergey Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Ali Turgiev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology MHRF, 18 Gamaleya Str., 123098 Moscow, Russia; (A.S.); (E.K.); (A.T.)
| | - Sergey Nametkin
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (S.N.); (V.B.); (P.I.)
| | - Vladimir Bagrov
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (S.N.); (V.B.); (P.I.)
| | - Alexander Tavtorkin
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia;
| | - Pavel Ivchenko
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (S.N.); (V.B.); (P.I.)
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia;
| |
Collapse
|
21
|
Markova L, Probst M, Häner R. Assembly and functionalization of supramolecular polymers from DNA-conjugated squaraine oligomers. RSC Adv 2020; 10:44841-44845. [PMID: 35516236 PMCID: PMC9058661 DOI: 10.1039/d0ra10117f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
DNA conjugated oligomers of organic molecules are candidates for applications in the materials and medical sciences, in diagnostics, in optical devices, for delivery or for the design of complex molecular architectures. Herein, we describe the synthesis and properties of DNA-conjugated squaraine (Sq) oligomers. The oligomers self-assemble into supramolecular polymers that are amenable to further functionalization via DNA hybridization, as shown by the attachment of gold nanoparticles (AuNPs). The assembly of supramolecular polymers of DNA-linked squaraine oligomers and their subsequent derivatization is described.![]()
Collapse
Affiliation(s)
- Larysa Markova
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Markus Probst
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
22
|
Launay K, Amalian J, Laurent E, Oswald L, Al Ouahabi A, Burel A, Dufour F, Carapito C, Clément J, Lutz J, Charles L, Gigmes D. Precise Alkoxyamine Design to Enable Automated Tandem Mass Spectrometry Sequencing of Digital Poly(phosphodiester)s. Angew Chem Int Ed Engl 2020; 60:917-926. [DOI: 10.1002/anie.202010171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/08/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Kévin Launay
- Aix Marseille Université CNRS Institute for Radical Chemistry UMR 7273 23 Av Escadrille Nomandie-Niemen 13397 Marseille Cedex 20 France
| | - Jean‐Arthur Amalian
- Aix Marseille Université CNRS Institute for Radical Chemistry UMR 7273 23 Av Escadrille Nomandie-Niemen 13397 Marseille Cedex 20 France
| | - Eline Laurent
- Université de Strasbourg CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Laurence Oswald
- Université de Strasbourg CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Abdelaziz Al Ouahabi
- Université de Strasbourg CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Alexandre Burel
- Université de Strasbourg CNRS Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) IPHC 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Florent Dufour
- Université de Strasbourg CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
- Université de Strasbourg CNRS Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) IPHC 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Christine Carapito
- Université de Strasbourg CNRS Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) IPHC 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Jean‐Louis Clément
- Aix Marseille Université CNRS Institute for Radical Chemistry UMR 7273 23 Av Escadrille Nomandie-Niemen 13397 Marseille Cedex 20 France
| | - Jean‐François Lutz
- Université de Strasbourg CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Laurence Charles
- Aix Marseille Université CNRS Institute for Radical Chemistry UMR 7273 23 Av Escadrille Nomandie-Niemen 13397 Marseille Cedex 20 France
| | - Didier Gigmes
- Aix Marseille Université CNRS Institute for Radical Chemistry UMR 7273 23 Av Escadrille Nomandie-Niemen 13397 Marseille Cedex 20 France
| |
Collapse
|
23
|
Nifant’ev I, Komarov P, Ovchinnikova V, Kiselev A, Minyaev M, Ivchenko P. Comparative Experimental and Theoretical Study of Mg, Al and Zn Aryloxy Complexes in Copolymerization of Cyclic Esters: The Role of the Metal Coordination in Formation of Random Copolymers. Polymers (Basel) 2020; 12:E2273. [PMID: 33023256 PMCID: PMC7600584 DOI: 10.3390/polym12102273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Homogeneity of copolymers is a general problem of catalytic coordination polymerization. In ring-opening polymerization of cyclic esters, the rational design of the catalyst is generally applied to solve this problem by the equalization of the reactivities of comonomers-however, it often leads to a reduction of catalytic activity. In the present paper, we studied the catalytic behavior of BnOH-activated complexes (ВНТ)Mg(THF)2nBu (1), (ВНТ)2AlMe (2) and [(ВНТ)ZnEt]2 (3), based on 2,6-di-tert-butyl-4-methylphenol (BHT-H) in homo- and copolymerization of L-lactide (lLA) and ε-caprolactone (εCL). Even at 1:5 lLA/εCL ratio Mg complex 1 catalyzed homopolymerization of lLA without involving εCL to the formation of the polymer backbone. On the contrary, Zn complex 3 efficiently catalyzed random lLA/εCL copolymerization; the presence of mono-lactate subunits in the copolymer chain clearly pointed to the transesterification mechanism of copolymer formation. Both epimerization and transesterification side processes were analyzed using the density functional theory (DFT) modeling that confirmed the qualitative difference in catalytic behavior of 1 and 3: Mg and Zn complexes demonstrated different types of preferable coordination on the PLA chain (k2 and k3, respectively) with the result that complex 3 catalyzed controlled εCL ROP/PLA transesterification, providing the formation of lLA/εCL copolymers that contain mono-lactate fragments separated by short oligo(εCL) chains. The best results in the synthesis of random lLA/εCL copolymers were obtained during experiments on transesterification of commercially available PLLA, the applicability of 3/BnOH catalyst in the synthesis of random copolymers of εCL with methyl glycolide, ethyl ethylene phosphonate and ethyl ethylene phosphate was also demonstrated.
Collapse
Affiliation(s)
- Ilya Nifant’ev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1–3, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
- Faculty of Chemistry, National Research University Higher School of Economics, Miasnitskaya Str. 20, 101000 Moscow, Russia
| | - Pavel Komarov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
| | - Valeriya Ovchinnikova
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
| | - Artem Kiselev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
- Faculty of Chemistry, National Research University Higher School of Economics, Miasnitskaya Str. 20, 101000 Moscow, Russia
| | - Mikhail Minyaev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky pr. 47, 119991 Moscow, Russia
| | - Pavel Ivchenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1–3, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
| |
Collapse
|
24
|
Jevric J, Langenegger SM, Häner R. Light-Harvesting Supramolecular Polymers: Energy Transfer to Various Polyaromatic Acceptors. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jovana Jevric
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
25
|
Laurent E, Amalian JA, Parmentier M, Oswald L, Al Ouahabi A, Dufour F, Launay K, Clément JL, Gigmes D, Delsuc MA, Charles L, Lutz JF. High-Capacity Digital Polymers: Storing Images in Single Molecules. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00666] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eline Laurent
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| | - Jean-Arthur Amalian
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, 13397 Cedex 20 Marseille, France
| | - Marie Parmentier
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| | - Laurence Oswald
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| | - Abdelaziz Al Ouahabi
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| | - Florent Dufour
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| | - Kevin Launay
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, 13397 Cedex 20 Marseille, France
| | - Jean-Louis Clément
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, 13397 Cedex 20 Marseille, France
| | - Didier Gigmes
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, 13397 Cedex 20 Marseille, France
| | - Marc-André Delsuc
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France
| | - Laurence Charles
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, 13397 Cedex 20 Marseille, France
| | - Jean-François Lutz
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| |
Collapse
|
26
|
Iwasaki Y. Bone Mineral Affinity of Polyphosphodiesters. Molecules 2020; 25:E758. [PMID: 32050545 PMCID: PMC7036841 DOI: 10.3390/molecules25030758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
Biomimetic molecular design is a promising approach for generating functional biomaterials such as cell membrane mimetic blood-compatible surfaces, mussel-inspired bioadhesives, and calcium phosphate cements for bone regeneration. Polyphosphoesters (PPEs) are candidate biomimetic polymer biomaterials that are of interest due to their biocompatibility, biodegradability, and structural similarity to nucleic acids. While studies on the synthesis of PPEs began in the 1970s, the scope of their use as biomaterials has increased in the last 20 years. One advantageous property of PPEs is their molecular diversity due to the presence of multivalent phosphorus in their backbones, which allows their physicochemical and biointerfacial properties to be easily controlled to produce the desired molecular platforms for functional biomaterials. Polyphosphodiesters (PPDEs) are analogs of PPEs that have recently attracted interest due to their strong affinity for biominerals. This review describes the fundamental properties of PPDEs and recent research in the field of macromolecular bone therapeutics.
Collapse
Affiliation(s)
- Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan
| |
Collapse
|
27
|
Appukutti N, Jones JR, Serpell CJ. Sequence isomerism in uniform polyphosphoesters programmes self-assembly and folding. Chem Commun (Camb) 2020; 56:5307-5310. [DOI: 10.1039/d0cc01319f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Perfectly sequence-defined macromolecules have been synthesised through the phosphoramidite method. Sequence isomerism determines self-assembly giving a raft of unusual nanostructures.
Collapse
Affiliation(s)
- Nadeema Appukutti
- School of Physical Sciences, Ingram Building, University of Kent
- Canterbury
- UK
| | - Joseph R. Jones
- Department of Chemistry
- University of Warwick
- Gibbet Hill
- Coventry
- UK
| | | |
Collapse
|
28
|
Frisch H, Kodura D, Bloesser FR, Michalek L, Barner‐Kowollik C. Wavelength‐Selective Folding of Single Polymer Chains with Different Colors of Visible Light. Macromol Rapid Commun 2019; 41:e1900414. [DOI: 10.1002/marc.201900414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/30/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Hendrik Frisch
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Daniel Kodura
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Fabian R. Bloesser
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Lukas Michalek
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner‐Kowollik
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Germany
| |
Collapse
|
29
|
Jiang X, Lu G, Huang X, Li Y, Cao F, Chen H, Liu W. Thermo-Responsive Graphene Oxide/Poly(Ethyl Ethylene Phosphate) Nanocomposite via Ring Opening Polymerization. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E207. [PMID: 30764568 PMCID: PMC6409759 DOI: 10.3390/nano9020207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/20/2019] [Accepted: 01/29/2019] [Indexed: 01/15/2023]
Abstract
An efficient strategy for growing thermo-sensitive polymers from the surface of exfoliated graphene oxide (GO) is reported in this article. GO sheets with hydroxyls and epoxy groups on the surface were first prepared by modified Hummer's method. Epoxy groups on GO sheets can be easily modified through ring-opening reactions, involving nucleophilic attack by tris(hydroxymethyl) aminomethane (TRIS). The resulting GO-TRIS sheets became a more versatile precursor for next ring opening polymerization (ROP) of ethyl ethylene phosphate (EEP), leading to GO-TRIS/poly(ethyl ethylene phosphate) (GO-TRIS-PEEP) nanocomposite. The nanocomposite was characterized by ¹H NMR, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), differential thermal gravity (DTG), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Since hydrophilic PEEP chains make the composite separate into single layers through hydrogen bonding interaction, the dispersity of the functionalized GO sheets in water is significantly improved. Meanwhile, the aqueous dispersion of GO-TRIS-PEEP nanocomposite shows reversible temperature switching self-assembly and disassembly behavior. Such a smart graphene oxide-based hybrid material is promising for applications in the biomedical field.
Collapse
Affiliation(s)
- Xue Jiang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No 1 Road, Shanghai 200083, China.
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yu Li
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No 1 Road, Shanghai 200083, China.
| | - Fangqi Cao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No 1 Road, Shanghai 200083, China.
| | - Hong Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No 1 Road, Shanghai 200083, China.
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No 1 Road, Shanghai 200083, China.
| |
Collapse
|
30
|
Tee HT, Lieberwirth I, Wurm FR. Aliphatic Long-Chain Polypyrophosphates as Biodegradable Polyethylene Mimics. Macromolecules 2019; 52:1166-1172. [PMID: 31496542 PMCID: PMC6728087 DOI: 10.1021/acs.macromol.8b02474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/03/2019] [Indexed: 12/04/2022]
Abstract
![]()
Biodegradable polyethylene mimics
have been synthesized by the
introduction of pyrophosphate groups into the polymer backbone, allowing
not only hydrolysis of the backbone but also further degradation by
microorganisms. Because of cost, low weight, and good mechanical properties,
the use of polyolefins has increased significantly in the past decades
and has created many challenges in terms of disposal and their environmental
impact. The durability and resistance to degradation make polyethylene
difficult or impossible for nature to assimilate, thus making the
degradability of polyolefins an essential topic of research. The biodegradable
polypyrophosphate was prepared via acyclic diene metathesis polymerization
of a diene monomer. The monomer is accessible via a three-step synthesis,
in which the pyrophosphate was formed in the last step by DCC coupling
of two phosphoric acid derivatives. This is the first report of a
pyrophosphate group localized in an organic polymer backbone. The
polypyrophosphate was characterized in detail by NMR spectroscopy,
size exclusion chromatography, FTIR spectroscopy, differential scanning
calorimetry, and thermogravimetry. X-ray diffraction was used to compare
the crystallization structure in comparison to analogous polyphosphates
showing poly(ethylene)-like structures. In spite of their hydrophobicity
and water insolubility, the pyrophosphate groups exhibited fast hydrolysis,
resulting in polymer degradation when films were immersed in water.
Additionally, the hydrolyzed fragments were further biodegraded by
microorganisms, rendering these PE mimics potential candidates for
fast release of hydrophobic cargo, for example, in drug delivery applications.
Collapse
Affiliation(s)
- Hisaschi T Tee
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R Wurm
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
31
|
Vybornyi M, Vyborna Y, Häner R. DNA-inspired oligomers: from oligophosphates to functional materials. Chem Soc Rev 2019; 48:4347-4360. [DOI: 10.1039/c8cs00662h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Replacement of the natural nucleotides in DNA by non-nucleosidic building blocks leads to phosphodiester-linked oligomers with a high functional diversity.
Collapse
Affiliation(s)
- Mykhailo Vybornyi
- Laboratoire de Biochimie (LBC)
- ESPCI Paris
- PSL Research University
- CNRS UMR8231 Chimie Biologie Innovation
- 75005 Paris
| | - Yuliia Vyborna
- Sorbonne Université
- Laboratoire Jean Perrin
- 75005 Paris
- France
| | - Robert Häner
- Department of Chemistry and Biochemistry
- University of Bern
- Freiestrasse 3
- Switzerland
| |
Collapse
|
32
|
Kownacki M, Langenegger SM, Liu SX, Häner R. Integrating DNA Photonic Wires into Light-Harvesting Supramolecular Polymers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mariusz Kownacki
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
33
|
Kownacki M, Langenegger SM, Liu SX, Häner R. Integrating DNA Photonic Wires into Light-Harvesting Supramolecular Polymers. Angew Chem Int Ed Engl 2018; 58:751-755. [DOI: 10.1002/anie.201809914] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Mariusz Kownacki
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
34
|
de Rochambeau D, Sun Y, Barlog M, Bazzi HS, Sleiman HF. Modular Strategy To Expand the Chemical Diversity of DNA and Sequence-Controlled Polymers. J Org Chem 2018; 83:9774-9786. [DOI: 10.1021/acs.joc.8b01184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Donatien de Rochambeau
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec H3A 0B8, Canada
| | - Yuanye Sun
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec H3A 0B8, Canada
| | - Maciej Barlog
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Hassan S. Bazzi
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Hanadi F. Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
35
|
Bösch CD, Jevric J, Bürki N, Probst M, Langenegger SM, Häner R. Supramolecular Assembly of DNA-Phenanthrene Conjugates into Vesicles with Light-Harvesting Properties. Bioconjug Chem 2018; 29:1505-1509. [DOI: 10.1021/acs.bioconjchem.8b00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Caroline D. Bösch
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jovana Jevric
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Nutcha Bürki
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Markus Probst
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
36
|
Rothenbühler S, Bösch CD, Langenegger SM, Liu SX, Häner R. Self-assembly of a redox-active bolaamphiphile into supramolecular vesicles. Org Biomol Chem 2018; 16:6886-6889. [DOI: 10.1039/c8ob02106f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Self-assembly of a redox-active bolaamphiphile leads to the formation of narrow-bandgap supramolecular vesicles.
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department of Chemistry and Biochemistry
- University of Bern
- CH- 3012 Bern
- Switzerland
| | - Caroline D. Bösch
- Department of Chemistry and Biochemistry
- University of Bern
- CH- 3012 Bern
- Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry
- University of Bern
- CH- 3012 Bern
- Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry
- University of Bern
- CH- 3012 Bern
- Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry
- University of Bern
- CH- 3012 Bern
- Switzerland
| |
Collapse
|